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1. Introduction

It is well known that many engineering control systems such as conventional oil-chemical
industrial processes, nuclear reactors, long transmission lines in pneumatic, hydraulic and
rolling mill systems, flexible joint robotic manipulators and machine-tool systems, jet engine
and automobile control, human-autopilot systems, ground controlled satellite and
networked control and communication systems, space autopilot and missile-guidance
systems, etc. contain some time-delay effects, model uncertainties and external disturbances.
These processes and plants can be modeled by some uncertain dynamical systems with state
and input delays. The existence of time-delay effects is frequently a source of instability and
it degrades the control performances. The stabilization of systems with time-delay is not
easier than that of systems without time-delay. Therefore, the stability analysis and
controller design for uncertain systems with delay are important both in theory and in
practice. The problem of robust stabilization of uncertain time-delay systems by various
types of controllers such as PID controller, Smith predictor, and time-delay controller,
recently, sliding mode controllers have received considerable attention of researchers.
However, in contrast to variable structure systems without time-delay, there is relatively no
large number of papers concerning the sliding mode control of time-delay systems.
Generally, stability analysis can be divided into two categories: delay-independent and
delay-dependent. It is worth to mention that delay-dependent conditions are less
conservative than delay-independent ones because of using the information on the size of
delays, especially when time-delays are small. As known from (Utkin, 1977)-(Jafarov, 2009)
etc. sliding mode control has several useful advantages, e.g. fast response, good transient
performance, and robustness to the plant parameter variations and external disturbances.
For this reason, now, sliding mode control is considered as an efficient tool to design of
robust controllers for stabilization of complex systems with parameter perturbations and
external disturbances. Some new problems of the sliding mode control of time-delay
systems have been addressed in papers (Shyu & Yan, 1993)-(Jafarov, 2005). Shyu and Yan
(Shyu & Yan, 1993) have established a new sufficient condition to guarantee the robust
stability and p-stability for uncertain systems with single time-delay. By these conditions a
variable structure controller is designed to stabilize the time-delay systems with
uncertainties. Koshkoei and Zinober (Koshkouei & Zinober, 1996) have designed a new
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sliding mode controller for MIMO canonical controllable time-delay systems with matched
external disturbances by using Lyapunov-Krasovskii functional. Robust stabilization of
time-delay systems with uncertainties by using sliding mode control has been considered by
Luo, De La Sen and Rodellar (Luo et al.,, 1997). However, disadvantage of this design
approach is that, a variable structure controller is not simple. Moreover, equivalent control
term depends on unavailable external disturbances. Li and DeCarlo (Li & De Carlo, 2003)
have proposed a new robust four terms sliding mode controller design method for a class
of multivariable time-delay systems with unmatched parameter uncertainties and matched
external disturbances by using the Lyapunov-Krasovskii functional combined by LMI’s
techniques. The behavior and design of sliding mode control systems with state and input
delays are considered by Perruquetti and Barbot (Perruquetti & Barbot, 2002) by using
Lyapunov-Krasovskii functional.

Four-term robust sliding mode controllers for matched uncertain systems with single or
multiple, constant or time varying state delays are designed by Gouaisbaut, Dambrine and
Richard (Gouisbaut et al., 2002) by using Lyapunov-Krasovskii functionals and Lyapunov-
Razumikhin function combined with LMI's techniques. The five terms sliding mode
controllers for time-varying delay systems with structured parameter uncertainties have
been designed by Fridman, Gouisbaut, Dambrine and Richard (Fridman et al., 2003) via
descriptor approach combined by Lyapunov-Krasovskii functional method. In (Cao et al,,
2007) some new delay-dependent stability criteria for multivariable uncertain networked
control systems with several constant delays based on Lyapunov-Krasovskii functional
combined with descriptor approach and LMI techniques are developed by Cao, Zhong and
Hu. A robust sliding mode control of single state delayed uncertain systems with parameter
perturbations and external disturbances is designed by Jafarov (Jafarov, 2005). In survey
paper (Hung et al., 1993) the various type of reaching conditions, variable structure control
laws, switching schemes and its application in industrial systems is reported by J. Y.Hung,
Gao and J.C.Hung. The implementation of a tracking variable structure controller with
boundary layer and feed-forward term for robotic arms is developed by Xu, Hashimoto,
Slotine, Arai and Harashima(Xu et al., 1989).A new fast-response sliding mode current
controller for boost-type converters is designed by Tan, Lai, Tse, Martinez-Salamero and Wu
(Tan et al., 2007). By constructing new types of Lyapunov functionals and additional free-
weighting matrices, some new less conservative delay-dependent stability conditions for
uncertain systems with constant but unknown time-delay have been presented in (Li et al.,
2010) and its references.

Motivated by these investigations, the problem of sliding mode controller design for
uncertain multi-input systems with several fixed state delays for delay-independent and
delay-dependent cases is addressed in this chapter. A new combined sliding mode
controller is considered and it is designed for the stabilization of perturbed multi-input
time-delay systems with matched parameter uncertainties and external disturbances. Delay-
independent/dependent stability and sliding mode existence conditions are derived by
using Lyapunov-Krasovskii functional and Lyapunov function method and formulated in
terms of LML Delay bounds are determined from the improved stability conditions. In
practical implementation chattering problem can be avoided by using saturation function
(Hung et al., 1993), (Xu et al., 1989).

Five numerical examples with simulation results are given to illustrate the usefulness of the
proposed design method.
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2. System description and assumptions

Let us consider a multi-input state time-delay systems with matched parameter uncertainties
and external disturbances described by the following state-space equation:

x(t) = (Ag + AAp)x(t) + (A + AA)x(t —hy) + ...+ (Ay + AAN)x(t —hy) + Bu(t) + Df (t), t >0
x(t)=¢(t), -h<t<0 1)

where x(t)e R" is the measurable state vector, u(t)e R" is the control input, Ay, A;,.., Ay

and B are known constant matrices of appropriate dimensions, with B of full rank,

h=max[hy,hy,...,hy],h; >0, hy,hy,...,hy are known constant time-delays, ¢(f) is a

continuous vector-valued initial function in -h<t<0; 4A,,4A,,...,4Ay and D are the

parameter uncertainties, ¢(t) is unknown but norm-bounded external disturbances.

Taking known advantages of sliding mode, we want to design a simple suitable sliding

mode controller for stabilization of uncertain time-delay system (1).

We need to make the following conventional assumptions for our design problem.
Assumption 1:

a. (Ay,B) is stabilizable;

b. The parameter uncertainties and external disturbances are matched with the control
input, i.e. there exist matrices E,(t),E(t),E;(t),...,Ex(t), such that:

AAy(t)=BEy(t) ; Ai(t)=BE(t) ; ..,AAN(t)=BEy(t) ; D(t)=BE(t) (2)
with norm-bounded matrices:

mtax”AEO(t)” <o ; mtax”AEl(t)” <o ; ...,mtax”AEN(t)” <ay

|Et)| =
IG]=¢
lF)]= fo (3)

where o, a;,04,..2,,§ and f; are known positive scalars.
The control goal is to design a combined variable structure controller for robust stabilization
of time-delay system (1) with matched parameter uncertainties and external disturbances.

3. Control law and sliding surface

To achieve this goal, we form the following type of combined variable structure controller:

M(t) = Ujin (t) + ueq (t) T Uy (t) +u, (t) (4)

where
Uiy (£) = =Gx(t) (5)
g () = =(CB) ™ [CAgx(t) + CAx(t =Ty ) +...+ CApx(t —hy)] (6)
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ys(8) = _[ko e8|+ ey et =Py )| e+ g e~ hN)”:Iﬁ 7

__s 5 8)
0]

where kg, kq,....ky and o are the scalar gain parameters to be selected; Gis a design matrix;
(CB)™ is a non-singular nxm matrix. The sliding surface on which the perturbed time-delay
system states must be stable is defined as a linear function of the undelayed system states as
follows:

s(t) = I"Cx(t) )

where C is a mxn gain matrix of full rank to be selected; /" is chosen as identity mxm
matrix that is used to diagonalize the control.

