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1. Introduction 

Model Predictive Control (MPC) is frequently implemented as one of the layers of a control 
structure where a Real Time Optimization (RTO) algorithm - laying in an upper layer of this 
structure - defines optimal targets for some of the inputs and/or outputs (Kassmann et al., 
2000). The main scope is to reach the most profitable operation of the process system while 
preserving safety and product specification constraints. The model predictive controller is 
expected to drive the plant to the optimal operating point, while minimizing the dynamic 
error along the input and output paths. Since in the control structure considered here the 
model predictive controller is designed to track the optimal targets, it is expected that for 
nonlinear process systems, the linear model included in the controller will become uncertain 
as we move from the design condition to the optimal condition. The robust MPC presented 
in this chapter explicitly accounts for model uncertainty of open loop stable systems, where 
a different model corresponds to each operating point of the process system. In this way, 
even in the presence of model uncertainty, the controller is capable of maintaining all 
outputs within feasible zones, while reaching the desired optimal targets. In several other 
process systems, the aim of the MPC layer is not to guide all the controlled variables to 
optimal targets, but only to maintain them inside appropriate ranges or zones. This strategy 
is designated as zone control (Maciejowski, 2002). The zone control may be adopted in some 
systems, where there are highly correlated outputs to be controlled, and there are not 
enough inputs to control all the outputs. Another class of zone control problems relates to 
using the surge capacity of tanks to smooth out the operation of a process unit. In this case, 
it is desired to let the level of the tank to float between limits, as necessary, to buffer 
disturbances between sections of a plant. The paper by Qin and Badgwell (2003), which 
surveys the existing industrial MPC technology, describes a variety of industrial controllers 
and mention that they always provide a zone control option. Other example of zone control 
can be found in Zanin et al, (2002), where the authors exemplify the application of this 
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strategy in the real time optimization of a FCC system. Although this strategy shows to have 
an acceptable performance, stability is not usually proved, even when an infinite horizon is 
used, since the control system keeps switching from one controller to another throughout 
the continuous operation of the process. 
There are several research works that treat the problem of how to obtain a stable MPC with 
fixed output set points. Although stability of the closed loop is commonly achieved by 
means of an infinite prediction horizon, the problem of how to eliminate output steady state 
offset when a supervisory layer produces optimal economic set points, and how to explicitly 
incorporate the model uncertainty into the control problem formulation for this case, remain 
an open issue. For the nominal model case, Rawlings (2000), Pannochia and Rawlings (2003), 
Muske and Badgwell (2002), show how to include disturbance models in order to assure 
that the inputs and states are led to the desired values without offset. Muske and Badgwell 
(2002) and Pannochia and Rawlings (2003) develop rank conditions to assure the 
detectability of the augmented model. 
For the uncertain system, Odloak (2004) develops a robust MPC for the multi-plant 
uncertainty (that is, for a finite set of possible models) that uses a non-increasing cost 
constraint (Badgwell, 1997). In this strategy, the MPC cost function to be minimized is 
computed using a nominal model, but the non-increasing cost constraint is settled for each 
of the models belonging to the set. The stability is then achieved by means of the recursive 
feasibility of the optimization problem, instead of the optimality. On the other hand, there 
exist some recent MPC formulations that are based on the existence of a control Lyapunov 
function (CLF), which is independent of the control cost function. Although the construction 
of the CFL may not be a trivial task, these formulations also allow the explicit 
characterization of the stability region subject to constraints and they do not need an infinite 
output horizon. Mashkar et al. (2006) explore this approach for the control of nominal 
nonlinear systems, and Mashkar (2006) extends the approach for the case of model 
uncertainty and control actuator fault. More recently, González et al. (2009) extended the 
infinite horizon approach to stabilize the closed loop with the MPC controller for the case of 
multi-model uncertainty and optimizing targets. They developed a robust MPC by adapting 
the non-increasing cost constraint strategy to the case of zone control of the outputs and it is 
desirable to guide some of the manipulated inputs to the targets given by a supervisory 
stationary optimization stage, while maintaining the controlled output in their 
corresponding zones, taking into account a finite set of possible models. This problem, that 
seems to interchange an output tracking by an input-tracking formulation, is not trivial, 
since once the output lies outside the corresponding zone (because of a disturbance, or a 
change in the output zones), the priority of the controller is again to control the outputs, 
even if this implies that the input must be settled apart from its targets. 
Since in many process systems, mainly from the chemical and petrochemical industries, the 
process model shows significant time delays, the main contribution of this chapter is to 
extend the approach of González et al. (2009) to the case of input delayed multi-model 
systems by introducing minor modifications in the state space model, in such a way that the 
structure of the control algorithm is preserved. Simulation of a process system of the oil 
refining industry illustrates the performance of the proposed strategy. 

2. System representation 

Consider a system with nu inputs and ny outputs, and assume for simplicity that the poles 
relating any input uj to any output yi are non-repeated. To account for the implementation of 
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an intuitive MPC formulation, an output prediction oriented model (OPOM) originally 
presented in Odloak (2004) is adapted here to the case of time delayed systems. Let us 
designate ,i jθ  the time delay between input uj and output yi, and define 

,
,

max i j
i j

p θ> . Then, 
the state space model considered here is defined as follows: 
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The advantage of using the structure of the transition matrix A is that the state vector is 
divided into components that are associated to the system modes. In the state equation (1), 
the state components xs correspond to the (predicted) output steady state, which are in 
addition the integrating modes of the system (the integrating modes are induced by the 
incremental form of the inputs), and the components xd correspond to the stable modes of 
the system. Naturally, when the system approaches steady state these last components tend 
to zero. For the case of non-repeated pole, F is a diagonal matrix with components of the 
form ir Te  where ri is a pole of the system and T is the sampling period. It is assumed that the 
system has nd stable poles and sB  is the gain matrix of the system. The upper left block of 
matrix A is included to account for the time delay of the system. S1, … , Sp+1 are the step 
response coefficients of the system. Matrix Ψ , which appears in the extended state matrix, 
is defined as follows 
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where 

,1 ,1 ,1 ,1 , ,1 , ,1 , , , ,( ) ( ) ( ) ( )
( ) i i i na i i nu i nu i nu na i nur t r t r t r t

i t e e e e
θ θ θ θφ − − − −⎡ ⎤= ⎣ ⎦" " " , 
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, ,i j kr , with k=1,…,na, are the poles of the transfer function that relates input uj and output 

yi and na is the order of this transfer function. It is assumed that na is the same for any 

pair (uj, yi). The time delay affects the dimension of the state matrix A through parameter p 

and the components of matrix Ψ . Input matrix B is also affected by the value of the time 

delay as the step response coefficients Sn will be equal to zero for any n smaller than the 

time delay. 

2.1 Model uncertainty 

With the model structure presented in (1), model uncertainty is related to uncertainty in 

matrices F, Bs, Bd and the matrix of time delays θ . The uncertainty in these parameters also 

reflects in the uncertainty of the step response coefficients, which appear in (2). There are 

several practical ways to represent model uncertainty in model predictive control. One 

simple way to represent model uncertainty is to consider the multi-plant system (Badgwell, 

1997), where we have a discrete set Ω of plants, and the real plant is unknown, but it is 

assumed to be one of the components of this set. With this representation of model 

uncertainty, we can define the set of possible plants as { }1 ,... , LΩ Θ Θ=  where each nΘ  

corresponds to a particular plant: ( ), , , , 1, ...,s d
n

n
F B B n LΘ θ= = . 

Also, let us assume that the true plant, which lies within the set Ω is designated as θT and 

there is a most likely plant that also lies in Ω and is designated as NΘ . In addition, it is 

assumed that the current estimated state corresponds to the true plant. 
Badgwell (1997) developed a robust linear quadratic regulator for stable systems with the 

multi-plant uncertainty. Later, Odloak (2004) extended the method of Badgwell to the 

output tracking of stable systems considering the same kind of model uncertainty. These 

strategies include a new constraint corresponding to each of the models lying in Ω, that 

prevents an increase in the true plant cost function at successive time steps. More recently, 

González and Odloak (2009) presented an extension of the method by combining the 

approach presented in Odloak (2004) with the idea of including the output set point as a 

new restricted optimization variable to develop a robust MPC for systems where the control 

objective is to maintain the outputs into their corresponding feasible zone, while reaching 

the desired optimal input target given by the supervisory stationary optimization. In this 

work the controller proposed by González et al. (2009) is extended to the case of uncertain 

systems with time delays. 

