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1. Introduction  

The innate immune system provides a tactical response, signaling the presence of ‘non-self’ 
organisms and activating B cells to produce antibodies to bind to the intruders’ epitopic 
sites. The antibodies identify targets for scavenging cells that engulf and consume the 
microbes, reducing them to non-functioning units (Stengel et al., 2002b). The antibodies also 
stimulate the production of cytokines, complement factors and acute-phase response 
proteins that either damage an intruder’s plasma membrane directly or trigger the second 
phase of immune response. The innate immune system protects against many extracellular 
bacteria or free viruses found in blood plasma, lymph, tissue fluid, or interstitial space 
between cells, but it cannot clean out microbes that burrow into cells, such as viruses, 
intracellular bacteria, and protozoa (Janeway, 2005; Lydyard et al., 2000; Stengel et al., 
2002b). The innate immune system is a complex system and the obscure relationships 
between the immune system and the environment in which several modulatory stimuli are 
embedded (e.g. antigens, molecules of various origin, physical stimuli, stress stimuli).This 
environment is noisy because of the great amount of such signals. The immune noise has 
therefore at least two components: (a) the internal noise, due to the exchange of a network of 
molecular and cellular signals belonging to the immune system during an immune response 
or in the homeostasis of the immune system. The concept of the internal noise might be 
viewed in biological terms as a status of sub-inflammation required by the immune 
response to occur; (b) the external noise, the set of external signals that target the immune 
system (and hence that add noise to the internal one) during the whole life of an organism. 
For clinical treatment of infection, several available methods focus on killing the invading 
microbes, neutralizing their response, and providing palliative or healing care to other 
organs of the body. Few biological or chemical agents have just one single effect; for 
example, an agent that kills a virus may also damage healthy ‘self’ cells. A critical function 
of drug discovery and development is to identify new compounds that have maximum 
intended efficacy with minimal side effects on the general population. These examples 
include antibiotics as microbe killers; interferons as microbe neutralizers; interleukins, 
antigens from killed (i.e. non-toxic) pathogens, and pre-formed and monoclonal antibodies 
as immunity enhancers (each of very different nature); and anti-inflammatory and anti-
histamine compounds as palliative drugs (Stengel et al., 2002b). 
Recently, several models of immune response to infection (Asachenkov, 1994; Nowak & 
May, 2000; Perelson & Weisbuch, 1997; Rundell et al., 1995) with emphasis on the human-
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immunodeficiency virus have been reported (Nowak et al., 1995; Perelson et al., 1993; 
Perelson et al., 1996; Stafford et al., 2000). Norbert Wiener (Wiener, 1948) and Richard 
Bellman (Bellman, 1983) appreciated and anticipated the application of mathematical 
analysis for treatment in a broad sense, and Swan made surveys on early optimal control 
applications to biomedical problems (Swan, 1981). Kirschner (Kirschner et al., 1997) offers an 
optimal control approach to HIV treatment, and intuitive control approaches are presented 
in (Bonhoeffer et al., 1997; De Boer & Boucher, 1996; Wein et al., 1998; Wodarz & Nowak, 
1999, 2000).  
The dynamics of drug response (pharmacokinetics) are modeled in several works 
(Robinson, 1986; van Rossum et al., 1986) and control theory is applied to drug delivery in 
other studies (Bell & Katusiime, 1980; Carson et al., 1985; Chizeck & Katona, 1985; Gentilini 
et al., 2001; Jelliffe, 1986; Kwong et al., 1995; Parker et al., 1996; Polycarpou & Conway, 1995; 
Schumitzky, 1986). Recently, Stengel (Stengel et al., 2002a) presented a simple model for the 
response of the innate immune system to infection and therapy, reviewed the prior method 
and results of optimization, and introduced a significant extension to the optimal control of 
enhancing the immune response by solving a two-point boundary-value problem via an 
iterative method. Their results show that not only the progression from an initially life-
threatening state to a controlled or cured condition but also the optimal history of 
therapeutic agents that produces that condition. In their study, the therapeutic method is 
extended by adding linear-optimal feedback control to the nominal optimal solution. 
However, the performance of quadratic optimal control for immune systems may be 
decayed by the continuous exogenous pathogen input, which is considered as an 
environmental disturbance of the immune system. Further, some overshoots may occur in 
the optimal control process and may lead to organ failure because the quadratic optimal 
control only minimizes a quadratic cost function that is only the integration of squares of 
states and allows the existence of overshoot (Zhou et al., 1996). 
Recently, a minimax control scheme of innate immune system is proposed by the dynamic 
game theory approach to treat the robust control with unknown disturbance and initial 
condition (Chen et al., 2008). They consider unknown disturbance and initial condition as a 
player who wants to destroy the immune system and a control scheme as another player to 
protect the innate immune system against the disturbance and uncertain initial condition. 
However, they assume that all state variables are available. It is not the case in practical 
application. 
In this study, a robust H∞ tracking control of immune response is proposed for therapeutic 
enhancement to track a desired immune response under stochastic exogenous pathogen 
input, environmental disturbances and uncertain initial states. Furthermore, the state 
variables may not be all available and the measurement is corrupted by noises too. 
Therefore, a state observer is employed for state estimation before state feedback control of 
stochastic immune systems. Since the statistics of these stochastic factors may be unknown 
or unavailable, the H∞ observer-based control methodology is employed for robust H∞ 
tracking design of stochastic immune systems. In order to attenuate the stochastic effects of 
stochastic factors on the tracking error, their effects should be considered in the stochastic 
H∞ tracking control procedure from the robust design perspective. The effect of all possible 
stochastic factors on the tracking error to a desired immune response, which is generated by 
a desired model, should be controlled below a prescribed level for the enhanced immune 
systems, i.e. the proposed robust H∞ tracking control need to be designed from the 
stochastic H∞ tracking perspective. Since the stochastic innate immune system is highly 
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nonlinear, it is not easy to solve the robust observer-based tracking control problem by the 
stochastic nonlinear H∞ tracking method directly. 
Recently, fuzzy systems have been employed to efficiently approximate nonlinear dynamic 
systems to efficiently treat the nonlinear control problem (Chen et al., 1999,2000; Li et al., 
2004; Lian et al., 2001). A fuzzy model is proposed to interpolate several linearized 
stochastic immune systems at different operating points to approximate the nonlinear 
stochastic innate immune system via smooth fuzzy membership functions. Then, with the 
help of fuzzy approximation method, a fuzzy H∞ tracking scheme is developed so that the 
H∞ tracking control of stochastic nonlinear immune systems could be easily solved by 
interpolating a set of linear H∞ tracking systems, which can be solved by a constrained 
optimization scheme via the linear matrix inequality (LMI) technique (Boyd, 1994) with the 
help of Robust Control Toolbox in Matlab (Balas et al., 2007). Since the fuzzy dynamic model 
can approximate any nonlinear stochastic dynamic system, the proposed H∞ tracking 
method via fuzzy approximation can be applied to the robust control design of any model of 
nonlinear stochastic immune system that can be T-S fuzzy interpolated. Finally, a 
computational simulation example is given to illustrate the design procedure and to confirm 
the efficiency and efficacy of the proposed H∞ tracking control method for stochastic 
immune systems under external disturbances and measurement noises. 