Equivalent control term (6) for non-perturbed time-delay system is determined from the
following equations:

§(t) = Ci(t) = CAgx(t) + CAyx(t =y ) + ...+ CAyx(t — iy ) + CBu(t) = 0 (10)

Substituting (6) into (1) we have a non-perturbed or ideal sliding time-delay motion of the
nominal system as follows:

2(£) = Aox(t) + Arx(t—hy) +...+ Anx(t—hy) (11)
where

(CB)'C=G,,, Ay~ BG, Ay = Ao, Ay ~BG, A, = A1, .., Ay - BG, Ay = Ax (12)

eq’

Note that, constructed sliding mode controller consists of four terms:

1. The linear control term is needed to guarantee that the system states can be stabilized
on the sliding surface;

2. The equivalent control term for the compensation of the nominal part of the perturbed
time-delay system;

3. The variable structure control term for the compensation of parameter uncertainties of
the system matrices;

4. The min-max or relay term for the rejection of the external disturbances.

Structure of these control terms is typical and very simple in their practical implementation.

The design parameters G,C,ky,ky,...,.ky o6 of the combined controller (4) for delay-

independent case can be selected from the sliding conditions and stability analysis of the

perturbed sliding time-delay system.

However, in order to make the delay-dependent stability analysis and choosing an

appropriate Lyapunov-Krasovskii functional first let us transform the nominal sliding time-

delay system (11) by using the Leibniz-Newton formula. Since x(t) is continuously

differentiable for t > 0, using the Leibniz-Newton formula, the time-delay terms can be

presented as:

x(t—hy) =x(t) - j 2(0)d0, ..., x(t—hy) = x(t) - j 2(6)do (13)

t—hy t—hy

www.intechopen.com



Robust Delay-Independent/Dependent Stabilization of
Uncertain Time-Delay Systems by Variable Structure Control 167

Then, the system (11) can be rewritten as
_ . _ _ _ t
i) = (Ao + At +...+ Ayx(t) - Ar | #(0)d0 ..~ An [ #(0)do (14)
t-hy t-hy
Substituting again (11) into (14) yields:

2(H) = (Ag + Ay + ...+ Ay )x(H) — A, j [Apx(0) + Ayx(0—hy) + ...+ Ayx(0—hy) |40

t=hy (15)

t t t
=(Ag+ Ay +..+ Ay )x(t) - A4y [ x(0)d0—AT [ x(0-I)d0—..— AjAy [ x(0—-hy)do
t—hy t=hy

t—hy
_ t _ t _ t
— = AyAy [ x(0)d0-AyA; [ x(0-h)d0—..— A% [ x(60—hy)do
tth tth tth

Then in adding to (15) the perturbed sliding time-delay system with control action (4) or
overall closed loop system can be formulated as:

X(t) = (Ay + A + ...+ A)x(t) - 4 4, j x(0)d0 — A} j x(0—h)do
—..—AA, j x(0—hy)dO —...— A, A, j x(0)d0 — 4, 4, j x(0—h)do
—.— A2 j x(0 — hy)dO + Ad,x(t) (16)

t—hy

+AAX(t—h) +...+ A4, x(t — hy)

s(t s(t
Bl )]+ o — )+ + ey [ — B )] ”58” ~ s ||s8|| + DY (1)
where A,=A,-BG, the gain matrix G can be selected such that A, has the desirable
eigenvalues.
The design parameters G,C,ky,ky,...,ky 6 of the combined controller (4) for delay-
dependent case can be selected from the sliding conditions and stability analysis of the
perturbed sliding time-delay system (16).

4. Robust delay-independent stabilization

In this section, the existence condition of the sliding manifold and delay-independent
stability analysis of perturbed sliding time-delay systems are presented.

4.1 Robust delay-independent stabilization on the sliding surface
In this section, the sliding manifold is designed so that on it or in its neighborhood in
different from existing methods the perturbed sliding time-delay system (1),(4) is globally
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asymptotically stable with respect to state coordinates. The perturbed stability results are
formulated in the following theorem.
Theorem 1: Suppose that Assumption 1 holds. Then the multivariable time-delay
system (1) with matched parameter perturbations and external disturbances driven by
combined controller (4) and restricted to the sliding surface s(t)=0 is robustly globally
asymptotically delay-independent stable with respect to the state variables, if the
following LMI conditions and parameter requirements are satisfied:

(A, P+PAg+R, +..+Ry PA1 .. PAy|
H= (Y e 9 <o 17)
I (PAN)T 0 .. —Ry]
CB=B'PB>0 (18)
ko =0y k) =05 ky =ay (19)
52 f, (20)

where P,R;,...Ry are some symmetric positive definite matrices which are a feasible
solution of LMI (17) with (18); Ay = Ay —BG in which a gain matrix G can be assigned by
pole placement such that A, has some desirable eigenvalues.

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:

V =xT (t)Px(t) + i j x" (O)R;x(0)do (1)
i=1 t—h;

The time-derivative of (21) along the state trajectories of time-delay system (1), (4) can be
calculated as follows:

V= 2xT(t)P[AOx(t) + Ax(t—hy) + ..+ Agx(t —hy) + AAgx(t) + AAx(t—hy)
+..+ AANxX(t - hy) + Bu(t) + Df (1)]
+xT (DR (8) —x” (£ =1y )Ryx(t = hy) + ...+ xT (H)Ryyx(t) — x7 (£ =y )Ryyx (£ =Ty
= 2xT ()P Aox(t) + 2xT ())PArx(t —hy) + ...+ 2xT ())PAnx(t — hy ) + 2x" (£)PBEyx(t)
+2x" (H)PBEx(t — 1y ) + ...+ 2x" (£)PBEyx(t — hy)

= 20T (1) PBlkg (t)] + ey et =)+ .+ (- hN)"]"zEgn

—2x" (t)PBGx(t) — 25x" (t)PBh+2x (t)PBEf(t)

+xT (D)(Ry +...+ Ry)x(t) = x" (t—hy)Ryx(t —hy) —...— x" (t = hy )Ryx(t = hy)

Since x'(t)PB=s"(t), then we obtain:
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V< xT(t)[ngTm PAy +R, +...+ Ry Jx(t)

+2xT ()P Arx(t —Ty) + ...+ 2xT ())PAnx(t — hy)
—x(t=hy)Ryx(t=hy) —...— x" (t = 1y )Ryx(t = hy)
+ 257 (£)Egx(t) + 25" ())Eyx(t —hy) + ...+ 25" (H)Exx(t =y )

+ 28T (BYEF (1) — 257 (8) ko (O] + Ko ot — )| o+ g [t = i) 12— 2567 1y 5)

st s
Tt Al L NiE (22)
xt) T [AO P+PAy+R,+...+Ry PA1 .. PAx x(t)
BECLY (PAL)T R, .. 0 |Xt-M)
=] (PAN)T 0 . Ry UMW)
= [(ko = o) [x(BIs(®)] + ey = ey et = )[s(E)] + -+ Gy = ) et =TI
~(6 = fo)|s(2)|
Since (17)-(20) hold, then (22) reduces to:
V <z' (H)Hz(t) <0 (23)

where 2" (t) = [x(t)x(t - hy)...x(t - hy)] .

Therefore, we can conclude that the perturbed time-delay system (1), (4) is robustly globally
asymptotically delay-independent stable with respect to the state coordinates. Theorem 1 is
proved.

4.2 Existence conditions
The final step of the control design is the derivation of the sliding mode existence conditions
or the reaching conditions for the perturbed time-delay system (1),(4) states to the sliding
manifold in finite time. These results are summarized in the following theorem.
Theorem 2: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the
following conditions are satisfied:

o2 f, (25)
Proof: Let us choose a modified Lyapunov function candidate as:
V= %ST(t)(CB)_ls(t) (26)

The time-derivative of (26) along the state trajectories of time-delay system (1), (4) can be
calculated as follows:
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V =s" (t)(CB) '5(t) =" (t)(CB) ' Cx(t)

=s" (t)(CB) "C[Agx(t) + Ayx(t —hy) + ...+ Ayx(t — Ty )
+ AAGX(t) + AAX(t =Ty )+ + AANX(E =Ty ) + Bu(t) + DF(1)]

=s" (£)(CB) ' [CAux(t) + CAyx(t = hy) + ...+ CAyx(t — Ty
+CBEyx(t)+ CBE;x(t —h;) + ...+ CBENx(t — hy)
—CB((CB) ™ [CAgx(t) + CAx(t — ) +... + CAyx(t~ hy)]

Lol el ool

(27)
” ”] +C BEf(t)]
= 5T (D)[Egx(t) + Eyx(t —hy) + .. + Exx(t = Tiyy)]
Lo O]+ ey ot =) .+ e [t —hM”]ﬁ
-Gx (t) 5”S§t ” f(t)]
< (ko — ao = g)|x(®)|ls(#)]| + (ky = ey |e(t =y s (D)
ot (ky =) x(t =T[5 = (6 = fo)[s(1)
Since (24), (25) hold, then (27) reduces to:
V =s"(t)(CB)4(t) <~(6 - fo)|s(t)] < —ns(2)| (28)
where
n=06-fy=0 (29)
Hence we can evaluate that
V() <-n |2~ V(1) (30)

ﬂmin (CB )_1
The last inequality (30) is known to prove the finite-time convergence of system (1), (4)

towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore,
Theorem 2 is proved.

