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1. Introduction

Asymptotic estimation of external, unstructured, perturbation inputs, with the aim of exactly,
or approximately, canceling their influences at the controller stage, has been treated in the
existing literature under several headings. The outstanding work of professor C.D. Johnson
in this respect, under the name of Disturbance Accommodation Control (DAC), dates from the
nineteen seventies (see Johnson (1971)). Ever since, the theory and practical aspects of DAC
theory have been actively evolving, as evidenced by the survey paper by Johnson Johnson
(2008). The theory enjoys an interesting and useful extension to discrete-time systems, as
demonstrated in the book chapter Johnson (1982). In a recent article, by Parker and Johnson
Parker & Johnson (2009), an application of DAC is made to the problem of decoupling
two nonlinearly coupled linear systems. An early application of disturbance accommodation
control in the area of Power Systems is exemplified by the work of Mohadjer and Johnson
in Mohadjer & Johnson (1983), where the operation of an interconnected power system is
approached from the perspective of load frequency control.
A closely related vein to DAC is represented by the sustained efforts of the late Professor
Jingqing Han, summarized in the posthumous paper, Han Han (2009), and known as: Active
Disturbance Estimation and Rejection (ADER). The numerous and original developments of
Prof. Han, with many laboratory and industrial applications, have not been translated into
English and his seminal contributions remain written in Chinese (see the references in Han
(2009)). Although the main idea of observer-based disturbance estimation, and subsequent
cancelation via the control law, is similar to that advocated in DAC, the emphasis in ADER
lies, mainly, on nonlinear observer based disturbance estimation, with necessary developments
related to: efficient time derivative computation, practical relative degree computation and
nonlinear PID control extensions. The work, and inspiration, of Professor Han has found
interesting developments and applications in the work of Professor Z. Gao and his colleagues
( see Gao et al. (2001), Gao (2006), also, in the work by Sun and Gao Sun & Gao (2005) and
in the article by Sun Sun (2007)). In a recent article, a closely related idea, proposed by Prof.
M. Fliess and C. Join in Fliess & Join (2008), is at the core of Intelligent PID Control(IPIDC).
The mainstream of the IPIDC developments makes use of the Algebraic Method and it
implies to resort to first order, or at most second order, non-phenomenological plant models.
The interesting aspect of this method resides in using suitable algebraic manipulations to
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locally deprive the system description of the effects of nonlinear uncertain additive terms
and, via further special algebraic manipulations, to efficiently identify time-varying control
gains as piece-wise constant control input gains (see Fliess et al. (2008)). An entirely algebraic
approach for the control of synchronous generator was presented in Fliess and Sira-Ramírez,
Sira-Ramírez & Fliess (2004).
In this chapter, we advocate, within the context of trajectory tracking control for nonlinear
flat systems, the use of approximate, yet accurate, state dependent disturbance estimation
via linear Generalized Proportional Integral (GPI) observers. GPI observers are the dual
counterpart of GPI controllers, developed by M. Fliess et al. in Fliess et al. (2002). A high
gain GPI observer naturally includes a, self-updating, lumped, time-polynomial model of
the nonlinear state-dependent perturbation; it estimates it and delivers the time signal to
the controller for on-line cancelation while simultaneously estimating the phase variables
related to the measured output. The scheme is, however, approximate since only a small as
desired reconstruction error is guaranteed at the expense of high, noise-sensitive, gains. The
on-line approximate estimation is suitably combined with linear, estimation-based, output
feedback control with the appropriate, on-line, disturbance cancelation. The many similarities
and the few differences with the DAC and ADER techniques probably lie in 1) the fact that we
do not discriminate between exogenous (i.e., external) unstructured perturbation inputs and
endogenous (i.e., state-dependent) perturbation inputs in the nonlinear input-output model.
These perturbations are all lumped into a simplifying time-varying signal that needs to be
linearly estimated. Notice that plant nonlinearities generate time functions that are exogenous
to any observer and, hence, algebraic loops are naturally avoided 2) We emphasize the natural
possibilities of differentially flat systems in the use of linear disturbance estimation and linear
output feedback control with disturbance cancelation (For the concept of flatness see Fliess et
al. Fliess et al. (1995)) and the book Sira-Ramírez & Agrawal (2004).
This chapter is organized as follows: Section 2 presents an introduction to linear control
of nonlinear differentially flat systems via (high-gain) GPI observers and suitable linear
controllers feeding back the phase variables related to the output function. The single
input-single output synchronous generator model in the form a swing equation, is described
in Section 3. Here, we formulate the reference trajectory tracking problem under a number
of information restrictions about the system. The linear observer-linear controller output
feedback control scheme is designed for lowering the deviation angle of the generator. We
carry out a robustness test regarding the response to a three phase short circuit. We also carry
an evaluation of the performance of the control scheme under significant variations of the two
control gain parameters required for an exact cancelation of the gain. Section 4 is devoted to
present an experimental illustrative example concerning the non-holonomic car which is also
a multivariable nonlinear system with input gain matrix depending on the estimated phase
variables associated with the flat outputs.