2. Model of innate immune response  

A simple four-nonlinear, ordinary differential equation for the dynamic model of infectious 
disease is introduced here to describe the rates of change of pathogen, immune cell and 
antibody concentrations and as an indicator of organic health (Asachenkov, 1994; Stengel et 
al., 2002a). In general, the innate immune system is corrupted by environmental noises. 
Further, some state variable cannot be measured directly and the state measurement may be 
corrupted by measurement noises. A more general dynamic model will be given in the 
sequel. 

 

1 11 12 3 1 1 1 1

*
2 21 4 22 1 3 23 2 2 2 2 2

3 31 2 32 33 1 3 3 3 3

4 41 1 42 4 4 4 4

1 1 2 1 2 2 3 2 3 3 4 3

4 4
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4
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( ) ( )
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( )

0, 0.5

x a a x x b u w

x a x a x x a x x b u w

x a x a a x x b u w

x a x a x b u w

y c x n y c x n y c x n

x x
a x

x

= − + +

= − − + +
= − + + +
= − + +
= + = + = +

π ≤ ≤⎧
= ⎨ ≤⎩

$

$
$
$  (1) 

where x1 denotes the concentration of a pathogen that expresses a specific foreign antigen; x2 
denotes the concentration of immune cells that are specific to the foreign antigen; x3 denotes 
the concentration of antibodies that bind to the foreign antigen; x4 denotes the characteristic 
of a damaged organ [x4=0: healthy, x4 ≥ 1: dead]. The combined therapeutic control agents 
and the exogenous inputs are described as follows: u1 denotes the pathogen killer’s agent; u2 
denotes the immune cell enhancer; u3 denotes the antibody enhancer; u4 denotes the organ 
healing factor (or health enhancer); w1 denotes the rate of continuing introduction of 
exogenous pathogens; w2 ~ w4 denote the environmental disturbances or unmodeled errors 
and residues; w1 ~ w4 are zero mean white noises, whose covariances are uncertain or 
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unavailable; and a21(x4) is a nonlinear function that describes the mediation of immune cell 
generation by the damaged cell organ. And if there is no antigen, then the immune cell 
maintains the steady equilibrium value of x2*. The parameters have been chosen to produce 
a system that recovers naturally from the pathogen infections (without treatment) as a 
function of initial conditions during a period of times. Here, y1, y2, y3 are the measurements 
of the corresponding states; c1, c2, c3 are the measurement scales; and n1, n2, n3 are the 
measurement noises. In this study, we assume the measurement of pathogen x1 is 
unavailable. For the benchmark example in (1), both parameters and time units are 
abstractions, as no specific disease is addressed. The state and control are always positive 
because concentrations cannot go below zero, and organ death is indicated when x4 ≥ 1. The 
structural relationship of system variables in (1) is illustrated in Fig. 1. Organ health 
mediates immune cell production, inferring a relationship between immune response and 
fitness of the individual. Antibodies bind to the attacking antigens, thereby killing 
pathogenic microbes directly, activating complement proteins, or triggering an attack by 
phagocytic cells, e.g. macrophages and neutrophils. Each element of the state is subject to an 
independent control, and new microbes may continue to enter the system. In reality, 
however, the concentration of invaded pathogens is hardly to be measured. We assume that 
only the rest of three elements can be measured with measurement noises by medical 
devices or other biological techniques such as an immunofluorescence microscope, which is 
a technique based on the ability of antibodies to recognize and bind to specific molecules. It 
is then possible to detect the number of molecules easily by using a fluorescence microscope 
(Piston, 1999).  
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Fig. 1. Innate and enhanced immune response to a pathogenic attack under exogenous 
pathogens, environmental disturbances, and measurement noises. 
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Several typical uncontrolled responses to increasing levels of initial pathogen concentration 
under sub-clinical, clinical, chronic, and lethal conditions have been discussed and shown in 
Fig. 2 (Stengel et al., 2002a). In general, the sub-clinical response would not require medical 
examination, while the clinical case warrants medical consultation but is self-healing 
without intervention. Pathogen concentration stabilizes at non-zero values in the chronic 
case, which is characterized by permanently degraded organ health, and pathogen 
concentration diverges without treatment in the lethal case and kills the organ (Stengel et al., 
2002b). Finally, a more general disease dynamic model for immune response could be 
represented as 

 0( ) ( ( )) ( ( )) ( ) ( ), (0)

( ) ( ( )) ( )

x t f x t g x t u t Dw t x x

y t c x t n t

= + + =
= +

$
 (2) 

where 1( ) nx t ×∈R  is the state vector; 1( ) mu t ×∈R  is the control agent; 1( ) nw t ×∈R  includes 

exogenous pathogens, environmental disturbances or model uncertainty. 1( ) ly t ×∈R  is the 

measurement output; and 1( ) ln t ×∈R  is the measurement noises. We assume that w(t) and 

n(t) are independent stochastic noises, whose covariances may be uncertain or unavailable. 

All possible nonlinear interactions in the immune system are represented by f(x(t)). 
 

 

Fig. 2. Native immune responses to attack by different pathogens which are sub-clinical, 
clinical, chronic, and lethal conditions (Stengel et al., 2002a). 
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3. Robust H∞ Therapeutic Control of Stochastic Innate Immune Response 

Our control design purpose for nonlinear stochastic innate immune system in (2) is to 

specify a state feedback control ( ) ( ( ) ( ))du t k x t x t= −  so that the immune system can track the 

desired response xd(t). Since the state variables are unavailable for feedback tracking control, 

the state variables have to be estimated for feedback tracking control ˆ( ) ( ( ) ( ))du t k x t x t= − . 

Suppose the following observer-based control with y(t) as input and u(t) as output is 

proposed for robust H∞ tracking control. 