2.2. System steady state 

As was already said, one of the advantages of the model defined in (1) and (2) is that the 

state component ( )sx k  represents the predicted output at steady state, and furthermore this 

component concentrates the integrating modes of the system. Observe that for the model 

defined in (1) and (2), if ( ) 0u k jΔ + =  for 0j ≥ , then the future states can be computed as 

follows 

( ) ( )jx k j A x k+ =  

Assuming that F has all the eigenvalues inside the unit circle (i.e. the system is open loop 

stable), it is easy to show that 
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Then, it becomes clear that lim ( ) ( ) ( ) 0
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→∞
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lim ( ) lim ( ) ( )s

j j
y k j C x k j x k

→∞ →∞
+ = + = . Therefore, xs(k) can be interpreted as the prediction of the 

output at steady state. The state component xs(k) is assumed to be known or estimated 
through a stable state observer. A stable observer for the model defined in (1) and (2) is 
given by 

( )ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )x k k x k k K y k Cx k k+ + = + + + − +  

where 0
T

ny nyK I I⎡ ⎤= ⎣ ⎦"  is the observer gain, and 

( )ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )x k k x k k K y k Cx k k+ + = + + + − +  

( ) ( )ˆ ˆ( 1| 1) ( | ) ( )x k k I KC Ax k k I KC B u kΔ+ + = − + −  

For open loop stable systems this is a stable observer as matrix ( )I KC A−  has the 

eigenvalues of F and the remaining eigenvalues are equal to zero. 

3. Control structure 

In this work, we consider the control structure shown in Figure 1. In this structure, the 

economic optimization stage is dedicated to the calculation of the (stationary) desired target, 

,des ku , for the input manipulated variables. This stage may be based on a rigorous stationary 

model and takes into account the process measurements and some economic parameters. In 

addition, this stage works with a smaller frequency than the low-level control stage, which 

allows a separation between the two stages. In the zone control framework the low-level 

control stage, given by the MPC controller, is devoted to guide the manipulated input from 
the current stationary value ssu  to the desired value given by the supervisory economic 

stage, ,des ku , while keeping the outputs within specified zones. In general, the target udes,k 

will vary whenever the plant operation or the economic parameters change. If it is assumed 

that the system is currently at a stationary value given by ( ,ss ssu y ), the desired target udes,k 

should satisfy not only the input constraints 

min , maxdes ku u u≤ ≤  

but also the output zone condition 

 ( )( ) ( )min , max
ˆs s

n des k ss ny B u u x k yΘ≤ − + ≤ , n = 1,...,L (3) 
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where minu  and maxu  represent the lower and upper bounds of the input, miny  and maxy  

represent the lower and upper limits of the output, ( )s
nB Θ  is the gain corresponding to a 

given model nΘ , and ( )ˆ s
nx k  is the estimated steady-state values of the output 

corresponding to model nΘ . Note that in the control structure depicted in Figure 1, as the 

model structure adopted here has integral action, the estimation of component ( )s
nx k  tends 

to the measured output at steady state for all the models lying in Ω, which means that  

( )ˆ s
n ssx k y=  if the system is at steady state (See González and Odloak 2009 for details). 

Taking into account this fact, equation (3) can be rewritten as 

 ( )min , , max 1, ,s
n des k n ssy B u d y n LΘ≤ + ≤ = " , (4) 

where ( ) ( ) ( ), ˆ s s s
n ss n n ss ss n ssd x k B u y B uΘ Θ= − = −  is the output bias based on the comparison 

between the current actual output at steady state and the current predicted output at steady 
state for each model. In other words, ( ) , ,

s
n des k n ssB u dΘ +  can be interpreted as the corrected 

output steady state. Note that, since ( )
0

k

ss
j

u u jΔ
=

=∑ , for a large k , the term ( )s
n ssB uΘ  

represents the output prediction based only on the past inputs. 
 

 

Fig. 1. Control structure. 

Based on the later concepts, it is possible to define two input feasible sets for the stationary 

desired target udes,k. The first one is the global input feasible set { }min max:o u u u uϑ = ≤ ≤ , 

which represents a box-type set. In addition, it is possible to define the more restricted input 

feasible set uϑ , which is computed taking into account both, the input constraints and the 

output limits: 
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This set, which depends on the current stationary point given by ( ,ss ssu y ), is the intersection 

of several sets, each one corresponding to a model lying in set Ω. When the output zones are 

narrow, the restricted input feasible set is smaller than the global feasible set, defined solely 

by the input constraints. An intuitive diagram of the input feasible set is shown in Figure 4, 

where three models are used to represent the uncertainty set. In the following sections it will 

be shown that the proposed controller remains stable and feasible even when the desired 

input target ,des ku  is outside the set uϑ , or the set uϑ  itself is null. 

4. Nominal MPC with zone control and input target 

One way to handle the zone control strategy, that is, to maintain the controlled output inside 
its corresponding range, is by means of an appropriate choice of the output error 
penalization in the conventional MPC cost function. In this case the output weight is made 
equal to zero when the system output is inside the range, and the output weight is different 
from zero if the output prediction is violating any of the constraints, so that the output 
variable is strictly controlled only if it is outside the feasible range. In this way, the closed 
loop is guided to a feasible steady state. In Zanin et al. (2002), an algorithm assigns three 
possible values to the output set points used in the MPC controller: the upper bound of the 
output feasible range if the predicted output is larger than the upper bound; the lower 
bound of the output feasible range if the predicted output is smaller than this lower bound; 
and the predicted output itself, if the predicted output is inside the feasible range. However, 
a rigorous analysis of the stability of this strategy is not possible even when using an infinite 
output horizon. González et al. (2006) describe a stable MPC based on the incremental 
model defined in (1) and (2), that takes into account a stationary optimization of the plant 
operation. The controller was designed specifically for a heat exchanger network with a 
number of degrees of freedom larger than zero. In that work, the mismatch between the 
stationary and the dynamic model was treated by means of an appropriate choice of the 
weighting matrices in the control cost. However, stability and offset elimination was assured 
only when the model was perfect. 
Based on the work of González et al (2006), we consider the following nominal cost function: 
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where ( | )u k j kΔ +  is the control move computed at time k to be applied at time k+j, m is the 
control or input horizon, , ,y uQ Q R  are positive weighting matrices of appropriate dimension, 
ysp,k and udes,k are the output and input targets, respectively. The output target ysp,k becomes a 
computed set point when the output has no optimizing target and consequently the output is 
controlled by zone. This cost explicitly incorporates an input deviation penalty that tries to 
accommodate the system at an optimal economic stationary point.  
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In the case of systems without time delay the term corresponding to the infinite output error 

in the cost Vk is divided in two parts: the first goes from the current time k to the end of the 

control horizon, k+m-1; while the second one goes from time k+m to infinity. This is so 

because beyond the control horizon no control actions are implemented and so, considering 

only the state at time k+m, the infinite series can be reduced to a single terminal cost. In the 

case of time delayed systems, however, the horizon beyond which the entire output 

evolution can be predicted by a terminal cost is given by k+p. As a result, the cost defined in 

(6) can be developed as follows 
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The first term on the right hand side of (7) can be developed as follows 
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Consequently, considering (8), the term ,1kV  can be written as follows 

www.intechopen.com



Robust Model Predictive Control for Time Delayed Systems  
with Optimizing Targets and Zone Control   

 

347 

 
,1 , ,( ) ( )

T

k x k y sp k y x k y sp kV N x k S u I y Q N x k S u I yΔ Δ⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦
� � �� �  (9) 

The term corresponding to the infinite horizon error on the system output in (7) can be 
written as follows 
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In order to force Vk,2 to be bounded, we include the following constraint in the control 
problem 
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Finally, the infinite term corresponding to the error on the input along the infinite horizon in 
(7) can be written as follows 

 ( ) ( ),3 , ,
1

( | ) ( | )
T

k des k u des k
j

V u k j k u Q u k j k u
∞

=
= + − + −∑  (12) 

www.intechopen.com



 Robust Control, Theory and Applications 

 

348 

Then, it is clear that in order to force (12) to be bounded one needs the inclusion of the 
following constraint 

,( | ) 0des ku k m k u+ − =  
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Then, assuming that (13) is satisfied, (12) can be written as follows 
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k u k u des k u u k u des kV I u k M u I u Q I u k M u I uΔ Δ= − + − − + −�� � � �  

where  

0 0

0
;

nu

nu nu
u u u

m

nu nu nu

I

I I
M Q diag Q Q

I I I

⎡ ⎤
⎢ ⎥ ⎛ ⎞
⎢ ⎥ ⎜ ⎟= =
⎢ ⎥ ⎜ ⎟

⎝ ⎠⎢ ⎥
⎣ ⎦

"
" � "���	��
# # % #
"

 

Now, taking into account the proposed terminal constraints, the control cost defined in (7) 
can be written as follows 

( ) ( )
( ) ( )

, ,

, ,

( ) ( )

( ) ( )

( 1) ( 1) .