2. Linear GPI observer-based control of nonlinear systems

Consider the following perturbed nonlinear single-input single input-output, smooth,
nonlinear system,

y(n) = ψ(t, y, ẏ, ..., y(n−1)) + φ(t, y)u + ζ(t) (1)

The unperturbed system, (ζ(t) ≡ 0) is evidently flat, as all variables in the system are
expressible as differential functions of the flat output y.
We assume that the exogenous perturbation ζ(t) is uniformly absolutely bounded, i.e., it
an L∞ scalar function. Similarly, we assume that for all bounded solutions, y(t), of (1),

456 Robust Control, Theory and Applications

www.intechopen.com



obtained by means of suitable control input u, the additive, endogenous, perturbation input,

ψ(t, y(t), ẏ(t), ..., y(n−1)(t)), viewed as a time signal is uniformly absolutely bounded.
We also assume that the nonlinear gain function φ(t, y(t)) is L∞ and uniformly bounded away
from zero, i.e., there exists a strictly positive constant μ such that

inf
t
|φ(t, y(t))| ≥ μ (2)

for all smooth, bounded solutions, y(t), of (1) obtained with a suitable control input u.
Although the results below can be extended when the input gain function φ depends on
the time derivatives of y, we let, motivated by the synchronous generator case study to be
presented, φ to be an explicit function of time and of the measured flat output y. This is
equivalent to saying the φ(t, y(t)) is perfectly known.
We have the following formulation of the problem:
Given a desired flat output reference trajectory, y∗(t), devise a linear output feedback controller for

system (1) so that regardless of the endogenous perturbation signal ψ(t, y(t), ẏ(t), ..., y(n−1)(t)) and
of the exogenous perturbation input ζ(t), the flat output y tracks the desired reference signal y∗(t) even
if in an approximate fashion. This approximate character specifically means that the tracking error,
e(t) = y − y∗(t), and its first, n, time derivatives, globally asymptotically exponentially converge
towards a small as desired neighborhood of the origin in the reference trajectory tracking error phase
space.
The solution to the problem is achieved in an entirely linear fashion if one conceptually
considers the nonlinear model (1) as the following linear perturbed system

y(n) = v + ξ(t) (3)

where v = φ(t, y)u, and ξ(t) = ψ(t, y(t), ẏ(t), ..., y(n−1)(t)) + ζ(t).
Consider the following preliminary result:

Proposition 1. The unknown perturbation vector of time signals, ξ(t), in the simplified tracking error
dynamics (3), is observable in the sense of Diop and Fliess (see Diop & Fliess (1991))).

Proof The proof of this fact is immediate after writing (3) as

ξ(t) = y(n) − v = y(n) − φ(t, y)u (4)

i.e., ξ(t) can be written in terms of the output vector y, a finite number of its time derivatives
and the control input u. Hence, ξ(t) is observable.

Remark 2. This means, in particular, that if ξ(t) is bestowed with an exact linear model; an exact
asymptotic estimation of ξ(t) is possible via a linear observer. If, on the other hand, the linear model
is only approximately locally valid, then the estimation obtained via a linear observer is asymptotically
convergent towards an equally approximately locally valid estimate.

We assume that the perturbation input ξ(t) may be locally modeled as a p − 1-th degree time
polynomial z1 plus a residual term, r(t), i.e.,

ξ(t) = z1 + r(t) = a0 + a1t + · · · + ap−1tp−1 + r(t), for all t (5)

The time polynomial model, z1, (also called: a Taylor polynomial) is invariant with respect
to time shifts and it defines a family of p − 1 degree Taylor polynomials with arbitrary real
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coefficients. We incorporate z1 as an internal model of the additive perturbation input (see
Johnson (1971)).
The perturbation model z1 will acquire a self updating character when incorporated as part of a
linear asymptotic observer whose estimation error is forced to converge to a small vicinity of
zero. As a consequence of this, we may safely assume that the self-updating residual function,

r(t), and its time derivatives, say r(p)(t), are uniformly absolutely bounded. To precisely state

this, let us denote by yj an estimate of y(j−1) for j = 1, ..., n.
We have the following general result:

Theorem 3. The GPI observer-based dynamical feedback controller:

u =
1

φ(t, y)

⎡
⎣[y∗(t)](n) −

n−1

∑
j=0

(
κj [yj − (y∗(t))(j)]

)
− ξ̂(t)

⎤
⎦ (6)

ξ̂(t) = z1

ẏ1 = y2 + λp+n−1(y − y1)

ẏ2 = y3 + λp+n−2(y − y1)

...

ẏn = v + z1 + λp(y − y1)

ż1 = z2 + λp−1(y − y1)

...

żp−1 = zp + λ1(y − y1)

żp = λ0(y − y1) (7)

asymptotically exponentially drives the tracking error phase variables, e
(k)
y = y(k) − [y∗(t)](k),

k = 0, 1, .., n − 1 to an arbitrary small neighborhood of the origin, of the tracking error phase space,
which can be made as small as desired from the appropriate choice of the controller gain parameters

{κ0, ..., κn−1}. Moreover, the estimation errors: ẽ(i) = y(i) − yi, i = 0, ..., n − 1 and the perturbation
estimation error: zm − ξm−1(t), m = 1, ..., p asymptotically exponentially converge towards a small
as desired neighborhood of the origin of the reconstruction error space which can be made as small as
desired from the appropriate choice of the controller gain parameters {λ0, ..., λp+n−1}.