4.3 Numerical examples and simulation
In order to demonstrate the usefulness of the proposed control design techniques let us
consider the following examples.
Example 1: Consider a networked control time-delay system (1), (4) with parameters
taking from (Cao et al., 2007):

4 0 15 0 2
Ao{—l —3}"%{—1 —0.5}’3{2} b
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AA, =0.5sin(t)A, ,4A; =0.5cos(t)A,, f =0.3sin(t)

The LMI stability and sliding mode existence conditions are computed by MATLAB

programming (see Appendix 1) where LMI Control Toolbox is used. The computational
results are following:

1.0866 1.0866 01811 0.1811
AOhat = - Alhat =
1.9134 -1.9134 03189 -0.3189
_ 30000 -15000] -3.0000
Gl1=[ 09567 1.2933]; AOtil = ; eigAOtil =
0.0000 -4.5000 _4.5000
: 000007 | 0.0000
eigAOhat = ; eigAlhat =
3.0000 20,5000
18137 0.0020 -01392 0.1392 .0448
0.0020 -1.7813 01382 -0.1382 | 17950
ths =1 01300 01382 17364 00010 | €8SLHS=| o)
01392 -0.1382 0.0010 -1.7202 1.4843

4

p 0.6308 -0.0782 ) 0.3660
= ; e =
-0.0782  0.3891 8 0.6539

1.7364 -0.0010 ) 1.7202
R1 = ; eigR1 =
-0.0010 1.7202 1.7365

BTP= [1.1052 0.6217]; BTPB= 3.4538

invBTPB = 0.2895; normG1 = 1.6087
k0=2.1087; k1=0.5; 6 >0.3; H<O0;

The networked control time-delay system is robustly asymptotically delay-independent
stable.

Example 2: Consider a time-delay system (1), (4) with parameters:

-1 0.7 0.1 01 02 0 1
AO = ’Al = , A2 = ,B =
03 1 0 02 0 01 1

hl = 0.1 ’ h2 = 0.2 (32)
AA. = 0.2sin(t) 0 AA. = 0.1cos(t) 0 Aal - 0.2 cos(t) 0
o710 01sin(t)|""* 7| 0 02cos(t)|”" 27| 0 0.1cos(t) |

Matching condition for external disturbances is given by:

1
D=BE= |:1:|0.2COS t; f(t)=0.2cost

The LMI stability and sliding mode existence conditions are computed by MATLAB

programming (see Appendix 2) where LMI Control Toolbox is used. The computational
results are following:
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7

0.9053 0.2089 |’ 0.0696 0.0696 -0.1393  0.0696
Geq =[0.6964 0.3036]; G =[-4.5759 12.7902]

-0.3947 -0.0911 -0.0304 -0.0304 0.0607 -0.0304
AQhat = : Alhat = :A2hat =

_ 41812 -12.8812| | , -4.2000 + 0.6000i
AOtil = ; eigAOtil = )
5.4812 -12.5812 -4.2000 - 0.6000i
. -0.1858 | 0 ) 0.0000
eigAOhat = ; eigAlhat = ; eigA2hat =
0.0000 0.0393 0.1304
[ -0.7085 -0.5711 -0.0085 -0.0085 0.0169 -0.0085 ] [ -1.3581 |
-0.5711 -0.8257 0.0084 0.0084 -0.0167 0.0084 -1.3578
-0.0085 0.0084 -1.0414 -0.2855 0 0 , -1.3412
lhs = ; eigsLHS =
-0.0085 0.0084 -0.2855 -1.1000 0 0 -0.7848
0.0169 -0.0167 0 0 -1.0414 -0.2855 -0.7837
| -0.0085 0.0084 0 0 -0.2855 -1.1000 | | -0.1916 |

4

| 20633 07781 . _ | 01438| __ | 1.0414 02855| | 1.0414 0.2855
0.7781 0.4592 - 2.3787 0.2855 1.1000 | 0.2855 1.1000

) 0.7837 | 0.7837
eigR1 = ; eigR2 =
1.3578 1.3578

BTP = [ 28414 1.2373]; BIPB= 4.0788

invBTPB = 0.2452; normG = 13.5841
ay=02; a;=02; a,=02; d=max|D|=0.2; f, =max|f(t)|=0.2828;

k0=13.7841; k1=0.2; k2=0.2; ¢ >0.2828; H< 0;
Thus, we have designed all the parameters of the combined sliding mode controller.
Aircraft control design example 3: Consider the lateral-directional control design of the DC-
8 aircraft in a cruise-flight configuration for M = 0.84, h = 33.000ft, and V = 825ft/s with
nominal parameters taken from (Schmidt, 1998):

il [-0.228 2148 -0.021 00 ][r] [-1.169 0.065
B 1.0 -0.0869 0.0 0.0390| 8| [0.0223 0.0 [[5,
pl 0335 4424 -1184 00 | p "l0.0547 2120 [5j
¢ 0.0 0.0 1.0 00 | ¢ 0.0 0.0

(33)

where f is the sideslip angle, deg., p is the roll rate, deg/s, ¢ is the bank angle, deg., r is
the yaw rate, deg/s, o, is the rudder control, ¢,is the aileron control. However, some small
transient time-delay effect in this equation may occur because of influence of sideslip on
aerodynamics flow and flexibility effects of aerodynamic airframe and surfaces in lateral-
directional couplings and directional-lateral couplings. The gain constants of gyro, rate gyro
and actuators are included in to lateral directional equation of motion. Therefore, it is
assumed that lateral direction motion of equation contains some delay effect and perturbed
parameters as follows:
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0 0 -0.002 0.0
0 0 0.0 0.004
A= (34)
0.034 -0.442 0 0
0.0 0.0 0 0

AA, =0.1Aysin(t), 4A; =0.1A;cos(t), D=1,; f=0.2sin(t); h; =0.01-0.04s

The LMI stability and sliding mode existence conditions are computed by MATLAB
programming (see Appendix 3) where LMI Control Toolbox is used. The computational
results are following:

[-0.0191 -0.0008 0.0000 0.0007 -0.0000 0.0000 -0.0000 0.0001
-1.0042 -0.0434 0.0003 0.0390 -0.0000 0.0003 -0.0000 0.0040
AQhat = ; Alhat =
0.0006 0.0000 -0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000
| 0 0 1.0000 0 0 0 0 0
G = [-0.8539 0.0163 0.0262 0 . _1-0.5925 0.0890 0.1207 0.0501
| 0.0220 -0.0001 0.4710 0 ’ 0.0689 -0.0086 0.3452 0.0485

07162 01038 01187 0.0561
g < | 09910 -0.0454 -0.0024  0.0379
"7 101130 0.0134 -0.7384 -0.1056

0 0 1.0000 0
eigAOtil = [-0.5+0.082i -0.5-0.082i -0.3 -0.2]
eigAOhat = [-0.0621 -0.0004 -0.0000 -0.0000]

0.2577

-0.0000 + 0.0000i
-0.0000 - 0.00001
0

72.9293 39.4515 -2.3218 24.7039 |
39.4515 392.5968 10.8368 -1.4649 | |
P= ; eigP= [57.3353 66.3033 397.7102 402.2156]
-2.3218 10.8368 67.2609 -56.4314

24.7039 -1.4649 -56.4314 390.7773 |

52.5926 29.5452 0.3864 2.5670 |
29.5452 623324 3.6228 -0.4852 | .
R1= ; eigR1 = [21.3032 27.3683 86.9363 88.9010]
0.3864 3.6228 48.3292 -32.7030