T

k x k y sp k y x k y sp k

T
m d d m d d

k d k

T T
u k u des k u u k u des k k k

V N x k S u I y Q N x k S u I y

F x k B u Q F x k B u

I u k M u I u Q I u k M u I u u R u

Δ Δ

Δ Δ

Δ Δ Δ Δ

⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦

+ + +

+ − + − − + − +

� � �� �

� �

�� � � � �

 

To formulate the IHMPC with zone control and input target for the time delayed nominal 
system, it is convenient to consider the output set point as an additional decision variable of 
the control problem and the controller results from the solution to the following 
optimization problem: 

,,
min 2

k sp k

T T
k k k f k

u y
V u H u c u

Δ
Δ Δ Δ= +  

subject to 

 
,( 1) 0T

u k des ku k I u uΔ− + − =�  (14) 

 
,( ) 0s s

k sp kx k B u yΔ+ − =�  (15) 

 
min , maxsp ky y y≤ ≤  (16) 

max max( | ) 0,1, , 1u u k j k u j mΔ Δ Δ− ≤ + ≤ = −"  

min max
0

( 1) ( | ) ; 0,1, , 1
j

i

u u k u k i k u j mΔ
=

≤ − + + ≤ = −∑ "  
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where 

T dT d T
y d uH S Q S B Q B M Q M R= + + +� � � �� � �  

( )( ) ( ) ( ) ( 1)
TT T T d T m T d T

f x y d des u uc x k N Q S x k F Q B u k u I Q M= + + − −� � �� �  

Constraints (14) and (15) are terminal constraints, and they mean that both, the input and 
the integrating component of the output errors will be null at the end of the control horizon 
m. Constraint (16), on the other hand, forces the new decision variable ysp,k to be inside the 
zone given by ymin and ymax. So, as ysp,k  is a set point variable, constraint (16) means that the 
effective output set point of the proposed controller is now the complete feasible zone. 
Notice that if the output bounds are settled so that the upper bound equals the lower bound, 
then the problem becomes the traditional set point tracking problem. 

4.1 Enlarging the feasible region 
The set of constraints added to the optimization problem in the last section may produce a 
severe reduction in the feasible region of the resulting controller. Specifically, since the input 
increments are usually bounded, the terminal constraints frequently result in infeasible 
problems, which means that it is not possible for the controller to achieve the constraints in 
m time steps, given that m is frequently small to reduce the computational cost. A possible 
solution to this problem is to incorporate slack variables in the terminal constraints. So, 
assuming that the slack variables are unconstrained, it is possible to guarantee that the 
control problem will be feasible. Besides, these slack variables must be penalized in the cost 
function with large weights to assure the constraint violation will be minimized by the 
control actions. Thus, the cost function can be written as follows 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

, , , ,
0

, , , ,
1

1

, , , ,
0

, , , ,

( | ) ( | )

( | ) ( | )

( | ) ( | )

( | ) ( | )

p
T

k sp k y k y sp k y k
j

T

sp k y k y sp k y k
j

m
T

des k u k u des k u k
j

T

des k u k u des k u k

V y k j k y Q y k j k y

y k p j k y Q y k p j k y

u k j k u Q u k j k u

u k m j k u Q u k m j k u

δ δ

δ δ

δ δ

δ δ

=

∞

=

−

=

= + − − + − −

+ + + − − + + − − +

+ + − − + − −

+ + + − − + + − −

∑

∑

∑

0

1

, , , ,
0

( | ) ( | )

j

m
T T T

y k y y k u k u u k
j

u k j k R u k j k S SΔ Δ δ δ δ δ

∞

=

−

=

+

+ + + + +

∑

∑

 (17) 

where ,y uS S  are positive definite matrices of appropriate dimension and 

, ,,ny nu
y k u kδ δ∈ℜ ∈ℜ  are the slack variables (new decision variables) that eliminate any 

infeasibility of the control problem. Following the same steps as in the controller where 

slacks are not considered, it can be shown that the cost defined in (17) will be bounded if the 

following constraints are included in the control problem: 

, ,( ) 0s s
k sp k y kx k B u yΔ δ+ − − =�  
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 , ,( 1) 0T
u k des k u ku k I u uΔ δ− + − − =�  (18) 

In this case, the cost defined in (17) can be reduced to the following quadratic function 

11 12 13 14

,21 22 23
, , ,

,31 32 33

41 44 ,

,

,1 ,2 ,3 ,4
,

,

0

0

0 0

2

k

sp kT T T T
k k sp k y k u k

y k

u k

k

sp k

f f f f
y k

u k

uH H H H

yH H H
V u y

H H H

H H

u

y
c c c c c

Δ

Δ δ δ
δ

δ

Δ

δ

δ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤= +⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤+ +⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 

11 ( )T d T d T
y d uH S Q S B Q B M Q M R= + + +� � � �� � �  

12 21
T T

y yH H S Q I= = − � � � ,  13 31
T T

y yH H S Q I= = − � � � ,  14 41
T T

u uH H M Q I= = − � �  

22
T
u u uH I Q I= �� � ,  23 32

T T
y y yH H I Q I= = �� � ,  33

T
y y y yH I Q I S= +�� � ,  44

T
u u u uH I Q I S= +�� �  

24 42 34 43 0T TH H H H= = = =  

( ),1 ( ) ( ) ( ) ( 1)
TT T d T m T d T

f x y d m des u uc x k N Q S x k F Q B u k u I Q M= + + − −� � ��  

,2 ( )T T
f x y yc x k N Q I= − � � ,   ,3 ( )T T

f x y yc x k N Q I= − � �  

( ),4 ,( 1)
T T

f des k u u uc u k u I Q I= − − − �� �  

( ) ( ), ,( ) ( ) ( ) ( ) ( ) ( 1) ( 1)
TT T d T m T m d T

x y x d des k u u u des kc x k N Q N x k x k F Q F x k u k u I Q I u k u= + + − − − −� �� �  

Then, the nominally stable MPC controller with guaranteed feasibility for the case of output 
zone control of time delayed systems with input targets results from the solution to the 
following optimization problem: 
Problem P1 

,

, ,

,,
,

min
k sp k

y k u k

k
u y

V
Δ
δ δ

 

subject to: 

max max( | ) 0,1, , 1u u k j k u j mΔ Δ Δ− ≤ + ≤ = −"  

www.intechopen.com



Robust Model Predictive Control for Time Delayed Systems  
with Optimizing Targets and Zone Control   

 

351 

min max
0

( 1) ( | ) ; 0,1, , 1
j

i

u u k u k i k u j mΔ
=

≤ − + + ≤ = −∑ "  

 min , maxsp ky y y≤ ≤  (19) 

( ), , , ,( ) 0 ( | ) 0s s s
k sp k y k sp k y kx k B u y x k m k yΔ δ δ+ − − = + − − =�  

( ), , , ,( 1) 0 ( 1| ) 0T
u k des k u k des k u ku k I u u u k m k uΔ δ δ− + − − = + − − − =�  

It must be noted that the use of slack variables is not only convenient to avoid dynamic 
feasibility problems, but also to prevent stationary feasibility problems. Stationary feasibility 
problems are usually produced by the supervisory optimization level shown in the control 
structure defined in Figure 1. In such a case, for instance, the slack variable ,y kδ  allows the 
predicted output to be different from the set point variable ,sp ky  at steady state (notice that 
only ,sp ky  is constrained to be inside the desired zone). So, the slacked problem formulation 
allows the system output to remain outside the desired zone, if no stationary feasible 
solution can be found. 
It can be shown that the controller produced through the solution of problem P1 results in a 
stable closed loop system for the nominal system. However, the aim here is to extend this 
formulation to the case of multi model uncertainty. 