Proof The proof is based on the fact that the estimation error ẽ satisfies the perturbed linear
differential equation

ẽ(p+n) + λp+n−1e(p+n−1) + · · · + λ0 ẽ = r(p)(t) (8)

Since r(p)(t) is assumed to be uniformly absolutely bounded then there exists coefficients
λk such that ẽ converges to a small vicinity of zero, provided the roots of the associated
characteristic polynomial in the complex variable s:

sp+n + λp+n−1sp+n−1 + · · · + λ1s + λ0 (9)
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are all located deep into the left half of the complex plane. The further away from the
imaginary axis, of the complex plane, are these roots located, the smaller the neighborhood
of the origin, in the estimation error phase space, where the estimation error ẽ will remain
ultimately bounded (see Kailath Kailath (1979)). Clearly, if ẽ and its time derivatives converge

to a neighborhood of the origin, then zj − ξ(j), j = 1, 2, ..., also converge towards a small
vicinity of zero.
The tracking error ey = y − y∗(t) evolves according to the following linear perturbed
dynamics

e
(n)
y + κn−1e

(n−1)
y + · · ·+ κ0ey = ξ(t) − ξ̂(t) (10)

Choosing the controller coefficients {κ0, · · · , κn−1}, so that the associated characteristic
polynomial

sn + κn−1sn−1 + · · · + κ0 (11)

exhibits its roots sufficiently far from the imaginary axis in the left half portion of the
complex plane, the tracking error, and its various time derivatives, are guaranteed to converge
asymptotically exponentially towards a vicinity of the tracking error phase space. Note that,
according to the observer expected performance, the right hand side of (10) is represented
by a uniformly absolutely bounded signal already evolving on a small vicinity of the origin.
For this reason the roots of (11) may be located closer to the imaginary axis than those of
(9). A rather detailed proof of this theorem may be found in the article by Luviano et al.
Luviano-Juárez et al. (2010)

Remark 4. The proposed GPI observer (7) is a high gain observer which is prone to exhibiting the
“peaking" phenomena at the initial time. We use a suitable “clutch" to smooth out these transient
peaking responses in all observer variables that need to be used by the controller. This is accomplished
by means of a factor function smoothly interpolating between an initial value of zero and a final value
of unity. We denote this clutching function as s f (t) ∈ [0, 1] and define it in the following (non-unique)
way

s f (t) =

{
1 for t > ǫ

sinq
(

πt
2ǫ

)
for t ≤ ǫ

(12)

where q is a su itably large positive even integer.

2.1 Generalized proportional integral observer with integral injection

Let ξ(t) be a measured signal with an uniformly absolutely bounded iterated integral of order
m. The function ξ(t) is a measured signal, whose first few time derivatives are required for
some purpose.

Definition 5. We say that a signal ρ1(t) converges to a neighborhood of ξ(t) whenever the error
signal, ξ(t) − ρ1(t), is ultimately uniformly absolutely bounded inside a small vicinity of the origin.

The following proposition aims at the design of a GPI observer based estimation of time
derivatives of a signal, ξ(t), where ξ(t) is possibly corrupted by a zero mean stochastic
process whose statistics are unknown. In order to smooth out the noise effects on the on-line
computation of the time derivative, we carry out a double iterated integration of the measured
signal, ξ(t), thus assuming the second integral of ξ(t) is uniformly absolutely bounded (i.e.,
m = 2).
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Proposition 6. Consider the following perturbed second order integration system, where the input
signal, ξ(t), is a measured (zero-mean) noise corrupted signal satisfying the above assumptions:

ẏ0 = y1, ẏ1 = ξ(t) (13)

Consider the following integral injection GPI observer for (13) including an internal time polynomial
model of degree r for the signal ξ(t) and expressed as ρ1,

˙̂y0 = ŷ1 + λr+1(y0 − ŷ0)

˙̂y1 = ρ1 + λr(y0 − ŷ0)

ρ̇1 = ρ2 + λr−1(y0 − ŷ0) (14)

...

ρ̇r = λ0(y0 − ŷ0) (15)

Then, the observer variables, ρ1, ρ2, ρ3, ..., respectively, asymptotically converge towards a small as
desired neighborhood of the disturbance input, ξ(t), and of its time derivatives: ξ̇(t), ξ̈(t),... provided
the observer gains, {λ0, ..., λr+2}, are chosen so that the roots of the polynomial in the complex variable
s.

P(s) = sr+2 + λr+1sr+1 + · · · + λ1s + λ0 (16)

are located deep into the left half of the complex plane. The further the distance of such roots from
the imaginary axis of the complex plane, the smaller the neighborhood of the origin bounding the
reconstruction errors.

Proof. Define the twice iterated integral injection error as, ε = y0 − ŷ0. The injection error
dynamics is found to be described by the perturbed linear differential equation

ε(r+2) + λr+1ε(r+1) + · · · + λ1 ε̇ + λ0ε = ξ(r)(t) (17)

By choosing the observer parameters, λ0, λ1, · · · , λr+1, so that the polynomial (16) is Hurwitz,
with roots located deep into the left half of the complex plane, then, according to well known
results of solutions of perturbed high gain linear differential equations, the injection error ε
and its time derivatives are ultimately uniformly bounded by a small vicinity of the origin
of the reconstruction error phase space whose radius of containment fundamentally depends
on the smallest real part of all the eigenvalues of the dominantly linear closed loop dynamics
(see Luviano et al. Luviano-Juárez et al. (2010) and also Fliess and Rudolph Fliess & Rudolph
(1997)).