2.5670 -0.4852 -32.7030 61.2548 |

BTP = -84.5015 -36.7711 6.6350 -31.9983
-0.1819 25.5383 142.4423 -118.0289

eigAlhat = 1.0e-003 *

BTPB = {

98.3252 85737 ) 0.0102 -0.0003
; invBTPB =
8.5737 301.9658 -0.0003 0.0033
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-41.4566 -29.8705 -0.6169 -2.3564 -0.0008 0.0105 -0.0016 0.1633
-29.8705 -51.6438 -3.8939 0.8712 -0.0078 0.1015 -0.015 1.5728
-0.6169 -3.8939 -38.2778 32.1696 -0.0002 0.0028 -0.0004 0.043
-2.3564 0.8712 321696 -51.6081 0  -0.0002 0  -0.0038
-0.0008 -0.0078 -0.0002 O -52.593 -29.545 -0.3864 -2.567
0.0105 0.1015 0.0028 -0.0002 -29.545 -62.333 -3.6228 0.4852
-0.0016 -0.015 -0.0004 O -0.3864 -3.6228 -48.33 32.703
10.1633  1.5728 0.043 -0.0038 -2.567 0.4852 32.703 -61.255 |

gnorm = 0.8545lhs =

-88.9592 |
-86.9820
-78.9778
-75.8961
-27.3686
-21.3494
-16.0275
-11.9344

eigsLHS =

k0=1.0545; k1=0.5; § >20.2; H<O0;

Thus, we have designed all the parameters of the aircraft control system and the uncertain
time-delay system (1), (4) with given nominal (33) and perturbed (34) parameters are
simulated by using MATLAB-SIMULINK. The SIMULINK block diagram of the uncertain
time-delay system with variable structure contoller (VSC) is given in Fig. 1. Simulation
results are given in Fig. 2, 3, 4 and 5. As seen from the last four figures, system time
responses to the rudder and aileron pulse functions (0.3 within 3-6 sec) are stabilized very
well for example the settling time is about 15-20 seconds while the state time responses of
aircraft control action as shown in Fig. 5 are unstable or have poor dynamic characteristics.
Notice that, as shown in Fig. 4, control action contains some switching, however it has no
high chattering effects because the continuous terms of controller are dominant.

Numerical examples and simulation results show the usefulness and effectiveness of the
proposed design approach.

5. Robust delay-dependent stabilization

In this section, the existence condition of the sliding manifold and delay-dependent stability
analysis of perturbed sliding time-delay systems are presented.

5.1 Robust delay-dependent stabilization on the sliding surface

In this section the sliding manifold is designed so that on it or in its neighborhood in
different from existing methods the perturbed sliding time-delay system (16) is globally
asymptotically stable with respect to state coordinates. The stability results are formulated
in the following theorem.
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Fig. 1. SIMULINK block diagram of uncertain time-delay system with VSC
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Fig. 5. States’ time responses without control

Theorem 3: Suppose that Assumption 1 holds. Then the transformed multivariable
sliding time-delay system (16) with matched parameter perturbations and external
disturbances driven by combined controller (4) and restricted to the sliding surface
s(t)=0 is robustly globally asymptotically delay-dependent stable with respect to the
state variables, if the following modified LMI conditions and parameter requirements

are satisfied:

H,, -PAA, -PA?
hl
* 0 _i Sl
h,
* 0 0
H=
* 0 0
*
0
0
0
0 0 0
where

-PA,Ay -PAyA, -PAyA, -PA% 0
0 0 0 0
0
0
g,
hN
0
1
=Sy |0
hl
0 0
0 0
0 0 0 0 0

0

<0 (35)

Hy = Ay + A+ +AL)"P+P(A) + A +..+Ay) +hy(S; + R, )+..+hy Sy + Ry )+ T, +...+ Ty
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5> f, (38)

where P,Ry,...Ry are some symmetric positive definite matrices which are a feasible
solution of modified LMI (35) with (36); A, = A, —BG is a stable matrix.
Proof: Let us choose a special augmented Lyapunov-Krasovskii functional as follows:

0 t
szT(t)Px(t)+§: [ [ x"()Rix(p)dp do
0 =l.p, t+0 (39)
|
1_p,

t N
I L (p)Sx(p)dp d0+z I x"(0)T.x(0)d6
i= 0-h; i=1¢—p,

t+

The introduced special augmented functional (39) involves three particular terms: first term
Vi is standard Lyapunov function, second and third are non-standard terms, namely V, and
V3 are similar, except for the length integration horizon [t-h, t] for V; and [t+0-h, t] for V3
respectively. This functional is different from existing ones.

The time-derivative of (39) along the perturbed time-delay system (16) can be calculated as:

1% =xT(t)[(A0 + A ..+ AG) P+ P(Ay+ A +...+ Ay)

+h1(S;+ Ry) + ..+ Iy (Sy + Ry) + Ty + ...+ Tyyx(1)]
L t _ t o t
“2x" ()PA Ay | x(0)d0-2x" (H)PAT [ x(0—hy)d0~...-2x" (PA Ay [ x(6—hy)do
t-h t—h t—h
_ t _ t _ t
—.=2x" (OWPANA, | x(0)d0-2x"(HPANA, | x(0-hy)do—..—2x" ()PAT [ x(0-hy)do
t=hy t=hy t=hy
t t
hy [ xT(0)Ry x(0)d0- .- hy [ x"(6 )Ry x(0 )do
!

t—hy t-hy
t t (40)
T
hy [ X701y ), K(O0-hy )dO-..-hy [ xT(0-hy )Sy x(0-hy )0
t—hy t=hy

T (t =) Tyx(t = hy) = x7 (8= Iy ) Ty x(t = )

+2x" () PAAX(t = Ty) + oo+ 22T (H)PAANX(t — hy) = 2x" () PBky [x ()] + Ky [x(t = hy)|

otk [t = )19~ 2T (1yPBs )4 T (5)PD
oo F N”x(t ” " ( )” ||S(t)||+x (t) f(t)

Since for some h>0 Noldus inequality holds:

(41)

T
hy [ xT(0-hy )Sy x(0-hy )de{ [ x(H—hN)dH} SN{ [ x(@—hN)d0]
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and x' (t)PB=5s"(t) then (40) becomes as:

1% SxT(t)[(AO + AL+ A P+ P(Ay+ Ay +..+ Ay) + 1y (S + Ry + ..+ 1y (Sy + Ry ) + T, +...+TNJx(t)

t
—2xT ()PA, A, j 0)d0 - 2x" (t)PAT | x(0—1y)do
t=hy t—hy

t
--2xT (H)PA, Ay j (0—hy)do- .- 2x" () PALA, [ x(0)do
t—hy t=hy

t—hy 1] t-n

T
“2x" ()PANA, [ x(0—h)d0-...-2x" (HPAY | x(e-hN)de—hi[ | x(H)dH} Rll [ x(e)am]
t=hy

T T
-1 [ x(9)d9} RN[ [ x(@)d@} -l[ | x(@hl)dé’] 51[ [ x(ehl)w]
N| t-hy t—hy h t—h, t—h,
t T t
hi{ | x(e—hN)aw] sN[ [ x(H—hN)dé’]—xT(t—hl)Tlx(t—hl)—xT(t—hN)TNx(t—hN)
N | t-hy t—hy

+2x" ())PBEyx(t — hy ) + ...+ 2x" () PBEyx(t — hy) — 2x" () PB[ ko |x(B)]| + Ky [x(t = Iy)|

b ey [t =Ty ||]|| t)” 2xT(t)p35”z§2”+xT(t)PBEf(t)

xT(t)[(AO + A+t A P+P(Ag+ Ay + .+ Ay)+hy(S; + R + .+ Iy (Sy + Ry )+ Ty +.+ Ty ] x(8)

t t t
—2x"()PA A, [ x(0)d0-2x" ()PAT | x(0—hy)d0-...-2x" ())PA Ay [ x(0—hy)d0

t—h, t—hy t—h,

t t t
-..-2x" (OYPANA, | x(0)d0-2x" ()PANA, [ x(0—h;)d0-..-2x" ()PAY, | x(6-hy)do

t—hy t—hy t—hy

- T T
—hl [ x(@)d@] R{ [ x(@)d&]..hi[ [ x(H)d&} RN! [ x(0)do
1| t-n t—hy t—hy t—hy