5. Robust MPC with zone control and input target 

In the model formulation presented in (1) and (2) for the time delayed system, uncertainty 
concentrates not only on matrices F, Bs and Bd as in the system without time delay, but also 
on matrix ny nuθ ×∈ℜ  that contains all the time delays between the system inputs and 
outputs. Observe that the step response coefficients S1,…,Sp+1, which appears in the input 
matrix and ( 1)pΨ + , which appears in the state matrix of the model defined in (1) and (2) 
are also uncertain, but can be computed from F, Bs, Bd and θ . Now, considering the multi-
model uncertainty, assume that each model is designated by a set of parameters defined as 

{ }, , ,s d
n n n n nB B FΘ θ= , 1,...,n L= . Also, assume that in this case 

, ,
max ( , )n
i j n

p i j mθ> +  (this 
condition guarantees that the state vector of all models have the same dimension). Then, for 
each model nΘ , we can define a cost function as follows 

 

( ) ( )

( ) ( )

( ) ( )

, , , ,
0

, , , ,
1

1

, , , ,
0

( ) ( | ) ( ) ( ) ( | ) ( ) ( )

( | ) ( ) ( ) ( | ) ( ) ( )

( | ) ( | )

( |

p
T

k n n sp k n y k n y n sp k n y k n
j

T

n sp k n y k n y n sp k n y k n
j

m
T

des k u k u des k u k
j

V y k j k y Q y k j k y

y k p j k y Q y k p j k y

u k j k u Q u k j k u

u k m j

Θ Θ δ Θ Θ δ Θ

Θ δ Θ Θ δ Θ

δ δ

=

∞

=

−

=

= + − − + − −

+ + + − − + + − −

+ + − − + − −

+ + +

∑

∑

∑

( ) ( ), , , ,
0

1

, , , ,
0

) ( | )

( | ) ( | ) ( ) ( )

T

des k u k u des k u k
j

m
T T T

y k n y y k n u k u u k
j

k u Q u k m j k u

u k j k R u k j k S S

δ δ

Δ Δ δ Θ δ Θ δ δ

∞

=

−

=

− − + + − −

+ + + + +

∑

∑

 (20) 
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Following the same steps as in case of the nominal system, we can conclude that the cost 

defined in (20) will be bounded if the control actions, set points and slack variables are such 

that (18) is satisfied and 

, ,( ) ( ) ( ) ( ) 0s s
n k sp k n y k nx k B u yΘ Δ Θ δ Θ+ − − =�  

Then, if these conditions are satisfied, (20) can be written as follows 

 

( )
( )

( ) ( )

, ,

, ,

( ) ( ) ( ) ( ) ( )

                                 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1)

T

k n x n k y sp k n y y k n y

x n k y sp k n y y k n

T
m d d m d d

n m n k d n n m n k

u k u de

V N x k S u I y I Q

N x k S u I y I

F x k B u Q F x k B u

I u k M u I u

Θ Θ Δ Θ δ Θ

Θ Δ Θ δ Θ

Θ Θ Δ Θ Θ Θ Δ

Δ

= + − −

+ − −

+ + +

+ − + −

� �� �

� � �

� �( ) ( ), , , ,

, , , ,

( 1)

( ) ( )

T

s k u u k u u k u des k u u k

T T T
k k y k n y y k n u k u u k

I Q I u k M u I u I

u R u S S

δ Δ δ

Δ Δ δ Θ δ Θ δ δ

− − + − −

+ + +

� � � �

�

 (21) 

or 

11 12 13 14

,21 22 23
, , ,

,31 32 33

41 44 ,

,

,1 ,2 ,3 ,4
,

,

( ) ( ) ( )

( )( ) 0
( ) ( ) ( )

( )( ) 0

0 0

( )
2 ( )

( )

kn n n

sp k nnT T T T
k n k sp k n y k n u k

y k nn

u k

k

sp k n

f n f f f
y k n

u k

uH H H H

yH H H
V u y

H H H

H H

u

y
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ΔΘ Θ Θ
ΘΘ

Θ Δ Θ δ Θ δ
δ ΘΘ

δ

Δ
Θ

Θ
δ Θ

δ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡

⎡ ⎤+ ⎣ ⎦ ( )nc Θ

⎤
⎢ ⎥
⎢ ⎥ +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

11( ) ( ) ( ) ( ( )) ( ) ( )T d T d T
n n y n n d n n uH S Q S B Q B M Q M RΘ Θ Θ Θ Θ Θ= + + +� � � �� � �  

12 21 ( )T T
n y yH H S Q IΘ= = − � � � ,  13 31 ( )T T

n y yH H S Q IΘ= = − � � � ,  14 41
T T

u uH H M Q I= = − � �  

22
T
y y yH I Q I= �� � ,  23 32

T T
y y yH H I Q I= = �� � ,  33

T
y y yH I Q I= �� �  

24 42 34 43 0T TH H H H= = = =  

( ),1 ( ) ( ) ( ) ( ( ) ) ( ) ( 1)
TT T d T m T d T

f x y n n xd n des u uc x k N Q S x k F Q B u k u I Q MΘ Θ Θ= + + − −� � �� �  

,2 ( )T T
f x y yc x k N Q I= − � � ,   ,3 ( )T T

f x y yc x k N Q I= − � �  

( ),4 ( 1)
T T

f des u u uc u k u I Q I= − − − �� �  
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( ) ( ), ,

( ) ( ) ( ) ( ( ) ) ( ) ( )

( 1) ( 1)

T T d T m T m d
x y x n xd n

T T
des k u u u des k

c x k N Q N x k x k F Q F x k

u k u I Q I u k u

Θ Θ= + +

+ − − − −

�

�� �
 

Then, the robust MPC for the system with time delay and multi-model uncertainty is 
obtained from the solution to the following problem: 
Problem P2 

 
, , ,, ( ), ( ),

1,...,

min ( )
k sp k n y k n u k

k N
u y
n L

V
Δ Θ δ Θ δ

Θ
=

 (22) 

subject to  

max max( | ) 0,1, , 1u u k j k u j mΔ Δ Δ− ≤ + ≤ = −"  

min max
0

( 1) ( | ) ; 0,1, , 1
j

i

u u k u k i k u j mΔ
=

≤ − + + ≤ = −∑ "  

min , max( ) ; 1, ,sp k ny y y n LΘ≤ ≤ = "  

 , ,( ) ( ) ( ) ( ) 0; 1, ,s s
n k sp k n y k nx k B u y n LΘ Δ Θ δ Θ+ − − = =� "  (23) 

 , ,( 1) 0T
u k des k u ku k I u uΔ δ− + − − =�  (24) 

 ( ) ( ), , , , , ,, ( ), , ( ), , ( ), , ( ), , 1, ,k k y k n u k sp k n n k k y k n u k sp k n nV u y V u y n LΔ δ Θ δ Θ Θ Δ δ Θ δ Θ Θ≤ =� � �� "  (25) 

where, assuming that ( )* * *
1 , 1 , 1 , 1, ( ), , ( )k sp k n u k y k nu yΔ Θ δ δ Θ− − − −  is the optimal solution to Problem 

P2 at time step k-1, we define 

* *( | 1) ( 2| 1) 0
TT T

ku u k k u k m kΔ Δ Δ⎡ ⎤= − + − −⎣ ⎦� " ; *
, , 1( ) ( )sp k n sp k ny yΘ Θ−=�  and ,u kδ�  such 

that 

 , ,( 1) 0T
u k des k u ku k I u uΔ δ− + − − =� ��  (26) 

and define , ( )y k nδ Θ�   such that 

 , ,( ) ( ) ( ) ( ) 0s s
n k sp k n y k nx k B u yΘ Δ Θ δ Θ+ − − =� �� �  (27) 

In (20), NΘ  corresponds to the nominal or most probable model of the system. 

Remark 1: The cost to be minimized in problem P2 corresponds to the nominal model. 
However, constraints (23) and (24) are imposed considering the estimated state of each 
model nΘ Ω∈ . Constraint (25) is a non-increasing cost constraint that assures the 
convergence of the true state cost to zero. 