 
ˆ ˆ ˆ ˆ ˆ( ) ( ( )) ( ( )) ( ) ( ( ))( ( ) ( ( )))

ˆ( ) ( ( ) ( ))d

x t f x t g x t u t l x t y t c x t

u t k x t x t

= + + −
= −

$
               (3) 

where the observer-gain ˆ( ( ))l x t  is to be specified so that the estimation error ˆ( ) ( ) ( )e t x t x t= −  

can be as small as possible and control gain ˆ( ( ) ( ))dk x t x t−  is to be specified so that the 

system states x(t) can come close to the desired state responses xd(t) from the stochastic point 

of view. 
Consider a reference model of immune system with a desired time response described as 

 ( ) ( ) ( )d d dx t A x t r t= +$                               (4) 

where 1( ) n
dx t ×∈R  is the reference state vector; n n

dA ×∈R  is a specific asymptotically stable 
matrix and r(t) is a desired reference signal. It is assumed that xd(t), 0t∀ >  represents a 
desired immune response for nonlinear stochastic immune system in (2) to follow, i.e. the 
therapeutic control is to specify the observer-based control in (3) such that the tracking error 

( ) ( ) ( )dx t x t x t= −#  must be as small as possible under the influence of uncertain exogenous 
pathogens and environmental disturbances w(t) and measurement noises n(t). Since the 
measurement noises n(t), the exogenous pathogens and environmental disturbances w(t) are 
uncertain and the reference signal r(t) could be arbitrarily assigned, the robust H∞ tracking 
control design in (3) should be specified so that the stochastic effect of three uncertainties 
w(t), n(t) and r(t) on the tracking error could be set below a prescribed value 2ρ , i.e. both the 
stochastic H∞ reference tracking and H∞ state estimation should be achieved simultaneously 
under uncertain w(t), n(t) and r(t). 

 
1 20 2
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f

f

t T T

t T T T

x t Q x t e t Q e t dt
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⎡ ⎤+ +⎢ ⎥⎣ ⎦

∫

∫

E

E

# #
               (5) 

where the weighting matrices Qi are assumed to be diagonal as follows 

11

22

33

44

0 0 0

0 0 0
,

0 0 0

0 0 0

i

i

i i

i

q

q
Q

q

q

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 1,2.i =  

The diagonal element j
iiq  of Qi denotes the punishment on the corresponding tracking error 

and estimation error. Since the stochastic effect of w(t), r(t) and n(t) on tracking error ( )x t#  
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and estimation error e(t) is prescribed below a desired attenuation level 2ρ  from the energy 

point of view, the robust H∞ stochastic tracking problem of equation (5) is suitable for the 

robust H∞ stochastic tracking problem under environmental disturbances w(t), measurement 

noises n(t) and changeable reference r(t), which are always met in practical design cases. 
Remark 1: 

If the environmental disturbances w(t)and measurement noises n(t) are deterministic 

signals, the expectative symbol [ ]E i   in (5) can be omitted. 

Let us denote the augmented vector 

( )

( )

( )d

e t

x x t

x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, then we get the dynamic equation of the 

augmented stochastic system as 

 

( )

( ) ( )

( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( ( ) ( )) ( )( ( ) ( )) 0 0 ( )

ˆ( ) ( ) ( ) 0 0 ( )

0 0 ( )

d

d

d

d d

e t

x t x t

x t

f x f x k x x g x g x l x c x c x I n t

f x k x x g x D w t

A x I r t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
− + − − + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$
$ $

$
      (6) 

The augmented stochastic system above can be represented in a general form by 

 ( ) ( ( )) ( )x t F x t Dw t= +$                             (7) 

where 

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )( ( ) ( )) ( )( ( ) ( ))
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d

d

d d
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, 

( )
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r t
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0 0

0 0
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I

D D

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The robust H∞ stochastic tracking performance in (5) can be represented by 

 0 2

0

( ) ( )
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f

f

t T

t T

x t Qx t dt

w t w t dt

⎡ ⎤
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∫

∫

E
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 if (0) 0x =                         (8) 

or 2

0 0
( ) ( ) ( ) ( )

f ft tT Tx t Qx t dt w t w t dt⎡ ⎤ ⎡ ⎤≤ ρ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫E E  where 
2

1 1

1 1

0 0

0

0

Q

Q Q Q

Q Q

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

If the stochastic initial condition (0) 0x ≠  and is also considered in the H∞ tracking 

performance, then the above stochastic H∞ inequality should be modified as 

 [ ] 2

0 0
( ) ( ) ( (0)) ( ) ( )

f ft tT Tx t Qx t dt V x w t w t dt⎡ ⎤ ⎡ ⎤≤ + ρ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫E E E               (9) 
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for some positive function ( (0))V x . Then we get the following result. 

Theorem 1: If we can specify the control gain ˆ( )dk x x−  and observer gain ˆ( )l x  in the 

observer-based control law in (3) for stochastic immune system (2) such that the following 

HJI has a positive solution ( ( )) 0V x t >  

 
2

( ( )) 1 ( ( )) ( )
( ) ( ) ( ( )) 0

( ) ( ) ( )4

T T

T TV x t V x t V x
x t Qx t F x t DD

x t x t x t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ + <⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ρ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   (10) 

Then the robust stochastic H∞ tracking performance in (5) is achieved for a prescribed 

tracking performance 2ρ . 
Proof: see Appendix A. 

Since 2ρ  is a prescribed noise attenuation level of H∞ tracking performance in (5), based on 

the analysis above, the optimal stochastic H∞ tracking performance still need to minimize 
2ρ  as follows 

 2 2
0

( ) 0
min

V x >
ρ = ρ  (11) 

subject to ( ( )) 0V x t >  and equation (10). 
At present, there does not exist any analytic or numerical solution for (10) or (11) except in 
very simple cases. 