~ T
_hl_l [ x(0-n) d@] [jxe hy) d&} hi{ J x(ehw)de} SNLI x(‘ghN)dH]

t—hy t—hy N | t—hy ~hy

—xT(t = Tyx(t = hy) = xT (8= by )Ty (t =y ) + 25T (D)Eyx(t=hy) + ... + 25(8) Enx(t — )
s(t)

0] (DEF (D)

t
-2s (t)l:ko ”x ||+k1 ||x t— h1)||+ +kN ”x t— hN ”]” —2§ST(t) ”52 ) +ST

s(t)|

t t t

:{x(t) [ x(0)do jx(e-hl)de [ x(@-hy)do | x(0)de jx(e—hl)da [ x(0-hy)do x(t-y) x(t-hN)}

—hy t—hy t—hy t=hy t=hy t—=hy
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x(t)
t
i __ -, __ o -, A | xe)de
H,, -PA,A, -PA?> .. -PAAy -PAyA, -PAyA, ... -PA}, 0 0 0 0 h
1 t
1 t=h,
x 0 -—5 0 0 0
h
1 t
0 0 0 0 O 1l [ x(6-hy)do
* 0 0 _ LR, 0 o | "™
hy L
x 0 0 0 0 0 ! x(0)do
t—h
* 0 0 0 0 o , "
0 0 | [ x(6-nh)d6
1 t=hy
* 0 0 ~—=S, 0 0 0 0
hl
t
0 0 0 0 0-T, 0 0 [ (0o
0 0 0 0 0 0 0 |,
0 0 0 0 0 0 0 0 0 0 0 -Ty| x(t-hy)
x(t-hy)

(ko = o) [x ()] [s(B)] + Cey = ey )[e(t = B[l (B)] + .-+ (g = )t = P [ (O] - (& ~fls0] @)
Since (35)-(38) hold, then (42) reduces to:

V <z' (H)Hz(t) <0 (43)

Therefore, we can conclude that the perturbed time-delay system (16), (4) is robustly
globally asymptotically delay-dependent stable. Theorem 3 is proved.
Special case: Single state-delayed systems: For single state-delayed systems that are
frequently encountered in control applications and testing examples equation of motion
and control algorithm can be easily found from (1), (4), (16) letting N=1. Therefore, the
modified LMI delay-dependent stability conditions for which are significantly reduced
and can be summarized in the following Corollary.
Corollary 1: Suppose that Assumption 1 holds. Then the transformed single-delayed
sliding system (16) with matched parameter perturbations and external disturbances
driven by combined controller (4) for which N=1 and restricted by sliding surface s(t)=0
is robustly globally asymptotically delay-dependent stable with respect to the state
variables, if the following LMI conditions and parameter requirements are satisfied:

R o }

(Ag+4) P+P(Ay+A) —P;H/_lo —PZ% 0

+h (51 +R)+ T
S 1
~(PAAp)" -—R 0 0 (44)
H = hy <0
—(PAHT 0 —is1 0
hl
| 0 0 0 -T
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CB=B'PB>0 (45)

ko = agiky = ay; (46)

5> f, (47)

Proof: The corollary follows from the proof of the Theorem 3 letting N=1.

5.2 Existence conditions
The final step of the control design is the derivation of the sliding mode existence conditions
or the reaching conditions for the perturbed time-delay system states to the sliding manifold
in finite time. These results are summarized in the following theorem.
Theorem 4: Suppose that Assumption 1 holds. Then the perturbed multivariable time-
delay system (1) states with matched parameter uncertainties and external disturbances
driven by controller (4) converge to the siding surface s(t)=0 in finite time, if the
following conditions are satisfied:

kO :ao +g;k1 =a1;...,kN =0(N,' (4:8)
52 f, (49)

Proof: Let us choose a modified Lyapunov function candidate as:
V= %ST(t)(CB)_ls(t) (50)

The time-derivative of (50) along the state trajectories of time-delay system (1), (4) can be
calculated as follows:
V =s" (t)(CB)'s(t) =s" (+)(CB) ' Ci(t) =s" (t)(CB) ' C[Agx(t) + Ayx(t —y)
.+ Anx(t—hy) + AApx(t) + AAx(t —hy)+...+ AAnx(t —hy ) + Bu(t) + Df(t)]
=" (t)(CB) '[CApx(t) + CAyx(t — hy) + ...+ CAyx(t — ) + CBEx(t) + CBE x(t — ;)
+..+CBEyx(t —hy) - CB((CB)_1 [CAGx(t) + CAx(t —h) +...+ CAyx(t —hy)]

[k [+ e = ) e + e et - muﬁ_ Gx(t)-6 ”zg;”] +CBEf(t)] (1)

=5 (1)[Egx(t) + Eqx(t =y ) + ...+ Exx(t — hy)

[k e+ (e = ) o + ey ||x(t—hN)||}ﬁ—Gx(t)—5”222” ~Ef(1)]

< (ko ~ a0 = &) [x(Ds(] + (ks =)t =R [s(8)]
+ et (ky = a)x(t =) [ls (1= (5 = fo) st
Since (48), (49) hold, then (51) reduces to:

V =" (1)(CB)4(t) < ~(8 — fo)s(8)] < —n1]s(8)] (52)
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where
n=06-f,20 (53)
Hence we can evaluate that
. 2
Vi)Y —n [————— V(¢ 54
=1 — VO 69

The last inequality (54) is known to prove the finite-time convergence of system (1),(4)
towards the sliding surface s(t)=0 (Utkin, 1977), (Perruquetti & Barbot, 2002). Therefore,
Theorem 4 is proved.

5.3. Numerical examples
In order to demonstrate the usefulness of the proposed control design techniques let us
consider the following examples.
Example 4: Consider a time-delay system (1),(4) with parameters taken from (Li & De
Carlo, 2003):

2 0 1 -1 0 0 0
Ay=|175 025 08;A;=|-01 025 02[;B=|0};
-1 0 1 02 4 5 1

AA, =0.2sin(t)A, ,4A; =0.2cos(t)A;, f =0.3sin(t)

The LMI delay-dependent stability and sliding mode existence conditions are computed by
MATLAB programming (see Appendix 4) where LMI Control Toolbox is used. The
computational results are following:

[ 1.2573 25652 1.0000]

Geq =
2.0000 0 1.0000 -1.0000 0 0
AOhat = 1.7500 0.2500 0.8000 |; Alhat=| -0.1000 0.2500 0.2000
-7.0038 -0.6413 -3.3095 1.5139 -0.6413 -0.5130

-0.5298 + 0.5383i
eigAOhat = | -0.5298 - 0.5383i |; eigAlhat=[ -0.2630 -0.0000 -1.0000]
0.0000

G=[3.3240 10.7583 3.2405]; Geq=[1.2573 2.5652 1.0000]

2.0000 0 1.0000 -2.7000
AQtil = 1.7500 0.2500 0.8000 |; eigAOtil= | -0.8000 + 0.5000i
-10.3278 -11.3996 -6.5500 -0.8000 - 0.50001
1.1943 -1.1651 0.1562 1.9320 0.2397 0.8740
P= 1.0e+008 *| -1.1651 4.1745 0.3597 |;R1= 1.0e+008*| 0.2397 1.0386 0.2831
0.1562 0.3597 0.1248 0.8740 0.2831 0.4341
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0.8783 0.1869 0.2951 2.3624 -0.7303 0.7264
S1= 1.0e+008 *| 0.1869 1.0708 0.2699 | ; T1 = 1.0e+007 *| -0.7303 7.5758 1.1589
0.2951 0.2699 0.1587 0.7264 1.1589 0.4838

lhs = 1.0e+008 *

[-1.1632 0.4424 -0.1828 0.1743 -0.1030 0.1181 -0.4064-0.1030 -0.0824 0 0 0
0.4424 -1.6209 -0.1855 0.5480 0.2138 0.2098 0.3889 0.2138 0.1711 0 0 0
-0.1828 -0.1855 -0.0903 0.0445 0.0026 0.0215 -0.0142 0.0026 0.0021 0 0 0
0.1743 0.5480 0.0445 -1.9320 -0.2397 -0.8740 0 0 0 0 0 0
-0.1030 0.2138 0.0026 -0.2397 -1.0386 -0.2831 0 0 0 0 0 0
0.1181 0.2098 0.0215 -0.8740 -0.2831 -0.4341 0 0 0 0 0 0
-0.4064 0.3889 -0.0142 0 0 0 -0.8783 -0.1869 -0.2951 0 0 0
-0.1030 0.2138 0.0026 0 0 0 -0.1869 -1.0708 -0.2699 0 0 0
-0.0824 0.1711 0.0021 0 0 0 -0.2951 -0.2699 -0.1587 0 0 0
0 0 0 0 0 0 0 0 0 -0.2362 0.0730 -0.0726
0 0 0 0 0 0 0 0 0 0.0730 -0.7576 -0.1159
0 0 0 0 0 0 0 0 0 -0.0726 -0.1159 -0.0484 |
[ -2.8124
-2.0728
-1.0975
-0.9561
-0.8271
) -0.7829
maxhl =1; eigsLHS =1.0e+008 * ; NormP = 4.5946e+008
-0.5962
-0.2593
-0.0216
-0.0034
-0.0000
| -0.0000 |