Remark 2: The introduction of L set-point variables allows the simultaneous zeroing of all 

the output slack variables. In that case, whenever possible, the set-point variable ( ),sp k ny Θ  
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will be equal to the output prediction at steady state (represented by ( )s
nx k m+ ),  and so the 

corresponding output penalization will be removed from the cost. As a result, the controller 

gains some flexibility that allows achieving the other control objectives. 
Remark 3: Note that by hypothesis, one of the observers is based on the actual plant model, 
and if the initial and the final steady states are known, then the estimated state ( )ˆ

Tx k  will 
be equal to the actual plant state at each time k. 

Remark 4: Conditions (26) and (27) are used to update the pseudo variables of constraint 

(25), by taking into account the current state estimation ( )ˆ s
nx k  for each of the models lying 

in Ω , and the last value of the input target. 
One important feature that should have a constrained controller is the recursive feasibility 
(i.e. if the optimization problem is feasible at a given time step, it should remain feasible at 
any subsequent time step). The following lemma shows how the proposed controller 
achieves this property.  
Lemma. If problem P2 is feasible at time step k, it will remain feasible at any subsequent 
time step k+j, j=1,2,… 
Proof: 

Assume that the output zones remain fixed, and also assume that 

 ( ) ( )* * * .| 1|
TT T m nu

ku u k k u k m kΔ Δ Δ⎡ ⎤= + − ∈ℜ⎣ ⎦" , (28) 

 ( ) ( )* *
, 1 ,, ,sp k sp k Ly yΘ Θ" , ( ) ( )* *

, 1 ,, ,y k y k Lδ Θ δ Θ"  and *
,u kδ  (29) 

correspond to the optimal solution to problem P2 at time k. 

Consider now the pseudo variables ( )( ( )1 , 1 1 , 1, , , ,k sp k sp k Lu y yΔ Θ Θ+ + +� � �"  ( ), 1 1 , ...,y kδ Θ+
�  

( ) ), 1 , 1,y k L u kδ Θ δ+ +
� �  where 

 ( ) ( )* *
1 1| 1| 0

TT T
ku u k k u k m kΔ Δ Δ+

⎡ ⎤= + + −⎣ ⎦
� "  (30) 

 ( ) ( )*
, 1 , , 1, ,sp k n sp k ny y n LΘ Θ+ = =� " , (31) 

Also, the slacks , 1u kδ +
�  and ( ), 1y k nδ Θ+

�  are such that 

 1 , , 1( ) 0T
u k des k u ku k I u uΔ δ+ ++ − − =� ��  (32) 

and 

 ( ) ( ) ( )1 , 1 , 1
ˆ ( 1) 0, 1,...,s s

n n k sp k n y k nx k B u y n LΘ Δ Θ δ Θ+ + ++ + − − = =� �� �  (33) 

We can show that the solution defined through (30) to (33) represent a feasible solution to 
problem P2 at time k+1, which proves the recursive feasibility. This means that if problem 
P2 is feasible at time step k, then, it will remain feasible at all the successive time steps k+1, 

k+2, … ฀ 
Now, the convergence of the closed loop system with the robust controller resulting from 
the later optimization problem can be stated as follows: 
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Theorem. Suppose that the undisturbed system starts at a known steady state and one of the 

state observers is based on the actual model of the plant. Consider also that the input target 

is moved to a new value, or the boundaries of the output zones are modified. Then, if 

condition (3) is satisfied for each model nΘ Ω∈ , the cost function of the undisturbed true 

system in closed loop with the controller defined through the solution to problem P2 will 

converge to zero. 
Proof: 

Suppose that, at time k the uncertain system starts from a steady state corresponding to 

output ( ) ssy k y=  and input ( )1 ssu k u− = . We have already shown that, with the model 

structure considered in (1) and (2), the model states corresponding to this initial steady state 

can be represented as follows: 

( )ˆ 0 , 1, ,n ss ss ss

p

x k y y y n L

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎢ ⎥⎣ ⎦

" "���	��
  

and consequently, ( ) ( )ˆ ˆ, 0, 1, ,s d
n ss nx k y x k n L= = = " . 

At time k, the cost corresponding to the solution defined in (28) and (29) for the true model 

is given by 

( ) ( ) ( )( ){ ( ) ( )( )

( ) ( )}
( ) ( )

* * * * * * *
, , , ,

0

* * * *
, , , ,

1
* * * * * *

, , , ,
0

( | ) ( | )

( | ) ( | )

( | ) ( | )

T

k T T sp k T y k T y T sp k T y k T
j

T

des k u k u des k u k

m
T T T

y k T y y k T u k u u k
j

V y k j k y Q y k j k y

u k j k u Q u k j k u

u k j k R u k j k S S

Θ Θ δ Θ θ δ θ

δ δ

Δ Δ δ Θ δ Θ δ δ

∞

=

−

=

= + − − + − −

+ + − − + − −

+ + + + +

∑

∑

 (34) 

At time step k+1, the cost corresponding to the pseudo variables defined in (30) to (33) for 

the true model is given by 

( )

( ) ( )( ){ ( ) ( )( )

( ) ( )}
( ) ( )

1

* * * * * *
, , , ,

0

* * * *
, , , ,

1
* * * * * *

, , , ,
0

( 1| ) ( 1| )

    ( 1 / ) ( 1 / )

 ( 1| ) ( 1| )

k T

T

T sp k T y k T y T sp k T y k T
j

T

des k u k u des k u k

m
T T T

y k T y y k T u k u u k
j

V

y k j k y Q y k j k y

u k j k u Q u k j k u

u k j k R u k j k S S

Θ

Θ δ Θ Θ δ Θ

δ δ

Δ Δ δ Θ δ Θ δ δ

+
∞

=

−

=

=

+ + − − + + − −

+ + + − − + + − −

+ + + + + + +

∑

∑

�

 (35) 

Observe that, since the same input sequence is used and the current estimated state 

corresponding to the actual model of the plant is equal to the actual state, then the predicted 

state and output trajectory will be the same as the optimal predicted trajectories at time step 

k. That is, for any 1j ≥ , we have 

( ) ( )| 1 |T Tx k j k x k j k+ + = +  
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and 

( ) ( )| 1 |T Ty k j k y k j k+ + = +  

In addition, for the true model we have ( ) ( )*
, 1 ,y k T y k Tδ Θ δ Θ+ =�  and *

, 1 ,u k u kδ δ+ =� . However, 

the first of these equalities is not true for the other models, as for these models we have 

( ) ( )ˆ 1| 1 1| , forn n n Tx k k x k k Θ Θ+ + ≠ + ≠ . 
Now, subtracting (35) from (34) we have 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

* * * * * * *
1 , , , ,

* * * * * *
, , , ,

| |

( | ) ( | )

T

k T k T T sp k T y k T y T sp k T y k T

T T
des k u k u des k u k

V V y k k y Q y k k y

u k k u Q u k k u u k R u k

Θ Θ Θ δ Θ Θ δ Θ

δ δ Δ Δ

+− = − − − −

+ − − − − +

�
 

and, from constraint (25), the following relation is obtained 

( ) ( )*
1 1k T k TV VΘ Θ+ +≤ � , 

which finally implies 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

* * * * * * * *
1 , , , ,

* * * * * *
, , , ,

| |

( | ) ( | )

T

k T k T T sp k T y k T y T sp k T y k T

T T
des k u k u des k u k

V V y k k y Q y k k y

u k k u Q u k k u u k R u k

Θ Θ Θ δ Θ Θ δ Θ

δ δ Δ Δ

+− ≥ − − − −

+ − − − − +

 (36) 

Since the right hand side of (36) is positive definite, the successive values of the cost will be 

strictly decreasing and for a large enough time k , we will have ( ) ( )( )* *
1

0T Tk k
V VΘ Θ+− = , 

which proves the convergence of the cost. 