3. Controlling the single synchronous generator model

In this section, we advocate, within the context of the angular deviation trajectory control for
a single synchronous generator model, the use of approximate, yet accurate, state dependent
disturbance estimation via linear Generalized Proportional Integral (GPI) observers. GPI
observers are the dual counterpart of GPI controllers, developed by M. Fliess et al. in
Fliess et al. (2002). A high gain GPI observer naturally includes a, self-updating, lumped,
time-polynomial model of the nonlinear state-dependent perturbation; it estimates it and
delivers the time signal to the controller for on-line cancelation while simultaneously
estimating the phase variables related to the measured output. The scheme is, however,
approximate since only a small as desired reconstruction error is guaranteed at the expense
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of high, noise-sensitive, gains. The on-line approximate estimation is suitably combined with
linear, estimation-based, output feedback control with the appropriate, on-line, disturbance
cancelation. The many similarities and the few differences with the DAC and ADER
techniques probably lie in 1) the fact that we do not discriminate between exogenous (i.e.,
external) unstructured perturbation inputs and endogenous (i.e., state-dependent) perturbation
inputs in the nonlinear input-output model. These perturbations are all lumped into a
simplifying time-varying signal that needs to be linearly estimated. Notice that plant
nonlinearities generate time functions that are exogenous to any observer and, hence, algebraic
loops are naturally avoided 2) We emphasize the natural possibilities of differentially flat
systems in the use of linear disturbance estimation and linear output feedback control with
disturbance cancelation (For the concept of flatness see Fliess et al. Fliess et al. (1995)) and the
book Sira-Ramírez & Agrawal (2004).

3.1 The single synchronous generator model

Consider the swing equation of a synchronous generator, connected to an infinite bus, with
a series capacitor connected with the help of a thyristor bridge (See Hingorani Hingorani &
Gyugyi (2000)),

ẋ1 = x2

ẋ2 = Pm − b1x2 − b2x3 sin(x1)

ẋ3 = b3(−x3 + x∗3(t) + u + ζ(t)) (18)

x1 is the load angle, considered to be the measured output. The variable, x2, is the deviation
from nominal, synchronous, speed at the shaft, while x3 stands for the admittance of the
system. The control input, u, is usually interpreted as a quantity related to the fire angle of
the switch. ζ(t) is an unknown, external, perturbation input. The static equilibrium point of
the system, which may be parameterized in terms of the equilibrium position for the angular
deviation, x1, is given by,

x1 = x1, x2 = 0, x3 = x∗3(t) =
Pm

b2 sin(x1)
(19)

We assume that the system parameters, b2, and, b3, are known. The constant quantities Pm, b1

and the time varying quantity, x∗3 (t), are assumed to be completely unknown.

3.2 Problem formulation

It is desired to have the load angular deviation, y = x1, track a given reference trajectory, y∗(t) =
x∗1 (t), which remains bounded away from zero, independently of the unknown system parameters and
in spite of possible external system disturbances (such as short circuits in the three phase line, setting,
momentarily, the mechanical power, Pm, to zero), and other unknown, or un-modeled, perturbation
inputs comprised in ζ(t).

3.3 Main results

The unperturbed system in (18) is flat, with flat output given by the load angle deviation
y = x1. Indeed, all system variables are differentially parameterizable in terms of the load
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angle and its time derivatives. We have:

x1 = y

x2 = ẏ

x3 =
Pm − b1ẏ − ÿ

b2 sin(y)

u = − b1ÿ + y(3)

b3b2 sin(y)
− Pm − b1ẏ − ÿ

b3b2 sin2(y)
ẏ cos(y)

+
Pm − b1ẏ − ÿ

b2 sin(y)
− x∗3(t) (20)

The perturbed input-output dynamics, devoid of any zero dynamics, is readily obtained
with the help the control input differential parametrization (20). One obtains the following
simplified, perturbed, system dynamics, including ζ(t), as:

y(3) = − [b3b2 sin(y)] u + ξ(t) (21)

where ξ(t) is given by

ξ(t) = −b1ÿ + b3 (Pm − b1ẏ − ÿ)

(
1 − ẏ cos(y)

b3 sin(y)

)

−b3b2 sin(y) (x∗3(t) + ζ(t)) (22)

We consider ξ(t) as an unknown but uniformly absolutely bounded disturbance input that
needs to be on-line estimated by means of an observer and, subsequently, canceled from the
simplified system dynamics via feedback in order to regulate the load angle variable y towards
the desired reference trajectory y∗(t). It is assumed that the gain parameters b2 and b3 are
known.
The problem is then reduced to the trajectory tracking problem defined on the perturbed
third order, predominantly, linear system (21) with measurable state dependent input gain
and unknown, but uniformly bounded, disturbance input.
We propose the following estimated state feedback controller with a smoothed (i.e., “clutched"
) disturbance cancelation term, z1s(t) = s f (t)z1(t), and smoothed estimated phase variables
yjs = s f (t)yj(t), j = 1, 2, 3 with s f (t) as in equation (12) with a suitable ǫ value.