G =[3.3240 10.7583 3.2405]; NormG = 11.7171

invBtPB = 8.0109e-008; BtP = 1.0e+007 *[ 1.5622 3.5970 1.2483]

0.0162 0.0070
eigP =1.0e+008 *| 0.8828 |; eigR1 = 1.0e+008 *| 0.9811
4.5946 24167
0.0159 0.0000
eigS1 = 1.0e+008 *| 0.7770 | ; eigT1 = 1.0e+007 *| 2.5930
1.3149 7.8290
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k0=11.9171; k1=0.2; § >0.3; H<0

Considered time-delay system is delay-dependently robustly asymptotically stable for all
constant delays h<1.
Example 5: Now, let us consider a networked control time-delay system (1), (4) with
parameters taken from (Cao et al., 2007):

-4 0 -1.5 0 2
AO = ,Al S /B = ;
-1 -3 -1 05 2
AA, =0.5sin(t) A, ,4A; =0.5cos(t)A;, f =0.3sin(t)

The LMI delay-dependent stability and sliding mode existence conditions are computed by
MATLAB programming (see Appendix 5) where LMI Control Toolbox is used. The
computational results are following:

maxhl = 2.0000; Geq =[ 0.4762 0.0238]

-0.1429 0.1429 |

AOQhat =
2.8571 -2.8571

-0.0238 0.0238
; Alhat =

0.4762 -0.4762

-0.0000 |

-3.0000 | -0.5000

eigAOhat = {

) -0.0000
; eigAlhat =

) -4.1429 -0.0571 . ) -4.2000
AOtil = ; eigAOtil =

-1.1429 -3.0571 -3.0000

5.7534 -0.1805

P =1.0e+004 *
-0.1805 0.4592

8.4457 -0.2800
; R1 =1.0e+004 *

-0.2800 0.6883

7.7987 0.2729

0.2729 0.1307

S1 =1.0e+004 *
0.3390 0.0170

6.7803 0.3390
; T1 =1.0e+004 *

lhs = 1.0e+004 *

[-8.4351 1.2170 -0.6689 0.6689 -0.1115 0.1115
1.2170 -1.5779 0.6689 -0.6689 0.1115 -0.1115

o © O O o
o © O O o

-0.6689 0.6689 -4.2228 0.1400 0 0

0.6689 -0.6689 0.1400 -0.3442 0 0

-0.1115 0.1115 0 0 -3.8994 -0.1364

0.1115 -0.1115 0 0 -0.1364 -0.0653 0 0
0 0 0 0 0 0 -6.7803 -0.3390
0 0 0 0 0 0 -0.3390 -0.0170 |
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-8.8561 |
-6.7973
-4.1971
-3.9040
-1.4904
-0.0971
-0.0000
-0.0000

eigsLHS = 1.0e+004 * ; NormP =5.7595e+004; G =[ 2.0000 0.1000]

NormG = 2.0025; invBtPB = 4.2724e-006; BtP = 1.0e+005 *[1.1146 0.0557]

0.4530

5.7595

eigsP = 1.0e+004 *
8.4558

. 0.6782
; eigsR1 = 1.0e+004 *

0.1210

eigsS1 = 1.0e+004 *
7.8084

) 0.0000
; eigsT1 =1.0e+004 *

6.7973

k0= 2.5025; k1=0.5; 6 >20.3; H<O0

The networked control time-delay system is robustly asymptotically delay-dependent stable
for all constant time-delays & <2.0000 .

Thus, we have designed all the parameters of the combined sliding mode controller.
Numerical examples show the usefulness of the proposed design approach.

6. Conclusion

The problem of the sliding mode control design for matched uncertain multi-input systems
with several fixed state delays by using of LMI approach has been considered. A new
combined sliding mode controller has been proposed and designed for the stabilization of
uncertain time-delay systems with matched parameter perturbations and external
disturbances. Delay-independent and delay-dependent global stability and sliding mode
existence conditions have been derived by using Lyapunov-Krasovskii functional method
and formulated in terms of linear matrix inequality techniques. The allowable upper bounds
on the time-delay are determined from the LMI stability conditions. These bounds are
independent in different from existing ones of the parameter uncertainties and external
disturbances.

Five numerical examples and simulation results with aircraft control application have
illustrated the usefulness of the proposed design approach.

The obtained results of this work are presented in (Jafarov, 2008), (Jafarov, 2009).

7. Appendices
A1

clear;
clc;
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A0=[-4 0;-1 -3];
A1=[-150;-1 -0.5];

B=[2; 2]

setlmis([])

P =Imivar(1,[2 1]);
R1=Imivar(1,[2 1]);
Geq=inv(B"*P*B)*B"*P
AOhat=A0-B*G*A0
Alhat=A1-B*G*Al

G= place(AOhat,B,[-4.5 -3])
AOtil=AOhat-B*G1
eigAOtil=eig(AOtil)
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)

ii=1;

Imiterm([-1 1 1 PJ,ii,ii)
Imiterm([-2 1 1 R1],ii,ii)
Imiterm([4 11 P],1,A0til','s")
Imiterm([4 1 1 R1],i,ii)
Imiterm([4 2 2 R1],-ii,ii)
Imiterm([4 1 2 P],1,Alhat)
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs

P

eigP=eig(P)

R1

eigR1=eig(R1)
eigsLHS=eig(lhs)

BTP=B"*P

BTPB=B"*P*B
invBTPB=inv(B"*P*B)

% recalculate
Geq=inv(B"*P*B)*B"*P
AOhat=A0-B*G*A0
Alhat=A1-B*G*Al

G= place(AOhat,B,[-4.5 -3])
AOtil=AOhat-B*G1
eigAOtil=eig(AOtil)
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)
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ii=1;

setlmis([])

P =lmivar(1,[2 1]);
R1=Imivar(1,[2 1]);
R2=Imivar(1,[2 1]);
Imiterm([-1 1 1 PJ,ii,ii)
Imiterm([-2 1 1 R1],ii,ii)
Imiterm([4 11 P],1,A0til','s")
Imiterm([4 1 1 R1],i,ii)
Imiterm([4 2 2 R1],-ii,ii)
Imiterm([4 1 2 P],1,Alhat)
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs

P

eigP=eig(P)

R1

eigR1=eig(R1)
eigsLHS=eig(lhs)

BTP=B"*P

BTPB=B"*P*B
invBTPB=inv(B"*P*B)
normGl1 = norm(G1)

A2

clear;

clc;

A0=[-10.7; 0.31];
A1=[-0.10.1;00.2];
A2=[0.20;00.1];
B=[1; 1]

setlmis([])

P =Imivar(1,[2 1]);
R1=Imivar(1,[2 1]);
R2=Imivar(1,[2 1]);
Geq=inv(B"*P*B)*B"*P
AOhat=A0-B*G*A0
Alhat=A1-B*G*Al
A2hat=A2-B*G*A2
G= place(AOhat,B,[-4.2-.6i -4.2+.6i])
AOtil=AOhat-B*G1
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eigAOtil=eig(AOtil)
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)
eigA2hat=eig(A2hat)

ii=1;