The convergence of ( )*
k TV Θ  means that, at steady state, the following relations should hold 

( ) ( ) ( )* * *
, ,

|T T Tsp k y k
y k k y Θ δ Θ− =  

* *
, ,

( | )
des k u k

u k k u δ− =  

( )* 0u kΔ =  

At steady state, the state is such that  

( )
( )
( )

( ) ( )

( )ˆ ( )
ˆ ( )

0ˆ

n
s
n

d
n

y k y k

y k px k y k

x k y k

x k

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

# #
 

where ( )y k  is the actual plant output. Note that the state component ( )ˆ d
nx k  is null as it 

corresponds to the stable modes of the system and the input increment is null at steady 

state. Then, constraint (23) can be written as follows: 
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 ( ) ( ) ( ) ( ) ( )* * * *
, , ,

| , 1,...,n n n ny k sp k sp k
y k k y y k y n Lδ Θ Θ Θ= − = − = . (37) 

This means that, if the output of the true system is stabilized inside the output zone, then 

the set point corresponding to each particular model will be placed by the optimizer 

exactly at the output predicted values. As a result, all the output slacks will be null. On 

the other hand, if the output of the true system is stabilized at a value outside the output 

zone, then the set-point variable corresponding to any particular model will be placed by 

the optimizer at the boundary of the zone. In this case, the output slack variables will be 

different from zero, but they will all have the same numerical value as can be seen from 

(37). 

Now, to strictly prove the convergence of the input and output to their corresponding 

targets, we must show that slacks 
,u k

δ  and ( ), Ty k
δ Θ  will converge to zero. It is necessary at 

this point to notice that in the case of zone control the degrees of freedom of the system are 

no longer the same as in the fixed set-point problem. So, the desired input values may be 

exactly achieved by the true system, even in the presence of some bounded disturbances. Let 

us now assume that the system is stabilized at a point where, ( ) ( )* *
1, ,

0Ly k y k
δ Θ δ Θ= = ≠" , 

and 
,

0
u k

δ ≠ . In addition, assume that the desired input value is constant at ,des ku . Then, at 

time k  large enough, the cost corresponding to model nΘ  will be reduced to 

 ( ) ( )*
1, , , ,

( ) , 1,...,T T
n n y n uk y k y k u k u k

V S S n LΘ δ Θ δ Θ δ δ= + = , (38) 

and constraints (21) and (22) become, 

 ( ) ( ), ,
ˆ ( ) , 1, ,s

n n nsp k y k
x k y n LΘ δ Θ− = = "  (39) 

and 
, ,

( 1)
des k u k

u k u δ− − = . 

Since ( ) ( )ˆ , 1, ,s
nx k y k n L= = " , Eq. (39) can be written as 

( ) ( ), ,
( ) , 1, ,n nsp k y k

y k y n LΘ δ Θ− = = " . 

Now, we want to show that if ( )1u k −  and 
,des k

u  are not on the boundary of the input 

operating range, then it is possible to guide the system toward a point in which the slack 

variables ( ),y k nδ θ  and ,u kδ  are null, and this point have a smaller cost than the steady state 

defined above. Assume also for simplicity that m=1. Let us consider a candidate solution to 

problem P2 defined by: 

 ( ) ( ), ,
/ 1

des k u k
u k k u u kΔ δ= − − = −  (40) 

and 

 ( ) ( ) ( ), ,
s

n nsp k u k
y y k Bθ θ δ= −   n=1,…,L (41) 

Now, consider the cost function defined in (21), written for time step k  and the control 

move defined in (40) and the output set point defined in (41): 
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( )
( )

( ) ( )
( )

1 , , ,

1 , , ,

, ,

, ,,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( 1) ( 1)

T

k n y n y n y n yu k sp k y k

y n y n y nu k sp k y k

T
m d d m d d

n n d n n nu k u k

T

u u des k u u k u uu k

V I y k S I y I Q

I y k S I y I

F x k B Q F x k B

I u k M I u I Q I u k

Θ Θ δ Θ δ Θ

Θ δ Θ δ Θ

Θ Θ δ Θ Θ Θ δ

δ δ

= − − −

− − −

+ − −

+ − − − − − −

� �� � �

�� � �

� �

� � � �( ), ,,

, , , , , ,
( ) ( ) ( ) ( )

u des k u u ku k

T T T
n y n uu k u k y k y k u k u k

M I u I

R S S

δ δ

δ δ δ Θ δ Θ δ δ

− −

+ − − + +

� �

�

 

Now, since the solution defined by ( ) ( )( ), ,
/ , ,ny k u k

u k kΔ δ Θ δ  satisfies constraint (23) and 

(24), the above cost can be reduced to 

( ) ( )min, ,
T u

n nk u k u k
V SΘ δ Θ δ=  

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )min 1 1

T Tu s s d d
n y n n y y n n n d nS I B S Q I B S B Q B RΘ Θ Θ Θ Θ Θ Θ⎡ ⎤ ⎡ ⎤= − − + +⎣ ⎦ ⎣ ⎦

� � �� � � � �  

Then, if 

 ( )min , 1,...,u u nS S n LΘ> = , (42) 

the cost corresponding to the decision variables defined in (40) and (41) will be smaller than 
the cost obtained in (38). This means that it is not possible for the system to remain at a point 
in which the slack variables ( ), , 1, ,y k n n Lδ Θ = "  and ,u kδ  are different from zero. 
Thus, as long as the system remains controllable, condition (42) is sufficient to guarantee the 
convergence of the system inputs to their target while the system output will remain within 
the output zones.฀ 
Observe that only matrix Su is involved in condition (42) because condition (3) assures that 
the corrected output prediction, i.e. the one corresponding to the desired input values, lies 
in the feasible zone. In this case, for all positive matrices Sy, the total cost can be reduced by 
making the set point variable equal to the steady-state output prediction, which is a feasible 
solution and produces no additional cost. However, matrix Sy is suggested to be large 
enough to avoid any numerical problem in the optimization solution. 

Remark 5: We can prove the stability of the proposed zone controller under the same 

assumptions considered in the proof of the convergence. Output tracking stability means 

that for every 0γ > , there exists a ( )ρ γ  such that if ( )0Tx ρ< , then ( )Tx k γ<  for all 

0k ≥ ; where the extended state of the true system ( )Tx k  may be defined as follows 

( )
( ) ( )

( )
( )

*
, 1

,

( | ) ( )

( | ) ( )

|

s
T T

s
T T

T s
T sp k T

d
T

des k

y k k x k

y k p k x k
x k

x k y

x k

u k k u

Θ−

⎡ ⎤−
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

#
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To simplify the proof, we still assume that m=1, and suppose that the optimal solution 
obtained at step k-1 is given by ( )* *

1 1 / 1ku u k kΔ Δ− = − − , ( ) ( )* *
, 1 1 , 1, ,sp k sp k Ly yΘ Θ− −" , 

( ) ( )* *
, 1 1 , 1, ,y k y k Lδ Θ δ Θ− −"  and *

, 1u kδ − . 
A feasible solution to problem P2 at time k is given by: 

0kuΔ =� , ( ) ( )*
, , 1sp k n sp k ny yΘ Θ−=� , and ,u kδ�  and ( ),y k nδ Θ�  are such that  

 
P0

, ,( 1) 0T
u k des k u ku k I u uΔ δ

=

− + − − =� ��  (43) 

 ( )
P

( ) ( )
0

, ,
ˆ ( ) 0, 1,...,s s

n n k sp k n y k nx k B u y n LΘ Δ Θ δ Θ
=

+ − − = =� �� � . (44) 

Since ( | ) 0u k kΔ =� , we have ( | ) ( 1)u k k u k= −  and from (43) we can write 

 , ,( | )u k des ku k k uδ = −�  (45) 

For the true system, (44) can be written as follows 

( ) ( )*
, 1 ,( ) 0s

T sp k T y k Tx k y Θ δ Θ−− − =�  

and consequently, we have the following relations 

 ( ) ( )*
, , 1( )s

y k T T sp k Tx k yδ Θ Θ−= −�  (46) 

and 

 ( ) ( )*
, 1 ,( )s

T sp k T y k Tx k y Θ δ Θ−= + �  (47) 

For the feasible solution defined above, the cost defined in (21) can be written for the actual 
model TΘ  as follows 

( ) ( )
( ) ( )
( ) ( )
( )

* *
, 1 , , 1 ,

, , , ,

*
, 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( 1) ( 1)

( ) ( )

T

k T x T y sp k T y y k T y x T y sp k T y y k T

T
m d m d

T T xd T T T

T

u u des k u u k u u u des k u u k

T
s
T sp k T y

V N x k I y I Q N x k I y I

F x k Q F x k

I u k I u I Q I u k I u I

x k y S

Θ Θ δ Θ Θ δ Θ

Θ Θ Θ

δ δ

Θ

− −

−

= − − − −

+

+ − − − − − −

+ −

�� � � � � � �

� � � � � � � �

( ) ( ) ( )*
, 1 , ,( ) ( ) ( | ) ( | )