4. Robust fuzzy observer-based tracking control design for stochastic innate 
immune system 

Because it is very difficult to solve the nonlinear HJI in (10), no simple approach is available 
to solve the constrained optimization problem in (11) for robust model tracking control of 
stochastic innate immune system. Recently, the fuzzy T-S model has been widely applied to 
approximate the nonlinear system via interpolating several linearized systems at different 
operating points (Chen et al., 1999,2000; Takagi & Sugeno, 1985). Using fuzzy interpolation 
approach, the HJI in (10) can be replaced by a set of linear matrix inequalities (LMIs). In this 
situation, the nonlinear stochastic H∞ tracking problem in (5) could be easily solved by fuzzy 
method for the design of robust H∞ tracking control for stochastic innate immune response 
systems. 
Suppose the nonlinear stochastic immune system in (1) can be represented by the Takagi-
Sugeno (T-S) fuzzy model (Takagi & Sugeno, 1985). The T-S fuzzy model is a piecewise 
interpolation of several linearized models through membership functions. The fuzzy model 
is described by fuzzy If-Then rules and will be employed to deal with the nonlinear H∞ 
tracking problem by fuzzy observer-based control to achieve a desired immune response 
under stochastic noises. The i-th rule of fuzzy model for nonlinear stochastic immune 
system in (1) is in the following form (Chen et al., 1999,2000).  
Plant Rule i: 

                                       If 1( )z t  is 1iF  and …  and ( )gz t  is igF , 

 
then ( ) ( ) ( ) ( ), 1,2,3, ,

( ) ( ) ( )
i i

i

x t x t u t Dw t i L

y t C x t n t

= + + =
= +

A B$ A
                  (12) 
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in which ijF  is the fuzzy set; iA , iB , and iC  are known constant matrices; L is the number 

of If-Then rules; g is the number of premise variables; and 1 2( ) ( ) ( )gz t z t z t, , ,…  are the 

premise variables. The fuzzy system is inferred as follows (Chen et al., 1999,2000; Takagi & 

Sugeno, 1985) 

 

1

1

1

1

( ( ))[ ( ) ( ) ( )]
( )

( ( ))

     ( ( ))[ ( ) ( ) ( )]

( ( )) ( ) ( )

L
i i ii

L
ii

L

i i i
i

L

i i
i

z t x t u t Dw t
x t

z t

h z t x t u t Dw t

y h z t C x t n t

=

=

=

=

μ + +
=

μ

= + +

= +

∑
∑

∑

∑

A B

A B

$

                        (13) 

where 
1

( ( )) ( ( )),
g

i ij j
j

z t F z t
=

μ =∏  

1

( ( ))
( ( )) ,

( ( ))

i
i L

ii

z t
h z t

z t
=

μ
=

μ∑
 1 2( ) [ ( ), ( ), , ( )]gz t z t z t z t= … , and 

( ( ))ij jF z t  is the grade of membership of ( )jz t  in ijF . 

We assume 

 ( ( )) 0i z tμ ≥  and 
1

( ( )) 0
L

i
i

z t
=
μ >∑                        (14) 

Therefore, we get 

 ( ( )) 0ih z t ≥  and 
1

( ( )) 1
L

i
i

h z t
=

=∑                        (15) 

The T-S fuzzy model in (13) is to interpolate L stochastic linear systems to approximate the 

nonlinear system in (1) via the fuzzy basis functions ( ( ))ih z t . We could specify the 

parameter iA  and iB  easily so that 
1

( ( )) ( )
L

i i
i

h z t x t
=
∑ A  and 

1

( ( ))
L

i i
i

h z t
=
∑ B  in (13) can 

approximate ( ( ))F x t  and ( ( ))g x t  in (2) by the fuzzy identification method (Takagi & 

Sugeno, 1985). 
By using fuzzy If-Then rules interpolation, the fuzzy observer is proposed to deal with the 
state estimation of nonlinear stochastic immune system (1). 
Observer Rule i: 

                                 If 1( )z t  is 1iF  and …  and ( )gz t  is igF , 

 ˆ ˆ ˆthen ( ) ( ) ( ) ( ( ) ( )), 1,2,3, ,i i ix t x t u t L y t y t i L= + + − =A B$ A          (16) 

where Li is the observer gain for the ith observer rule and 
1

ˆ ˆ( ) ( ( )) ( )
L

i ii
y t h z t C x t

=
=∑ . 

The overall fuzzy observer in (16) can be represented as (Chen et al., 1999,2000) 

 [ ]
1

ˆ ˆ ˆ( ) ( ( )) ( ) ( ) ( ( ) ( ))
L

i i i i
i

x t h z t x t u t L y t y t
=

= + + −∑ A B$                  (17) 
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Suppose the following fuzzy observer-based controller is employed to deal with the above 
robust H∞ tracking control design 
Control Rule j: 

                                     If 1( )z t  is 1jF  and …  and ( )gz t  is jgF , 

 
1

ˆthen ( ( )) ( ( ) ( ))
L

j j d
j

u h z t K x t x t
=

= −∑  (18) 

Remark 2: 

1. The premise variables z(t) can be measurable stable variables, outputs or combination of 
measurable state variables (Ma et al., 1998; Tanaka et al., 1998; Wang et al., 1996). The 
limitation of this approach is that some state variables must be measurable to construct 
the fuzzy observer and fuzzy controller. This is a common limitation for control system 
design of T–S fuzzy approach (Ma et al., 1998; Tanaka et al., 1998). If the premise 
variables of the fuzzy observer depend on the estimated state variables, i.e., ˆ( )z t  instead 
of z(t) in the fuzzy observer, the situation becomes more complicated. In this case, it is 
difficult to directly find control gains Kj and observer gains Li. The problem has been 
discussed in (Tanaka et al., 1998). 

2. The problem of constructing T–S fuzzy model for nonlinear systems can be found in 
(Kim et al., 1997; Sugeno & Kang, 1988). 

Let us denote the estimation errors as ˆ( ) ( ) ( )e t x t x t= − . The estimation errors dynamic is 
represented as 

1 1

1 1

ˆ( ) ( ) ( )

ˆ ˆ( ( )) ( ( ))[ ( ) ( ) ( )] ( ) ( ) ( ( ) ( ))

( ( )) ( ( ))[( ) ( ) ( )] ( )

L L

i j i i i i i j
i j

L L

i j i i j i
i j

e t x t x t

h z t h z t x t u t Dw t x t u t L y t C x t

h z t h z t L C e t L n t Dw t

= =

= =

= −

⎡ ⎤= + + − + + −⎣ ⎦

= − − +

∑∑

∑∑

A B A B

A

$$ $

 

After manipulation, the augmented system in (6) can be expressed as the following fuzzy 
approximation form 

 
1 1

( ) ( ( )) ( ( )) ( ) ( )
L L

i j ij i
i j

x t h z t h z t x t E w t
= =

⎡ ⎤= +⎣ ⎦∑ ∑ A$                     (19) 

where 

0 0

0 0

i i j

ij i j i i j i j

d

L C

K K K

A

−⎡ ⎤
⎢ ⎥

= − + −⎢ ⎥
⎢ ⎥
⎣ ⎦

A

A B A B B , 

( )

( ) ( )

( )d

e t

x t x t

x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

( )

( ) ( )

( )

n t

w t w t

r t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0

0 0

0 0

i

i

L D

E D

I

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Theorem 2: In the nonlinear stochastic immune system of (2), if 0TP P= >  is the common 

solution of the following matrix inequalities: 

 
2

1
0T T

ij ij i iP P PE E P Q+ + + <
ρ

A A , , 1,2, ,Li j = A                (20) 

then the robust H∞ tracking control performance in (8) or (9) is guaranteed for a prescribed 2ρ . 
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In the above robust H∞ tracking control design, we don’t need the statistics of disturbances, 

measurement noises and initial condition. We only need to eliminate their effect on the 

tracking error and state estimation error below a prescribed level 2ρ . To obtain the best H∞ 

tracking performance, the optimal H∞ tracking control problem can be formulated as the 

following minimization problem. 