u = − 1

b3b2 sin(y)

[
(y∗(t))(3) − k2(y3s − ÿ∗(t))

−k1(y2s − ẏ∗(t)) − k0(y − y∗(t))− z1s]

The corresponding variables, y3, y2 and z1, are generated by the following linear GPI observer:

ẏ1 = y2 + λ5(y − y1)

ẏ2 = y3 + λ4(y − y1)

ẏ3 = − (b3b2 sin(y)) u + z1 + λ3(y − y1)

ż1 = z2 + λ2(y − y1)

ż2 = z3 + λ1(y − y1)

ż3 = λ0(y − y1) (23)
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where y1 is the redundant estimate of the output y, y2 is the shaft velocity estimate and y3 is
the shaft acceleration estimate. The variable z1 estimates the perturbation input ξ(t) by means
of a local, self updating, polynomial model of third order, taken as an internal model of the
state dependent additive perturbation affecting the input-output dynamics (21).
The clutched observer variables z1s, y2s and y3s are defined by

θs = s f (t)θ, s f (t) =

{
sin8( πt

2ǫ ) for t ≤ ǫ
1 for t > ǫ

(24)

with θs being either z1s, y2s or y3s

The reconstruction error system is obtained by subtracting the observer model from the
perturbed simplified linear system model. We have, letting ẽ = e1 = y − y1, e2 = ẏ − y2,
etc.

ė1 = e2 − λ5e1

ė2 = e3 − λ4e1

ė3 = ξ(t)− z1 − λ3e1

ż1 = z2 + λ2(y − y1)

ż2 = z3 + λ1(y − y1)

ż3 = λ0(y − y1) (25)

The reconstruction error, ẽ = e1 = y − y1, is seen to satisfy the following linear, perturbed,
dynamics

ẽ(6) + λ5 ẽ(5) + λ4 ẽ(4) + · · · + λ1 ˙̃e + λ0 ẽ = ξ(3)(t) (26)

Choosing the gains {λ5, · · · , λ0} so that the roots of the characteristic polynomial,

po(s) = s6 + λ5s5 + λ4s4 + · · · + λ1s + λ0, (27)

are located deep into the left half of the complex plane, it follows from the bounded input,
bounded output stability theory that the trajectories of the reconstruction error ẽ and those of

its time derivatives ẽ(j), j = 1, 2, ... are uniformly ultimately bounded by a disk, centered at the
origin in the reconstruction error phase space, whose radius can be made arbitrarily small as
the roots of po(s) are pushed further to the left of the complex plane.
The closed loop tracking error dynamics satisfies

e
(3)
y + κ2e

(2)
y + κ1 ėy + κ0ey = ξ(t)− z1s (28)

The difference, ξ(t) − z1s, being arbitrarily small after some time, produces a reference
trajectory tracking error, ey = y − y∗(t), that also asymptotically exponentially converges
towards a small vicinity of the origin of the tracking error phase space.
The characteristic polynomial of the predominant linear component of the closed loop system
may be set to have poles placed in the left half of the complex plane at moderate locations

pc(s) = s3 + κ2s2 + κ1s + κ0 (29)
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3.4 Simulation results

3.4.1 A desired rest-to-rest maneuver

It is desired to smoothly lower the load angle, y1 = x1, from an equilibrium value of y = 1
[rad] towards a smaller value, say, y = 0.6 [rad] in a reasonable amount of time, say, T = 5 [s],
starting at t = 5 [s] of an equilibrium operation characterized by (see Bazanella et al. Bazanella
et al. (1999) and Pai Pai (1989))

x1 = 1, x2 = 0, x3 = 0.8912

We used the following parameter values for the system

b1 = 1, b2 = 21.3360, b3 = 20

We set the external perturbation input, ζ(t), as the time signal,

ζ(t) = 0.005e(sin2(3t) cos(3t)) cos(0.3t)

The observer parameters were set in accordance with the following desired characteristic
polynomial po(s) for the, predominantly, linear reconstruction error dynamics. We set po(s) =
(s2 + 2ζoωnos + ω2

no)
3, with

ζo = 1, ωno = 20

The controller gains κ2, κ1, κ0 were set so that the following closed loop characteristic
polynomial, pc(s), was enforced on the tracking error dynamics,

pc(s) = (s2 + 2ζcωncs + ω2
nc)(s + pc)

with
pc = 3, ωnc = 3, ζc = 1

The trajectory for the load angle, y∗(t), was set to be

y∗(t) = x1,initial + (ρ(t, t1, t2))(x1,final − x1,initial)

with ρ(t, t1, t2) being a smooth Bèzier polynomial achieving a smooth rest-to-rest trajectory
for the nominal load angle y∗(t) from the initial equilibrium value y∗(t1) = x1,initial = 1 [rad]
towards the final desired equilibrium value y∗(t2) = x1,final = 0.6 [rad]. We set t1 = 5.0 [s],
t2 = 10.0 [s]; ǫ = 3.0
The interpolating polynomial ρ(t, t1, t2), is of the form:

ρ(t) = τ8
[
r1 − r2τ + r3τ2 − r4τ3 + r5τ4

−r6τ5 + r7τ6 − r8τ7 + r9τ8
]

with,

τ =
t − t1

t2 − t1

The choice,

r1 = 12870, r2 = 91520, r3 = 288288

r4 = 524160, r5 = 600600, r6 = 443520

r7 = 205920, r8 = 54912, r9 = 6435
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Fig. 1. Performance of GPI observer based linear controller for load angle rest-to-rest
trajectory tracking in a perturbed synchronous generator.

renders a time polynomial which is guaranteed to have enough derivatives being zero, both,
at the beginning and at the end of the desired rest to rest maneuver.
Figure 1 depicts the closed loop performance of the proposed GPI observer based linear
output feedback controller for the forced evolution of the synchronous generator load angle
trajectory following a desired rest to rest maneuver.

3.4.2 Robustness with respect to controller gain mismatches

We simulated the behavior of the closed loop system when the gain parameters product, b3b2,
is not precisely known and the controller is implemented with an estimated (guessed) value

of this product, denoted by b̂2b3, and set to be b̂2b3 = κb2b3. We determined that κ is a positive
factor ranging in the interval [0.95, ∞]. However, if we allow independent estimates of the
parameters in the form b̂2 = κb2b2 and b̂3 = κb3b3, we found that a larger robustness interval
of mismatches is allowed by satisfying the empirical relation κb2κb3 ≥ 0.95. The assessment

465Robust Linear Control of Nonlinear Flat Systems

www.intechopen.com



0 5 10
0.8

0.9

1

1.1

1.2

0 5 10
0

0.2

0.4

0.6

0.8

1

0 5 10
−1

−0.5

0

0.5

0 5 10
−0.2

−0.1

0

0.1

0.2

x1(t)

x3(t)

x2(t) u(t)

Fig. 2. Performance of GPI observer based controller under a sudden loss of power at t=2
[sec] during 0.2 [sec].

was made in terms of the proposed rest to rest maneuver and possible simulations look about
the same.

3.4.3 Robustness with respect to sudden power failures

We simulated an un-modeled sudden three phase short circuit occurring at time t = 2 [s]. The
power failure lasts for t = 0.2 [s]. Figure 3 depicts the performance of the GPI observer based
controller in the rapid transient occurring during the recovery of the prevailing equilibrium
conditions.

4. Controlling the non-holonomic car

Controlling non-holonomic mobile robots has been an active topic of research during the
past three decades due to the wide variety of applications. Several methods have been
proposed, and applied, to solve the regulation and trajectory tracking tasks in mobile robots.
These methods range from sliding mode techniques Aguilar et al. (1997), Wang et al. (2009),
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Yang & Kim (1999), backstepping Hou et al. (2009), neural networks approaches (see Peng
et al. (2007) and references therein), linearization techniques Kim & Oh (1999), and classical
control approaches (see Sugisaka & Hazry (2007)) among many other possibilities. A classical
contribution to this area is given in the work of Canudas de Wit Wit & Sordalen (1992). An
excellent book, dealing with some appropriate control techniques for this class of systems, is
that of Dixon et al. Dixon et al. (2001). A useful approach to control non-holonomic mechanical
systems is based on linear time-varying control schemes (see Pomet (1992); Tian & Cao (2007)).
In the pioneering work of Samson Samson (1991), smooth feedback controls (depending on
an exogeneous time variable) are proposed to stabilize a wheeled cart.
It has been shown that some mobile robotic systems are differentially flat when slippage is
not allowed in the model ( see Leroquais & d’Andrea Novel (1999)). The differential flatness
property allows a complete parametrization of all system variables in terms of the flat outputs
an a and a finite number of their time derivatives. Flat outputs constitute a limited set of
special, differentially independent, output variables. The reader is referred to the work of
Fliess et al. Fliess et al. (1995) for the original introduction of the idea in the control systems
literature.
From the flatness of the non-holonomic car system, it is possible to reduce the control task
to that of a linearizable, extended, multivariable input-output system. The linearization of
the flat output dynamics requires the cancelation of the nonlinear input gain matrix, which
depends only on the cartesian velocities of the car. To obtain this set of noisy unmeasured state
variables, we propose linear Generalized Proportional Integral (GPI) observers consisting
of linear, high gain Luenberger-like observers Luenberger (1971) exhibiting an internal
polynomial model for the measured signal. These GPI observers, introduced in Sira-Ramírez
& Feliu-Battle (2010), can provide accurate, filtered, time derivatives of the injected output
signals via an appropriate iterated integral estimation error injection (see also Cortés-Romero
et al. (2009)). Since high-gain observers are known to be sensitive to noisy measurements, the
iterated integral injection error achieves a desirable low pass filtering effect.
The idealized model of a single axis two wheeled vehicle is depicted in figure 3. The axis is of
length L and each wheel of radius R is powered by a direct current motor yielding variable
angular speeds ω1, ω2 respectively. The position variables are (x1, x2) and θ is the orientation
angle of the robot. The linear velocities of the points of contact of the wheels respect to the
ground are given by v1 = ω1R and v2 = ω2R. In this case, the only measurable variables are
x1, x2. This system is subject to non-holonomic restrictions.
The kinematic model of the system is stated as follows