Ts
T sp k T des k u des kx k y u k k u S u k k uΘ−− + − −

 (48) 

Now, using (45), (46) and (47) the cost defined in (48) can be reduced to the following 
expression 

( ) ( ){ }1 1 2 2 3 3 4 4( ) ( ) ( ) ( ) ( )
T

T T T m m T T
k T T y T d T T y uV x k C Q C C F Q F C C S C C S CΘ Θ Θ Θ= + + +��  

where 

1 ( 1) ( 1) ( 1) ( 1)0 0 0p ny p ny ny p ny nd p ny nuC I + + × + × + ×⎡ ⎤= ⎣ ⎦  
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2 ( 1)0 0 0nd p ny nd ny nd nd nuC I× + × ×⎡ ⎤= ⎣ ⎦  

3 ( 1)0 0 0ny p ny ny ny nd ny nuC I× + × ×⎡ ⎤= ⎣ ⎦  

4 ( 1)0 0 0nu p ny nu ny nu nd nuC I× + × ×⎡ ⎤= ⎣ ⎦  

Thus, the cost defined in (48) can be written as follows: 

 ( ) ( ) ( ) ( )2, 1
T

k T T T TV x k H x kΘ Θ=� , (49) 

where ( ) ( )1 1 1 2 2 3 3 4 4( ) ( ) ( )
TT T m m T T

y T xd T T y uH C Q C C F Q F C C S C C S CΘ Θ Θ= + + +� . 

Because of constraint (25), the optimal true cost (that is, the cost based on the true model, 
considering the optimal solution that minimizes the nominal cost at time k) will satisfy 

 ( ) ( )*
k T k TV VΘ Θ≤ � . (50) 

and 

 ( ) ( )* *
k n T k TV VΘ Θ+ ≤  for any 1n > . (51) 

By a similar procedure as above and based on the optimal solution at time k+n, we can find 
a feasible solution to Problem P2 at time  k + n + 1, for any n>1, such that 

 ( ) ( )*
1k n T k n TV VΘ Θ+ + +≤�  (52) 

and from the definition of 1k nV + +
�  we have 

( ) ( ) ( ) ( )2, 1 11 1
T

k n T T T TV x k n H x k nΘ Θ+ + = + + + +�  

Therefore, combining inequalities (49) to (52) results 

( ) ( ) ( ) ( ) ( ) ( )1 11 1 , 1
T T

T T T T T Tx k n H x k n x k H x k nΘ Θ+ + + + ≤ ∀ > . 

As ( )1 TH Θ  is positive definite, it follows that 

( ) ( ) ( )1 , 1T T Tx k n x k nα Θ+ + ≤ ∀ >  

where 

( ) ( )( )
( )( )

( )( )
( )( )

1 2
1 2

max 1max 1

min 1 min 1

max
jT

T
jT j

HH

H H

λ Θλ Θ
α Θ

λ Θ λ Θ

⎡ ⎤⎡ ⎤ ⎢ ⎥= ≤⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

If we restrict the state at time k to the set defined by ( )Tx k ρ< , then, the state at tine k+n+1 

will be inside the set defined by 
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( ) ( )1 , 1T Tx k n nα Θ ρ+ + < ∀ > . 

Which proves stability of the closed loop system, as Tx  will remain inside the ball 

( )T Tx α Θ ρ< , where ( )Tα Θ  is limited, as long as the closed loop starts from a state inside 

the ball Tx ρ< . Therefore, as we have already proved the convergence of the closed loop, 

we can now assure that under the assumption of state controllability at the final equilibrium 

point, the proposed MPC is asymptotically stable.฀ 
Remark 6: It is important to observe that even if condition (3) cannot be satisfied by the 
input target, or the input target is such that one or more outputs need to be kept outside 
their zones, the proposed controller will still be stable. This is a consequence of the 
decreasing property of the cost function (inequality (36)) and the inclusion of appropriate 
slack variables into the optimization problem. When no feasible solution exists, the system 
will evolve to an operating point in which the slack variables, which at steady state are the 
same for all the models, are as small as possible, but different from zero. This is an 
important aspect of the controller, as in practical applications a disturbance may move the 
system to a point from which it is not possible to reach a steady state that satisfies (3). When 
this happens, the controller will do the best to compensate the disturbance, while 
maintaining the system under control. 

Remark 7: We may consider the case when the desired input target ,des ku  is outside the 

feasible set uϑ  and the case where the set uϑ  itself is null. If uϑ  is not null, the input target 

udes,k could be located within the global input feasible set oϑ , but outside the restricted input 

feasible set uϑ . In this case, the slack variables at steady state, ,u ssδ  and ( ),y ss nδ Θ , cannot be 

simultaneously zeroed, and the relative magnitude of matrices Sy and Su will define the 

equilibrium point. If the priority is to maintain the output inside the corresponding range, 

the choice must be y uS S>> , while preserving min
u uS S> . Then, the controller will guide the 

system to a point in which ( ), 0, 1, ,y ss n n Lδ Θ ≈ = "  and , 0u ssδ ≠ . On the other hand, if uϑ  

is null, that is, there is no input belonging to the global input feasible set oϑ  that 

simultaneously satisfies all the zones for the models lying in Ω , then, the slack variables 

( ), , 1, ,y ss n n Lδ Θ = " , cannot be zeroed, no matter the value of ,u ssδ . In this case (assuming 

that y uS S>> ), the slack variables ( ), , 1, ,y ss n n Lδ Θ = " , will be made as small as possible, 

independently of the value of ,u ssδ . Then, once the output slack is established, the input 

slack will be accommodated to satisfy these values of the outputs. 

6. Simulation results for the system with time delay 

The system adopted to test the performance of the robust controller presented here is based 
on the FCC system presented in Sotomayor and Odloak (2005) and González et al. (2009). It 
is a typical example of the chemical process industry, and instead of output set points, this 
system has output zones. The objective of the controller is then to guide the manipulated 
inputs to the corresponding targets and to maintain the outputs (that are more numerous 
than the inputs) within the corresponding feasible zones. The system considered here has 2 
inputs and 3 outputs. Three models constitute the multi-model set Ω  on which the robust 
controller is based. In two of these models, time delays were included to represent a possible 
degradation of the process conditions along an operation campaign. The third model 
corresponds to the process at the design conditions. The parameters corresponding to each 
of these models can be seen in the following transfer functions: 

www.intechopen.com



 Robust Control, Theory and Applications 

 

362 

( ) ( )

2 4

36

1 2

6 5

0.4515 0.2033

2.9846 1 1.7187 1

0.1886 3.80871.5

20 1 17.7347 10.8348 1

1.7455 6.1355

9.1085 1 10.9088 1

s s

ss

s s

e e

s s

s ee
G

s s s

e e

s s

Θ

− −

−−

− −

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
+ + +⎢ ⎥

⎢ ⎥−⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 

( )

2 5

3 4

2 2

5 6

0.25 0.135

3.5 1 2.77 1

0.9 (0.1886 2.8)

25 1 19.7347 10.8348 1

1.25 5

11.1085 1 12.9088 1

s s

s s

s s

e e

s s

e s e
G

s s s

e e

s s

Θ

− −

− −

− −

⎡ ⎤
⎢ ⎥

+ +⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
+ + +⎢ ⎥

⎢ ⎥−⎢ ⎥
+ +⎢ ⎥⎣ ⎦

, 

( )3 2

0.7 0.5

1.98 1 2.7 1
2.3 0.1886 4.8087

25 1 15.7347 10.8348 1
3 8.1355

7 1 7.9088 1

s s
s

G
s s s

s s

Θ

⎡ ⎤
⎢ ⎥+ +⎢ ⎥

−⎢ ⎥= ⎢ ⎥+ + +
⎢ ⎥−⎢ ⎥
⎢ ⎥+ +⎣ ⎦

. 

In this reduced system, the manipulated input variables correspond to: u1 air flow rate to the 
catalyst regenerator, u2 opening of the regenerated catalyst valve, and the controlled outputs 
are the following: y1 riser temperature, y2 regenerator dense phase temperature, y3: 
regenerator dilute phase temperature. 