 2 2
0

0
min
P>

ρ = ρ                                  (21) 

subject to 0P >  and equation (20). 

Proof: see Appendix B. 
In general, it is not easy to analytically determine the constrained optimization problem in 
(21). Fortunately, the optimal H∞ tracking control problem in (21) can be transferred into a 
minimization problem subject to some linear matrix inequalities (LMIs). The LMIP can be 
solved by a computationally efficient method using a convex optimization technique (Boyd, 
1994) as described in the following. 
By the Schur complements (Boyd, 1994), equation (20) is equivalent to 

 
2 1

0
( )

T
ij ij

T T

P P Q PL

L P HH −

⎡ ⎤+ +
⎢ ⎥ <
⎢ ⎥−ρ⎣ ⎦

A A
                     (22) 

where 

0

0 0

0 0

iL I

L I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and 

0 0

0 0

0 0

I

H D

I

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

For the convenience of design, we assume 
11

22

33

0 0

0 0

0 0

P

P P

P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 and substitute it into (22) to 

obtain 

 

11 12 11

21 22 23 22

32 33 33

2

2 1
11 22

2
33

0 0

0 0

0 0 0
0

0 0 0 0

0 0 ( ) 0

0 0 0 0

i

T
i

T

S S Z P

S S S P

S S P

Z I

P P DD

P I

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ <

−ρ⎢ ⎥
⎢ ⎥

−ρ⎢ ⎥
⎢ ⎥−ρ⎣ ⎦

 (23) 

where  11 11 11 2
T T T
i i j i i jS P P C Z Z C Q= + − − +A A  

12 21 22
T

i jS S P K= = − B  

22 22 22 1( ) ( )T
i i j i i jS K P P K Q= + + + +A B A B  

23 32 22 1
T

i jS S P K Q= = − −B  

33 33 33 1
T
d dS A P P A Q= + +  and 11i iZ P L= . 

www.intechopen.com



 Robust Control, Theory and Applications 

 

100 

Since five parameters P11, P22, P33, Kj, and Li should be determined from (23) and they are 
highly coupled, there are no effective algorithms for solving them simultaneously till now. 
In the following, a decoupled method (Tseng, 2008) is provided to solve these parameters 
simultaneously. 
Note that (23) can be decoupled as 

 

11 12 11

21 22 23 22

32 33 33

2

2 1
11 22

2
33

11 11
11

2 22

1 1 1

33 33
1 33

1 22

2

11

0 0

0 0

0 0 0

0 0 0 0

0 0 ( ) 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

i

T
i

T

T T T
i i i

i
i

T
d d

T

S S Z P

S S S P

S S P

Z I

P P DD

P I

P P C Z
Z P

Z C Q P

I Q Q

A P P A
Q P

Q P

Z I

P

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ =

−ρ⎢ ⎥
⎢ ⎥

−ρ⎢ ⎥
⎢ ⎥−ρ⎣ ⎦

+ −
− + + γ

−γ + −

+
−

+ + γ

−ρ

−ρ

A A

2 1

22

2
33

22 22

22
22 22 22

22 1

22 22

22 22

( )
0

0 0 0 0

0 0 0 0

( )
( ) 0 0

( )

0 ( ) 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

T

i j

T
i i jT

i j i j
i i j

T
i j

DD

P

P I

P P K

K P
P K P K P

P K I

P K P

P P

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+γ⎢ ⎥
⎢ ⎥

−ρ⎢ ⎥⎣ ⎦

−γ −⎡ ⎤
⎢ ⎥

+⎢ ⎥
− −⎢ ⎥

+ + + γ⎢ ⎥
⎢ ⎥+ − −γ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−γ
⎢ ⎥
⎣ ⎦

B

A B
B B

A B

B

 

(24)

 

where γ  and 1γ  are some positive scalars. 
Lemma 1: 
If 

 

11 14 15

22 23

32 33 36

41 44

51 55

63 66

0 0 0

0 0 0 0

0 0 0
0

0 0 0 0

0 0 0 0

0 0 0 0

a a a

a a

a a a

a a

a a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

<⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                       (25) 
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and 

 

11 12

21 22 23 24

32 33

42 44

0 0

0
0 0

0 0

b b

b b b b

b b

b b

⎡ ⎤
⎢ ⎥
⎢ ⎥ <
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (26) 

then 

 

11 14 15 11 12

22 23 21 22 23 24

32 33 36 32 33

41 44

51 55 42 44

63 66

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0
0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

a a a b b

a a b b b b

a a a b b

a a

a a b b

a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

+ <⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (27) 

Proof: see Appendix C. 
From the above lemma, it is obvious that if 

 

11 11
11

2 22

1 1 1

33 33
1 33

1 22

2

2 1

11
22

2
33

0 0 0

0 0 0 0

0 0 0
0

0 0 0 0

( )
0 0 0 0

0 0 0 0

T T T
i i j i

i
i j

T
d d

T

T

P P C Z
Z P

Z C Q P

I Q Q

A P P A
Q P

Q P

Z I

DD
P

P

P I

−

⎡ ⎤+ −
⎢ ⎥
− + + γ⎢ ⎥
⎢ ⎥

−γ + −⎢ ⎥
⎢ ⎥+⎢ ⎥−
⎢ ⎥ <+ + γ
⎢ ⎥

−ρ⎢ ⎥
⎢ ⎥

−ρ⎢ ⎥
⎢ ⎥+γ
⎢ ⎥
⎢ ⎥−ρ⎣ ⎦

A A

   (28) 

and 

 

22 22

22
22 22 22

22 1

22 22

22 22

0 0

( )
( )

( ) 0

0 ( ) 0

0 0

i j

T
i i jT

i j i j
i i j

T
i j

P P K

K P
P K P K P

P K I

P K P

P P

−γ −⎡ ⎤
⎢ ⎥

+⎢ ⎥
− −⎢ ⎥

+ + + γ <⎢ ⎥
⎢ ⎥

− −γ⎢ ⎥
⎢ ⎥−γ⎣ ⎦

B

A B
B B

A B

B

        (29) 

then (23) holds. 
Remark 3: 

Note that (28) is related to the observer part (i.e., the parameters are P11, P22, P33, and Li) and 

(29) is related to the controller part (i.e., the parameters are P22 and Kj), respectively. 