⎧
⎨
⎩

ẋ1 = u1 cos θ,
ẋ2 = u1 sin θ,
θ̇ = u2

(30)

where:

[
u1

u2

]
=

[
R/2 R/2
−R/L R/L

] [
ω1

ω2

]

The control objective is stated as follows: given a desired trajectory (x∗1(t), x∗2(t)), devise
feedback control laws, u1, u2, such that the flat output coordinates, (x1, x2), perform an
asymptotic tracking while rejecting the un-modeled additive disturbances.
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Fig. 3. The one axis car

4.1 Controller design

System (30) is differentially flat, with flat outputs given by the pair of coordinates: (x1, x2),
which describes the position of the rear axis middle point. Indeed the rest of the system
variables, including the inputs are differentially parameterized as follows:

θ = arctan

(
ẋ2

ẋ1

)
, u1 =

√
ẋ2

1 + ẋ2
2 , u2 =

ẍ2 ẋ1 − ẋ2 ẍ1

ẋ2
1 + ẋ2

2

Note that the relation between the inputs and the flat outputs highest derivatives is not
invertible due to an ill defined relative degree. To overcome this obstacle to feedback
linearization, we introduce, as an extended auxiliary control input, the time derivative of u1.
We have:

u̇1 =
ẋ1 ẍ1 + ẋ2 ẍ2√

ẋ2
1 + ẋ2

2

This control input extension yields now an invertible control input-to-flat outputs highest
derivatives relation, of the form:

[
u̇1

u2

]
=

⎡
⎣

ẋ1√
ẋ2

1+ẋ2
2

ẋ2√
ẋ2

1+ẋ2
2−ẋ2

ẋ2
1+ẋ2

2

ẋ1

ẋ2
1+ẋ2

2

⎤
⎦

[
ẍ1

ẍ2

]
(31)
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4.2 Observer-based GPI controller design

Consider the following multivariable feedback controller based on linear GPI controllers and
estimated cancelation of the nonlinear input matrix gain:

[
u̇1

u2

]
=

⎡
⎢⎢⎢⎣

ˆ̇x1√
( ˆ̇x1)2 + ( ˆ̇x2)2

ˆ̇x2√
( ˆ̇x1)2 + ( ˆ̇x2)2

− ˆ̇x2

( ˆ̇x1)2 + ( ˆ̇x2)2

ˆ̇x1

( ˆ̇x1)2 + ( ˆ̇x2)2

⎤
⎥⎥⎥⎦

[
ν1

ν2

]
(32)

with the auxiliary control variables, ν1, ν2, given by1:

ν1 = ẍ∗1(t)−
[

k12s2 + k11s + k10

s(s + k13)

]
(x1 − x∗1 (t))

ν2 = ẍ∗2(t)−
[

k22s2 + k21s + k20

s(s + k23)

]
(x2 − x∗2 (t))

(33)

and where the estimated velocity variables: ˆ̇x1, ˆ̇x2, are generated, respectively, by the variables
ρ11 and ρ12 in the following single iterated integral injection GPI observers (i.e., with m = 1),

˙̂y10 = ŷ1 + λ13(y10 − ŷ10)

˙̂y1 = ρ11 + λ12(y10 − ŷ10)

ρ̇11 = ρ21 + λ11(y10 − ŷ10) (34)

ρ̇21 = λ10(y10 − ŷ10)

y10 =
∫ t

0
x1(τ)dτ

˙̂y20 =ŷ2 + λ23(y20 − ŷ20)

˙̂y2 =ρ12 + λ22(y20 − ŷ20)

ρ̇12 =ρ22 + λ21(y20 − ŷ20) (35)

ρ̇22 =λ20(y20 − ŷ20)

y20 =
∫ t

0
x2(τ)dτ

Then, the following theorem describes the effect of the proposed integral injection observers,
and of the GPI controllers, on the closed loop system:

Theorem 7. Given a set of desired reference trajectories, (x∗(t), y∗(t)), for the desired
position in the plane of the kinematic model of the car, described by (30); given a
set initial conditions, (x(0), y(0)), sufficiently close to the initial value of the desired
nominal trajectories, (x∗(0), y∗(0)), then, the above described GPI observers and the linear
multi-variable dynamical feedback controllers, (32)-(35), forces the closed loop controlled
system trajectories to asymptotically converge towards a small as desired neighborhood of
the desired reference trajectories, (x∗1(t), x∗2(t)), provided the observer and controller gains

1 Here we have combined, with an abuse of notation, frequency domain and time domain signals.
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are chosen so that the roots of the corresponding characteristic polynomials describing,
respectively, the integral injection estimation error dynamics and the closed loop system, are
located deep into the left half of the complex plane. Moreover, the greater the distance of
these assigned poles to the imaginary axis of the complex plane, the smaller the neighborhood
that ultimately bounds the reconstruction errors, the trajectory tracking errors, and their time
derivatives.