Imiterm([-1 1 1 P],ii,ii)
Imiterm([-2 1 1 R1],ii,ii)
Imiterm([-3 1 1 R2],ii,ii)
Imiterm([4 11 P],1,A0til','s")
Imiterm([4 1 1 R1],i,ii)
Imiterm([4 1 1 R2],ii,ii)
Imiterm([4 2 2 R1],-ii,ii)
Imiterm([4 1 2 P],1,Alhat)
Imiterm([4 1 3 P],1,A2hat)
Imiterm([4 3 3 R2],-ii,ii)
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
R2=dec2mat(LMISYS,xopt,R2);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs

eigsLHS=eig(lhs)

P

eigP=eig(P)

R1

R2

eigR1=eig(R1)
eigR2=eig(R2)

BTP=B"*P

BTPB=B"*P*B
invBTPB=inv(B"*P*B)

% recalculate
Geqg=inv(B"*P*B)*B"*P
AOhat=A0-B*G*A0
Alhat=A1-B*G*Al
A2hat=A2-B*G*A2

G= place(AOhat,B, [-4.2-.6i -4.2+.6i])
AOtil=AOhat-B*G1
eigAOtil=eig(AOtil)
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)
eigA2hat=eig(AZ2hat)

ii=1;

www.intechopen.com



Robust Delay-Independent/Dependent Stabilization of
Uncertain Time-Delay Systems by Variable Structure Control

189

setlmis([])

P =Imivar(1,[2 1]);
Rl=Imivar(1,[2 1]);
R2=Imivar(1,[2 1]);
Imiterm([-1 1 1 PJ,ii,ii)
Imiterm([-2 1 1 R1],ii,ii)
Imiterm([-3 1 1 R2],ii,ii)
Imiterm([4 11 P],1,A0til','s")
Imiterm([4 1 1 R1],i,ii)
Imiterm([4 1 1 R2],ii,ii)
Imiterm([4 2 2 R1],-ii,ii)
Imiterm([4 1 2 P],1,Alhat)
Imiterm([4 1 3 P],1,A2hat)
Imiterm([4 3 3 R2],-ii,ii)
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
R2=dec2mat(LMISYS,xopt,R2);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs

eigsLHS=eig(lhs)

P

eigP=eig(P)

R1

R2

eigR1=eig(R1)
eigR2=eig(R2)

BTP=B"*P

BTPB=B"*P*B
invBTPB=inv(B"*P*B)
normGl1 = norm(G1)

A3
clear;
clc;

A0=[-0.228 2.148 -0.0210; -1 -0.0869 0 0.039; 0.335-4.424 -1.184 0;
Al=[0 0 -0.0020, 0O O O 0.004; 0.034-0442 0 O;

B =[-1.169 0.065; 0.02230; 0.05472.120; 0 0];
setlmis([])

P =Imivar(1,[4 1]);

R1=Imivar(1,[4 1]);

G=inv(B"*P*B)*B"*P

AOhat=A0-B*G*A0
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Alhat=A1-B*G*Al

G1= place(AOhat,B,[-.5+.082i -.5-.082i -.2 -.3])
AOtil=AOhat-B*G1
eigAOtil=eig(AOtil)
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)

%break

ii=1;

Imiterm([-1 1 1 P],ii,ii)
Imiterm([-2 1 1 R1],ii,ii)
Imiterm([4 11 P],1,A0til','s")
Imiterm([4 1 1 R1],ii,ii)
Imiterm([4 2 2 R1],-ii,ii)
Imiterm([4 1 2 P],1,Alhat)
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs

P

eigP=eig(P)

R1

eigR1=eig(R1)
eigsLHS=eig(lhs)

BTP=B"*P

BTPB=B"*P*B
invBTPB=inv(B"*P*B)
gnorm=norm(G)

Ad

clear;

clc;
A0=[201;1.750.250.8;-101]
A1=[-100;-0.10.250.2;-0.2 4 5]
B =[0;0;1]

%break

h1=1.0;

setlmis([]);

P=Imivar(1,[3 1]);
Geq=inv(B"*P*B)*B"*P
AOhat=A0-B*Geq*A0
Alhat=A1-B*Geq*Al
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)
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DesPol = [-2.7 -.8+.5i -.8-.5i];
G= place(AOhat,B,DesPol)
AOtil=AOhat-B*G
eigAOtil=eig(AOtil)
R1=Imivar(1,[3 1]);
S1l=lmivar(1,[3 1]);
T1=Imivar(1,[3 1]);
Imiterm([-111 P],1,1);
Imiterm([-1 2 2 R1],1,1);
Imiterm([-2 11 S1],1,1);
Imiterm([-311 T1],1,1);
Imiterm([4 1 1 P],(AOtil+A1lhat)',1,'s");
Imiterm([4 11 S1],h1,1);
Imiterm([4 11 R1],h1,1);
Imiterm([4 11 T1],1,1);
Imiterm([4 1 2 P],-1,Alhat*AOhat);
Imiterm([4 1 3 P],-1,Alhat*Alhat);
Imiterm([4 2 2 R1],-1/h1,1);
Imiterm([4 3 3 S1],-1/h1,1);
Imiterm([4 4 4 T1],-1,1);
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
S1=dec2mat(LMISYS,xopt,S1);
T1=dec2mat(LMISYS,xopt,T1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs,h1,P,R1,51,T1
eigsLHS=eig(lhs)

% repeat

clc;

Geqg=inv(B"*P*B)*B"*P
AOhat=A0-B*Geq*A0
Alhat=A1-B*Geq*Al
eigAQhat=eig(AOhat)
eigAlhat=eig(Alhat)

G= place(AOhat,B,DesPol)
AOtil=AOhat-B*G
eigAOtil=eig(AOtil)

setlmis([]);

P=Imivar(1,[3 1]);
R1=Imivar(1,[3 1]);
S1=Imivar(1,[3 1]);
T1=Imivar(1,[3 1]);
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Imiterm([-111P],1,1);
Imiterm([-1 2 2 R1],1,1);
Imiterm([-2 11 S1],1,1);
Imiterm([-311 T1],1,1);
Imiterm([4 1 1 P],(AOtil+A1lhat)',1,'s");
Imiterm([4 11 S1],h1,1);
Imiterm([4 11 R1],h1,1);
Imiterm([4 11 T1],1,1);
Imiterm([4 1 2 P],-1,Alhat*AOQhat);
Imiterm([4 1 3 P],-1,Alhat*Alhat);
Imiterm([4 2 2 R1],-1/h1,1);
Imiterm([4 3 3 S1],-1/h1,1);
Imiterm([4 4 4 T1],-1,1);
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
S1=dec2mat(LMISYS,xopt,S1);
T1=dec2mat(LMISYS,xopt,T1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs,h1,P,R1,51,T1
eigLHS=eig(lhs)
NormP=norm(P)

G

NormG = norm(G)
invBtPB=inv(B"*P*B)

BtP=B"*P

eigP=eig(P)

eigR1=eig(R1)

eigSl=eig(S1)

eigTl=eig(T1)

A5

clear; clc;

AO0=[-4 0;-1 -3];
Al1=[-1.50; -1 -0.5];
B=[2; 2]
h1=2.0000;
setlmis([]);
P=Imivar(1,[2 1]);
Geq=inv(B"*P*B)*B"*P
AQOhat=A0-B*Geq*A0
Alhat=A1-B*Geq*Al
eigAOhat=eig(AOhat)
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eigAlhat=eig(Alhat)

% DesPol = [-.8+.5i -.8-.51]; G= place(AOhat,B,DesPol);
avec = [20.1];

G = aveg;

AOtil=AOhat-B*G1
eigAOtil=eig(AOtil)
R1=Imivar(1,[2 1]);
Sl=lmivar(1,[2 1]);
T1=Imivar(1,[2 1]);
Imiterm([-111 P],1,1);
Imiterm([-1 2 2 R1],1,1);
Imiterm([-2 11 51],1,1);
Imiterm([-311 T1],1,1);
Imiterm([4 1 1 P],(AOtil+A1lhat)',1,'s");
Imiterm([4 11 S1],h1,1);
Imiterm([4 1 1 R1],h1,1);
Imiterm([4 11 T1],1,1);
Imiterm([4 1 2 P],-1,Alhat*AOQhat);
Imiterm([4 1 3 P],-1,Alhat*Alhat);
Imiterm([4 2 2 R1],-1/h1,1);
Imiterm([4 3 3 S1],-1/h1,1);
Imiterm([4 4 4 T1],-1,1);
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
S1=dec2mat(LMISYS,xopt,S1);
T1=dec2mat(LMISYS,xopt,T1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs,h1,P,R1,51,T1
eigsLHS=eig(lhs)