Although the parameters P22, Kj and γ  are coupled nonlinearly, seven parameters P11, P22, 

P33, Kj, Li, γ  and 1γ  can be determined by the following arrangement. 
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Note that, by the Schur complements (Boyd, 1994) equation (28) is equivalent to 

 

11 11 2

1 1 1

1 33 33 1
2

11

33

11

33

2 1

2

1
22

1
22

1
22

0 0

0 0

00

0 0

00 0

00 0

00 0

00 0

00 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

( ) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

T T T
i i i i i

T
d d

T
i

T

P P C Z Z C Q Z

I Q Q

Q A P P A Q

IZ

P

P

I

I

P I

P I

DD I

I

W

W

I W

−

−

−

−

⎡ + − − +
⎢

−γ + −⎢
⎢ − + +⎢
⎢ −ρ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥−ρ ⎥
⎥−ρ
⎥
⎥−γ

−γ

−γ ⎦

A A

0<

⎥
⎥
⎥
⎥  

(30)

 

where 1
22 22W P−= , and equation (29) is equivalent to 

 

22

22 22 22 22

22

22 22

1
22 1

0 0 0

( )

00 ( ) 0 0

0 0 0

0 0 0

i j

T T T T
i j i i j i i j i j

T
i j

W B Y

B Y W W Y Y B Y W W

B Y W

W W

W I−

−γ −⎡ ⎤
⎢ ⎥
− + + + −⎢ ⎥

⎢ ⎥
<− −γ⎢ ⎥

⎢ ⎥
−γ⎢ ⎥

⎢ ⎥−γ⎣ ⎦

A A B B

     (31) 

where 22j jY K W= . 

Therefore, if (30) and (31) are all held then (23) holds. Recall that the attenuation 2ρ  can be 

minimized so that the optimal H∞ tracking performance in (21) is reduced to the following 

constrained optimization problem. 

 
11 22 33

2 2
0

, ,
min

P P P
ρ = ρ  (32) 

subject to 11 0P > , 22 0P > , 33 0P > , 0γ > , 1 0γ >  and (30)-(31). 

which can be solved by decreasing 2ρ  as small as possible until the parameters 11 0P > , 

22 0P > , 33 0P > , 0γ >  and 1 0γ >  do not exist. 
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Remark 4: 

Note that the optimal H∞ tracking control problem in (32) is not a strict LMI problem since it 

is still a bilinear form in (30)-(31) of two scalars γ  and 1γ  and becomes a standard linear 

matrix inequality problem (LMIP) (Boyd, 1994) if γ  and 1γ  are given in advance. The 

decoupled method (Tseng, 2008) bring some conservatism in controller design. However, 

the parameters 11P , 1
22 22P W −= , 33P , 1

22j jK Y W −=  and 1
11i iL P Z−=  can be determined 

simultaneously from (32) by the decoupled method if scalars γ  and 1γ  are given in 

advance. The useful software packages such as Robust Control Toolbox in Matlab (Balas et 

al., 2007) can be employed to solve the LMIP in (32) easily. 

In general, it is quite easy to determine scalars γ  and 1γ  beforehand to solve the LMIP with 

a smaller attenuation level 2ρ . In this study, the genetic algorithm (GA) is proposed to deal 

with the optimal H∞ tracking control problem in (32) since GA, which can simultaneously 

evaluate many points in the parameters space, is a very powerful searching algorithm based 

on the mechanics of natural selection and natural genetics. More details about GA can be 

found in (Jang et al., 1997). 
According to the analysis above, the H∞ tracking control of stochastic innate immune system 

via fuzzy observer-based state feedback is summarized as follows and the structural 

diagram of robust fuzzy observer-based tracking control design has shown in Fig. 3. 

 

Desired immune response

d d dx A x r= +

T-S fuzzy model 

[ ]i i i

i

x h A x Bu Dw= + +∑

Fuzzy observer 

ˆ ˆ ˆ[ ( )]i i i i

i

x h A x Bu L y y= + + −∑

Solving LMIs 

Solving LMIs 

Nonlinear immune system 

( ) ( )x f x g x u Dw= + +

x̂

dx
Fuzzy observer-based controller

1

ˆ( ) ( )
L

j j d

j

u h z K x x
=

= −∑

u

w
w

∑

y

nC

L i

+

_
K j

 
 

Fig. 3. Structural diagram of robust fuzzy observer-based tracking control design. 
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Design Procedure: 
1. Provide a desired reference model in (4) of the immune system. 
2. Select membership functions and construct fuzzy plant rules in (12). 

3. Generate randomly a population of binary strings: With the binary coding method, the 
scalars γ  and 1γ  would be coded as binary strings. Then solve the LMIP in (32) with 
scalars γ  and 1γ  corresponding to binary string using Robust Control Toolbox in 
Matlab by searching the minimal value of 2ρ . If the LMIP is infeasible for the 
corresponding string, this string is escaped from the current generation. 

4. Calculate the fitness value for each passed string: In this step, the fitness value is 

calculated based on the attenuation level 2ρ . 
5. Create offspring strings to form a new generation by some simple GA operators like 

reproduction, crossover, and mutation: In this step, (i) strings are selected in a mating 
pool from the passed strings with probabilities proportional to their fitness values, (ii) 
and then crossover process is applied with a probability equal to a prescribed crossover 
rate, (iii) and finally mutation process is applied with a probability equal to a prescribed 
mutation rate. Repeating (i) to (iii) until enough strings are generated to form the next 
generation. 

6. Repeat Step 3 to Step 5 for several generations until a stop criterion is met. 

7. Based on the scalars γ  and 1γ  obtained from above steps, one can obtain the 

attenuation level 2ρ  and the corresponding 11P , 1
22 22P W −= , 33P , 1

22j jK Y W −=  and 
1

11i iL P Z−= , simultaneously. 
8. Construct the fuzzy observer in (17) and fuzzy controller in (18). 