In the simulations considered here, model 1Θ  is assumed to be the true model, while model 

3Θ  represents the nominal model that is used into the MPC cost. In the discussion that 

follows, unless explicitly mentioned, the adopted tuning parameters of the controller are 

3m = , 1T = , ( )0.5 * 1 1 1yQ diag= , ( )1 1uQ diag= , ( )1 1R diag= , 

( )310 * 1 1 1yS diag=  and ( )510 * 1 1uS diag= . The input and output constraints, as well 

as the maximum input increments, are shown in Tables 1 and 2. 
 

Output ymin ymax 

y1 (ºC) 510 530 
y2 (ºC) 600 610 
y3 (ºC) 530 590 

Table 1. Output zones of the FCC system 

 

Input maxuΔ  umin umax 

u1 (ton/h) 25 75 250 
u2 (%) 25 25 101 

Table 2. Input constraints of the FCC system 
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Before starting the detailed analysis of the properties of the proposed robust controller, we 
find it useful to justify the need for a robust controller for this specific system. We compare, 
the performance of the proposed robust controller defined through Problem P2, with the 
performance of the nominal MPC defined through Problem P1. We consider the same 
scenario described above except for the input targets that are not fully included in the 
control problem (we consider a target only to input u1 by simply making ( )1 0uQ diag=  
and ( )510 * 1 0uS diag= . This is a possible situation that may happen in practice when the 
process optimizer is sending a target to one of the outputs. Figures 2 and 3 show the output 
and input responses respectively for the two controllers when the system starts from a 
steady state where the outputs are outside their zones. It is clear that the conventional MPC 
cannot stabilize the plant corresponding to model 1Θ  when the controller uses model 3Θ  to 
calculate the output predictions. However, the proposed robust controller performs quite 
well and is able to bring the three outputs to their zones 
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Fig. 2. Controlled outputs for the nominal (- - -) and robust (⎯⎯) MPC. 

We now concentrate our analysis on the application of the proposed controller to the FCC 
system. As was defined in Eq. (5), each of the three models produces an input feasible set, 
whose intersection constitutes the restricted input feasible set of the controller. These sets 
have different shapes and sizes for different stationary operating points (since the 
disturbance ( )nd k  is included into Eq. (5), except for the true model case, where the input 
feasible set remains unmodified as the estimated states exactly match the true states. The 
closed loop simulation begins at uss=[230.5977 60.2359] and yss=[549.5011  704.2756  
690.6233], which are values taken from the real FCC system. For such an operating point, the 
input feasible set corresponding to models 1, 2 and 3 are depicted in Figure 4. These sets are 
quite distinct from each other, which results in an empty restricted feasible input set for the 
controller ( ( ) ( ) ( )1 2 3u u u uϑ ϑ Θ ϑ Θ ϑ Θ= ∩ ∩ ). This means that, we cannot find an input that, 
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taking into account the gains of all the models and all the estimated states, satisfies the 
output constraints. 
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Fig. 3. Manipulated inputs for the nominal (- - -) and robust (⎯⎯) MPC. 

 

 

Fig. 4. Input feasible sets of the FCC system 

( )1uϑ θ( )2u
ϑ θ

( )3uϑ θ
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The first objective of the control simulation is to stabilize the system input at 

[ ]165 60a
desu = . This input corresponds to the output [520  606.8  577.6]y =  for the true 

system ( )1Θ , which results in the input feasible sets shown in Figure 5a. In this figure, it can 
be seen that the input feasible set corresponding to model 1 is the same as in Fig. 4, while the 
sets corresponding to the other models adapt their shape and size to the new steady state. 
Once the system is stabilized at this new steady state, we simulate a step change in the 
target of the input (at time step k=50 min). The new target is given by [175 64]b

desu = , and 
the corresponding input feasible sets are shown in Figure 5b. In this case, it can be seen that 
the new target remains inside the new input feasible set b

uϑ , which means that the cost can 
be guided to zero for the true model. Finally, at time step k=100 min, when the system 
reaches the steady state, a different input target is introduced ( [175 58]c

desu = ). Differently 
from the previous targets, this new target is outside the input feasible set c

uϑ , as can be seen 
in Figure 5c. Since in this case, the cost cannot be guided to zero and the output 
requirements are more important than the input ones, the inputs are stabilized in a feasible 
point as close as possible to the desired target. This is an interesting property of the 
controller as such a change in the target is likely to occur in the real plant operation. 
 

   
 

 

Fig. 5. (a): Initial input feasible sets; (b): Input feasible sets when the first input target is 
changed; and (c): Input feasible sets when the second input target is changed. 
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Fig. 6. Controlled outputs and set points for the FCC subsystem with modified input target. 
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Fig. 7. Manipulated inputs for the FCC subsystem with different input target. 

Figure 6 shows the true system outputs (solid line), the set point variables (dotted line) and 
the output zones (dashed line) for the complete sequence of changes. Figure 7, on the other 
hand, shows the inputs (solid line), and the input targets (dotted line) for the same 
sequence. As was established in Theorem 1, the cost function corresponding to the true 
system is strictly decreasing, and this can be seen in Figure 8. In this figure, the solid line 
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represents the true cost function, while the dotted line represents the cost corresponding to 
model 3. It is interesting to observe that this last cost function is not decreasing, since the 
estimated state does not match exactly the true state. Note also that in the last period of 
time, the cost does not reach zero, as the new target is not inside the input feasible set. 
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Fig. 8. Cost function corresponding to the true system (solid line) and cost corresponding to 
model 3 (dotted line). 
 

Output ymin ymax 

y1 (ºC) 510 550 
y2 (ºC) 400 500 
y3 (ºC) 350 500 

Table 3. New output zones for the FCC subsystem 

Next, we simulate a change in the output zones. The new bounds are given in Table 3. 
Corresponding to the new control zones, the input feasible set changes its dimension and 
shape significantly. In Figure 9, ( )1

a
uϑ Θ  corresponds to the initial feasible set for the true 

model, and ( )1
d
uϑ Θ , ( )2

d
uϑ Θ  and ( )3

d
uϑ Θ  represent the new input feasible sets for the three 

models considered in the robust controller. Since the input target is outside the input 
feasible set ( ) ( ) ( )1 2 3

d d d d
u u u uϑ ϑ Θ ϑ Θ ϑ Θ= ∩ ∩ , it is not possible to guide the system to a point 

in which the control cost is null at the end of the simulation time. When the output weight 
Sy is as large as the input weight Su, all the outputs are guided to their corresponding zones, 
while the inputs show a steady state offset with respect to the target a

desu . The complete 
behavior of the outputs and inputs of the FCC subsystem, as well as the output set-points, 
can be seen in Figures 10 and 11, respectively when ( )310 * 1 1 1yS diag=  and 

( )310 * 1 1uS diag= . The final stationary value of the input is u= [155  84], which represents 
the closest feasible input value to the target a

desu . Finally, Figure 12 shows the control cost of 
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the two simulated time periods. Observe that in the last period of time (from 51min to 100 
min) the true cost function does not reach zero since the change in the operating point 
prevents the input and output constraints to be satisfied simultaneously. 
 

 

Fig. 9. Input feasible sets for the FCC subsystem when a change in the output zones is 
introduced. 
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Fig. 10. Controlled outputs and set points for the FCC subsystem with modified zones. 
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Fig. 11. Manipulated inputs for the FCC subsystem with modified output zones. 
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Fig. 12. Cost function for the FCC subsystem with modified zones. True cost function (solid 
line); Cost function of Model 3 (dotted line). 

7. Conclusion 

In this chapter, a robust MPC previously presented in the literature was extended to the 
output zone control of time delayed system with input targets. To this end an extended 
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model that incorporates additional states to account for the time delay is presented. The 
control structure assumes that model uncertainty can be represented as a discrete set of 
models (multi-model uncertainty). The proposed approach assures both, recursive 
feasibility and stability of the closed loop system. The main idea consists in using an 
extended set of variables in the control optimization problem, which includes the set point 
to each predicted output. This approach introduces additional degrees of freedom in the 
zone control problem. Stability is achieved by imposing non-increasing cost constraints that 
prevent the cost corresponding to the true plant to increase. The strategy was shown, by 
simulation, to have an adequate performance for a 2x3 subsystem of a typical industrial 
system. 
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