% repeat
Geq=inv(B"*P*B)*B"*P
AOhat=A0-B*Geq*A0
Alhat=A1-B*Geq*Al
eigAOhat=eig(AOhat)
eigAlhat=eig(Alhat)

G = aveg;

AOtil=AOhat-B*G
eigAQtil=eig(AOtil)

setlmis([]);

P=Imivar(1,[2 1]);
R1=Imivar(1,[2 1]);
Sl=lmivar(1,[2 1]);
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T1=Imivar(1,[2 1]);
Imiterm([-111P],1,1);
Imiterm([-1 2 2 R1],1,1);
Imiterm([-2 11 51],1,1);
Imiterm([-3 11 T1],1,1);
Imiterm([4 1 1 P],(AOtil+A1lhat)',1,'s");
Imiterm([4 11 S1],h1,1);
Imiterm([4 11 R1],h1,1);
Imiterm([4 11 T1],1,1);
Imiterm([4 1 2 P],-1,Alhat*AOQhat);
Imiterm([4 1 3 P],-1,Alhat*Alhat);
Imiterm([4 2 2 R1],-1/h1,1);
Imiterm([4 3 3 S1],-1/h1,1);
Imiterm([4 4 4 T1],-1,1);
LMISYS=getlmis;
[copt,xopt]=feasp(LMISYS);
P=dec2mat(LMISYS,xopt,P);
R1=dec2mat(LMISYS,xopt,R1);
S1=dec2mat(LMISYS,xopt,S1);
T1=dec2mat(LMISYS,xopt,T1);
evlmi=evallmi(LMISYS,xopt);
[lhs,rhs]=showlmi(evlmi,4);
lhs,h1,P,R1,51,T1
eigsLHS=eig(lhs)
NormP=norm(P)

G

NormG = norm(G)
invBtPB=inv(B"*P*B)

BtP=B"*P

eigsP=eig(P)

eigsR1=eig(R1)

eigsSl=eig(S1)

eigsT1=eig(T1)

8. References

Utkin, V. L. (1977), Variable structure system with sliding modes, IEEE Transactions on

Automatic Control, Vol. 22, pp. 212-222.

Sabanovic, A.; Fridman, L. & Spurgeon, S. (Editors) (2004). Variable Structure Systems: from
Principles to Implementation, The Institution of Electrical Engineering, London.
Perruquetti, W. & Barbot, J. P. (2002). Sliding Mode Control in Engineering, Marcel Dekker,

New York.

Richard J. P. (2003). Time-delay systems: an overview of some recent advances and open

problems, Automatica, Vol. 39, pp. 1667-1694.

www.intechopen.com



Robust Delay-Independent/Dependent Stabilization of
Uncertain Time-Delay Systems by Variable Structure Control 195

Young, K. K. O,; Utkin, V. I. & Ozgiiner, U. (1999). A control engineer’s guide to sliding
mode control, Transactions on Control Systems Technology, Vol. 7, No. 3, pp. 328-342.

Spurgeon, S. K. (1991). Choice of discontinuous control component for robust sliding mode
performance, International Journal of Control, Vol. 53, No. 1, pp. 163-179.

Choi, H. H. (2002). Variable structure output feedback control design for a class of uncertain
dynamic systems, Automatica, Vol. 38, pp. 335-341.

Jatarov, E. M. (2009). Variable Structure Control and Time-Delay Systems, Prof. Nikos
Mastorakis (Ed.), 330 pages, A Series of Reference Books and Textbooks, WSEAS
Press, ISBN: 978-960-474-050-5.

Shyu, K. K. & Yan, J. J. (1993). Robust stability of uncertain time-delay systems and it’s
stabilization by variable structure control, International Journal of Control, Vol. 57,
pp- 237-246.

Koshkouei, A. J. & Zinober, A. S. 1. (1996). Sliding mode time-delay systems, Proceedings of
the IEEE International Workshop on Variable Structure Control, pp. 97-101, Tokyo,
Japan.

Luo, N.; De La Sen N. L. M. & Rodellar, J. (1997). Robust stabilization of a class of uncertain
time-delay systems in sliding mode, International Journal of Robust and Nonlinear
Control, Vol. 7, pp. 59-74.

Li, X. & De Carlo, R. A. (2003). Robust sliding mode control of uncertain time-delay systems,
International Journal of Control, Vol. 76, No. 1, pp. 1296-1305.

Gouisbaut, F.; Dambrine, M. & Richard, J. P. (2002). Robust control of delay systems: a
sliding mode control design via LMI, Systems and Control Letters, Vol. 46, pp. 219-
230.

Fridman, E.; Gouisbaut, F.; Dambrine, M. & Richard, J. P. (2003). Sliding mode control of
systems with time-varying delays via descriptor approach, International Journal of
Systems Science, Vol. 34, No. 8-9, pp. 553-559.

Cao, J.; Zhong, S. & Hu, Y. (2007). Novel delay-dependent stability conditions for a class of
MIMO networked control systems with nonlinear perturbation, Applied Mathematics
and Computation, doi: 10.1016/j, pp. 1-13.

Jafarov, E. M. (2005). Robust sliding mode controllers design techniques for
stabilization of multivariable time-delay systems with parameter perturbations
and external disturbances, International Journal of Systems Science, Vol. 36, No. 7,
pp. 433-444.

Hung, J. Y; Gao, & Hung, W. J. C. (1993). Variable structure control: a survey, IEEE
Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2 - 22.

Xu, J.-X.; Hashimoto, H.; Slotine, J.-]. E.; Arai, Y. & Harashima, F. (1989). Implementation of
VSS control to robotic manipulators-smoothing modification, IEEE Transactions on
Industrial Electronics, Vol. 36, No. 3, pp. 321-329.

Tan, S.-C.; Lai, Y. M.; Tse, C. K.; Martinez-Salamero, L. & Wu, C.-K. (2007). A fast-
response sliding-mode controller for boost-type converters with a wide range of
operating conditions, IEEE Transactions on Industrial Electronics, Vol. 54, No. 6, pp.
3276-3286.

www.intechopen.com



196 Robust Control, Theory and Applications

Li, H.; Chen, B.; Zhou, Q. & Su, Y. (2010). New results on delay-dependent robust stability of
uncertain time delay systems, International Journal of Systems Science, Vol. 41, No. 6,
pp. 627-634.

Schmidt, L. V. (1998). Introduction to Aircraft Flight Dynamics, AIAA Education Series, Reston,
VA.

Jafarov, E. M. (2008). Robust delay-dependent stabilization of uncertain time-delay
systems by variable structure control, Proceedings of the International IEEE
Workshop on Variable Structure Systems VSS'08, pp. 250-255, June 2008, Antalya,
Turkey.

Jafarov, E. M. (2009). Robust sliding mode control of multivariable time-delay systems,
Proceedings of the 11th WSEAS International Conference on Automatic Control,
Modelling and Simulation, pp. 430-437, May-June 2009, Istanbul, Turkey.

www.intechopen.com



Robust Control, Theory and Applications

ROBUST €0

THEQRY AND

Edited by Prof. Andrzej Bartoszewicz

Eiklod by Ardrie] Bartinsewiit

ISBN 978-953-307-229-6

Hard cover, 678 pages

Publisher InTech

Published online 11, April, 2011

wTEeH Published in print edition April, 2011

| 1\\

The main objective of this monograph is to present a broad range of well worked out, recent theoretical and
application studies in the field of robust control system analysis and design. The contributions presented here
include but are not limited to robust PID, H-infinity, sliding mode, fault tolerant, fuzzy and QF T based control
systems. They advance the current progress in the field, and motivate and encourage new ideas and solutions
in the robust control area.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Elbrous M. Jafarov (2011). Robust Delay-Independent/Dependent Stabilization of Uncertain Time-Delay
Systems by Variable Structure Control, Robust Control, Theory and Applications, Prof. Andrzej Bartoszewicz
(Ed.), ISBN: 978-953-307-229-6, InTech, Available from: http://www.intechopen.com/books/robust-control-
theory-and-applications/robust-delay-independent-dependent-stabilization-of-uncertain-time-delay-systems-
by-variable-structu

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE BHIERFARK6SS HiBEFR R ARIRE I AE40582TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.