5. Computational simulation example 

 

Parameter Value Description 

11a  1 Pathogens reproduction rate coefficient 

12a  1 The suppression by pathogens coefficient 

22a  3 Immune reactivity coefficient 

23a  1 The mean immune cell production rate coefficient 
*
2x  2 The steady-state concentration of immune cells 

31a  1 Antibodies production rate coefficient 

32a  1.5 The antibody mortality coefficient 

33a  0.5 The rate of antibodies suppress pathogens 

41a  0.5 The organ damage depends on the pathogens damage 
possibilities coefficient 

42a  1 Organ recovery rate 

1b  -1 Pathogen killer’s agent coefficient 

2b  1 Immune cell enhancer coefficient 

3b  1 Antibody enhancer coefficient 

4b  -1 Organ health enhancer coefficient 

1c  1 Immune cell measurement coefficient 

2c  1 Antibody measurement coefficient 

3c  1 Organ health measurement coefficient 

Table 1. Model parameters of innate immune system (Marchuk, 1983; Stengel et al., 2002b). 
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We consider the nonlinear stochastic innate immune system in (1), which is shown in Fig. 1. 
The values of the parameters are shown in Table 1. The stochastic noises of immune systems 
are mainly due to measurement errors, modeling errors and process noises (Milutinovic & 
De Boer, 2007). The rate of continuing introduction of exogenous pathogen and environmental 
disturbances 1 4~w w  are unknown but bounded signals. Under infectious situation, the 
microbes infect the organ not only by an initial concentration of pathogen at the beginning 
but also by the continuous exogenous pathogens invasion 1w  and other environmental 
disturbances 2 4~w w . In reality, however, the concentration of invaded pathogens is hardly 
to be measured. So, we assume that only immune cell, antibody, and organ health can be 
measured with measurement noises by medical devices or other biological techniques (e.g. 
immunofluorescence microscope). And then we can detect the numbers of molecules easily 
by using a fluorescence microscope (Piston, 1999).  
The dynamic model of stochastic innate immune system under uncertain initial states, 
environmental disturbances and measurement noises is controlled by a combined 
therapeutic control as 

 

1 3 1 1 1

2 21 4 1 3 2 2 2

3 2 1 3 3 3

4 1 4 4 4

1 2 1 2 3 2 3 4 3

4 4
21 4

4

(1 )

3 ( ) ( 2)

(1.5 0.5 )

0.5

, ,

cos( ), 0 0.5
( )

0, 0.5

x x x u w

x a x x x x u w

x x x x u w

x x x u w

y x n y x n y x n

x x
a x

x

= − − +
= − − − +
= − + + +
= − + +
= + = + = +

π ≤ ≤⎧
= ⎨ ≤⎩

$
$
$
$                   (33) 

A set of initial condition is assumed [ ](0) 3.5 2 1.33 0
T

x = . For the convenience of 
simulation, we assume that 1 4~w w  are zero mean white noises with standard deviations 
being all equal to 2. The measurement noises 1 3~n n  are zero mean white noises with 
standard deviations being equal to 0.1. In this example, therapeutic controls 1 4~u u  are 
combined to enhance the immune system. The measurable state variables 1 3~y y  with 
measurement noises by medical devices or biological techniques are shown in Fig. 4.  
Our reference model design objective is that the system matrix dA  and ( )r t  should be 
specified beforehand so that its transient responses and steady state of reference system for 
stochastic innate immune response system are desired. If the real parts of eigenvalues of dA  
are more negative (i.e. more robust stable), the tracking system will be more robust to the 
environmental disturbances. After some numerical simulations for clinical treatment, the 
desired reference signals are obtained by the following reference model, which is shown in 
Fig. 5. 

 

1.1 0 0 0

0 2 0 0
( ) ( ) ( )

0 0 4 0

0 0 0 1.5

d d d stepx t x t B u t

−⎡ ⎤
⎢ ⎥−⎢ ⎥= +
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

$  (34) 

where [ ]0 4 16 /3 0
T

dB =  and ( )stepu t  is the unit step function. The initial condition is 

given by [ ](0) 2.5 3 1.1 0.8
T

dx = . 
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0 1 2 3 4 5 6 7 8

2

3

4

Immune cell measurement y
1

0 1 2 3 4 5 6 7 8
1

1.5

2

2.5

Antibody measurement y
2

0 1 2 3 4 5 6 7 8
0

0.5

Organ health measurement y
3

Time unit  

Fig. 4. The measurable state variables 1 3~y y  with measurement noises 1 3~n n  by medical 
devices or biological technique. 
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Fig. 5. The desired reference model with four desired states in (34): pathogens ( 1dx , blue, 
dashed square line), immune cells ( 2dx , green, dashed triangle line), antibodies ( 3dx , red, 
dashed diamond line) and organ ( 4dx , magenta, dashed, circle line) 

We consider the lethal case of uncontrolled stochastic immune system in Fig. 6. The 
pathogen concentration increases rapidly causing organ failure. We aim at curing the organ 
before the organ health index excesses one after a period of pathogens infection. As shown 
in Fig. 6, the black dashed line is a proper time to administrate drugs.  
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Fig. 6. The uncontrolled stochastic immune responses (lethal case) in (33) are shown to 
increase the level of pathogen concentration at the beginning of the time period. In this case, 
we try to administrate a treatment after a short period of pathogens infection. The cutting 
line (black dashed line) is an optimal time point to give drugs. The organ will survive or fail 
based on the organ health threshold (horizontal dotted line) [x4<1: survival, x4>1: failure]. 

To minimize the design effort and complexity for this nonlinear innate immune system in 
(33), we employ the T-S fuzzy model to construct fuzzy rules to approximate nonlinear 

immune system with the measurement output 3y  and 4y  as premise variables. 

Plant Rule i: 

If 3y  is 1iF  and 4y  is 2iF , then 

( ) ( ) ( ) ( ), 1,2,3, ,ix t x t u t Dw t i L= + + =A B$ A
 

( ) ( ) ( )y t Cx t n t= +  

To construct the fuzzy model, we must find the operating points of innate immune 

response. Suppose the operating points for 3y  are at 31 0.333y = − , 32 1.667y = , and 

33 3.667y = . Similarly, the operating points for 4y  are at 41 0y = , 42 1y = , and 43 2y = . For 

the convenience, we can create three triangle-type membership functions for the two 

premise variables as in Fig. 7 at the operating points and the number of fuzzy rules is 9L = . 