Proof. Since the system is differentially flat, in accordance with the results in Maggiore
& Passino (2005), it is valid to make use of the separation principle, which allows us to
propose the above described GPI observers. The characteristic polynomials associated with
the perturbed integral injection error dynamics of the above GPI observers, are given by,

Pε1(s) = s4 + λ13s3 + λ12s2 + λ11s + λ10

Pε2(s) = s4 + λ23s3 + λ22s2 + λ21s + λ20

s ∈ C

thus, the λi,j, i = 1, 2, j = 0, · · · , 3, are chosen to identify, term by term, the above estimation
error characteristic polynomials with the following desired stable injection error characteristic
polynomials,

Pε1(s) = Pε2(s) = (s + 2μ1σ1s + σ2
1 )(s + 2μ2σ2s + σ2

2 )

s ∈ C, μ1, μ2, σ1, σ2 ∈ R
+

Since the estimated states, ˆ̇x1 = ρ11, ˆ̇x2 = ρ12, asymptotically exponentially converge towards
a small as desired vicinity of the actual states: ẋ1, ẋ2, substituting (32) into (31), transforms
the control problem into one of controlling two decoupled double chains of integrators. One
obtains the following dominant linear dynamics for the closed loop tracking errors:

e
(4)
1 + k13e

(3)
1 + k12 ë1 + k11 ė1 + k10e1 = 0 (36)

e
(4)
2 + k23e

(2)
2 + k22 ë2 + k21 ė2 + k20e2 = 0 (37)

The pole placement for such dynamics has to be such that both corresponding associated
characteristic equations guarantee a dominant exponentially asymptotic convergence. Setting
the roots of these characteristic polynomials to lie deep into the left half of the complex plane
one guarantees an asymptotic convergence of the perturbed dynamics to a small as desired
vicinity of the origin of the tracking error phase space.

4.3 Experimental results

An experimental implementation of the proposed controller design method was carried out
to illustrate the performance of the proposed linear control approach. The used experimental
prototype was a parallax “Boe-Bot" mobile robot (see figure 5). The robot parameters are the
following: The wheels radius is R = 0.7 [m]; its axis length is L = 0.125 [m]. Each wheel
radius includes a rubber band to reduce slippage. The motion system is constituted by two
servo motors supplied with 6 V dc current. The position acquisition system is achieved by
means of a color web cam whose resolution is 352 × 288 pixels. The image processing was
carried out by the MATLAB image acquisition toolbox and the control signal was sent to the
robot micro-controller by means of a wireless communication scheme. The main function of
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the robot micro-controller was to modulate the control signals into a PWM input for the motor.
The used micro-controller was a BASIC Stamp 2 with a blue-tooth communication card. Figure
4 shows a block diagram of the experimental framework. The proposed tracking tasks was a
six-leaved “rose" defined as follows:

x∗1(t) = sin(3ωt + η) sin(2ωt + η)

x∗2(t) = sin(3ωt + η) cos(2ωt + η)

The design parameters for the observers were set to be, μ1 = 1.8, μ2 = 2.3, σ1 = 3, σ2 = 4
and for the corresponding parameters for the controllers, ζ1 = ζ3 = 1.2, ζ2 = ζ4 = 1.5,
ωn1 = ωn3 = 1.8, ωn2 = ωn4 = 1.9. Also, we compared the observer response with that
of a GPI observer without the integral injection (x1_, x2_) Luviano-Juárez et al. (2010). The
experimental implementation results of the control law are depicted in figures, 6 and 7, where
the control inputs and the tracking task are depicted. Notice that in the case of figure 8, there is
a clear difference between the integral injection observer and the usual observer; the filtering
effect of the integral observer helped to reduce the high noisy fluctuations of the control input
due to measurement noises. On the average, the absolute error for the tracking task, for booth
schemes, is less than 1 [cm]. This is quite a reasonable performance considering the height of
the camera location and its relatively low resolution.

DC Motor 1 DC Motor 2

Micro
Controller

Bluetooth
Antenna

USB CameraUSB
Port

Target
PC

Bluetooth
Transmitter

PWM1 PWM2

N
o

n
h

o
lo

n
o

m
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ar

Fig. 4. Experimental control schematics
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Fig. 5. Mobile Robot Prototype

5. Conclusions

In this chapter, we have proposed a linear observer-linear controller approach for the robust
trajectory tracking task in nonlinear differentially flat systems. The nonlinear inputs-to-flat
outputs representation is viewed as a linear perturbed system in which only the orders of
integration of the Kronecker subsystems and the control input gain matrix of the system are
considered to be crucially relevant for the controller design. The additive nonlinear terms
in the input output dynamics can be effectively estimated, in an approximate manner, by
means of a linear, high gain, Luenberger observer including finite degree, self updating,
polynomial models of the additive state dependent perturbation vector components. This
perturbation may also include additional unknown external perturbation inputs of uniformly
absolutely bounded nature. A close approximate estimate of the additive nonlinearities is
guaranteed to be produced by the linear observers thanks to customary, high gain, pole
placement procedure. With this information, the controller simply cancels the disturbance
vector and regulates the resulting set of decoupled chain of perturbed integrators after a
direct nonlinear input gain matrix cancelation. A convincing simulation example has been
presented dealing with a rather complex nonlinear physical system. We have also shown
that the method efficiently results in a rather accurate trajectory tracking output feedback
controller in a real laboratory implementation. A successful experimental illustration was
presented which considered a non-holonomic mobile robotic system prototype, controlled by
an overhead camera.
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