Then, we can find the fuzzy linear model parameters iA  in the Appendix D as well as other 

parameters B , C  and D . In order to accomplish the robust H∞ tracking performance, we 

should adjust a set of weighting matrices 1Q  and 2Q  in (8) or (9) as 

1

0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 2

0.01 0 0 0

0 0.01 0 0

0 0 0.01 0

0 0 0 0.01

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

After specifying the desired reference model, we need to solve the constrained optimization 

problem in (32) by employing Matlab Robust Control Toolbox. Finally, we obtain the 

feasible parameters 40γ =  and 1 0.02γ = , and a minimum attenuation level 2
0 0.93ρ =  and a 
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common positive-definite symmetric matrix P  with diagonal matrices 11P , 22P  and 33P  as 

follows 

11

0.23193 -1.5549e-4 0.083357 -0.2704

-1.5549e-4 0.010373 -1.4534e-3 -7.0637e-3

0.083357 -1.4534e-3 0.33365 0.24439

-0.2704 -7.0637e-3 0.24439 0.76177

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦ , 

22

0.0023082 9.4449e-6 -5.7416e-5 -5.0375e-6

9.4449e-6 0.0016734 2.4164e-5 -1.8316e-6

-5.7416e-5 2.4164e-5 0.0015303 5.8989e-6

-5.0375e-6 -1.8316e-6 5.8989e-6 0.0015453

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

33

1.0671 -1.0849e-5 3.4209e-5 5.9619e-6

-1.0849e-5 1.9466 -1.4584e-5 1.9167e-6

3.4209e-5 -1.4584e-5 3.8941 -3.2938e-6

5.9619e-6 1.9167e-6 -3.2938e-6 1.4591

P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

The control gain jK  and the observer gain iL  can also be solved in the Appendix D. 
 

1

3y
31y 32y 33y

1

4y
41y 42y 43y  

Fig. 7. Membership functions for two premise variables 3y  and 4y . 

Figures 8-9 present the robust H∞ tracking control of stochastic immune system under the 
continuous exogenous pathogens, environmental disturbances and measurement noises. 
Figure 8 shows the responses of the uncontrolled stochastic immune system under the initial 
concentrations of the pathogens infection. After the one time unit (the black dashed line), we 
try to provide a treatment by the robust H∞ tracking control of pathogens infection. It is seen 
that the stochastic immune system approaches to the desired reference model quickly. From 
the simulation results, the tracking performance of the robust model tracking control via T-S 
fuzzy interpolation is quite satisfactory except for pathogens state x1 because the pathogens 
concentration cannot be measured. But, after treatment for a specific period, the pathogens 
are still under control. Figure 9 shows the four combined therapeutic control agents. The 
performance of robust H∞ tracking control is estimated as 

1 20 2

0

( ( ) ( ) ( ) ( ))
0.033 0.93

( ( ) ( ) ( ) ( ) ( ) ( ))

f

f

t T T

t T T T

x t Q x t e t Q e t dt

w t w t n t n t r t r t dt

⎡ ⎤+⎢ ⎥⎣ ⎦ ≈ ≤ ρ =
⎡ ⎤+ +⎢ ⎥⎣ ⎦

∫

∫

E

E

# #
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Fig. 8. The robust H∞ tracking control of stochastic immune system under the continuous 
exogenous pathogens, environmental disturbances and measurement noises. We try to 
administrate a treatment after a short period (one time unit) of pathogens infection then the 
stochastic immune system approach to the desired reference model quickly except for 
pathogens state x1. 
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Fig. 9. The robust H∞ tracking control in the simulation example. The drug control agents 1u  
(blue, solid square line) for pathogens, 2u  for immune cells (green, solid triangle line), 3u  
for antibodies (red, solid diamond line) and 4u  for organ (magenta, solid circle line). 

Obviously, the robust H∞ tracking performance is satisfied. The conservative results are due 
to the inherent conservation of solving LMI in (30)-(32). 
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6. Discussion and conclusion 

In this study, we have developed a robust H∞ tracking control design of stochastic immune 
response for therapeutic enhancement to track a prescribed immune response under 
uncertain initial states, environmental disturbances and measurement noises. Although the 
mathematical model of stochastic innate immune system is taken from the literature, it still 
needs to compare quantitatively with empirical evidence in practical application. For 
practical implementation, accurate biodynamic models are required for treatment 
application. However, model identification is not the topic of this paper. Furthermore, we 
assume that not all state variables can be measured. In the measurement process, the 
measured states are corrupted by noises. In this study, the statistic of disturbances, 
measurement noises and initial condition are assumed unavailable and cannot be used for 
the optimal stochastic tracking design. Therefore, the proposed H∞ observer design is 
employed to attenuate these measurement noises to robustly estimate the state variables for 
therapeutic control and H∞ control design is employed to attenuate disturbances to robustly 
track the desired time response of stochastic immune system simultaneity. Since the 
proposed H∞ observer-based tracking control design can provide an efficient way to create a 
real time therapeutic regime despite disturbances, measurement noises and initial condition 
to protect suspected patients from the pathogens infection, in the future, we will focus on 
applications of robust H∞ observer-based control design to therapy and drug design 
incorporating nanotechnology and metabolic engineering scheme. 
Robustness is a significant property that allows for the stochastic innate immune system to 
maintain its function despite exogenous pathogens, environmental disturbances, system 
uncertainties and measurement noises. In general, the robust H∞observer-based tracking 
control design for stochastic innate immune system needs to solve a complex nonlinear 
Hamilton-Jacobi inequality (HJI), which is generally difficult to solve for this control design. 
Based on the proposed fuzzy interpolation approach, the design of nonlinear robust H∞ 
observer-based tracking control problem for stochastic innate immune system is 
transformed to solve a set of equivalent linear H∞ observer-based tracking problem. Such 
transformation can then provide an easier approach by solving an LMI-constrained 
optimization problem for robust H∞ observer-based tracking control design. With the help 
of the Robust Control Toolbox in Matlab instead of the HJI, we could solve these problems 
for robust H∞ observer-based tracking control of stochastic innate immune system more 
efficiently. From the in silico simulation examples, the proposed robust H∞ observer-based 
tracking control of stochastic immune system could track the prescribed reference time 
response robustly, which may lead to potential application in therapeutic drug design for a 
desired immune response during an infection episode. 

7. Appendix 

7.1 Appendix A: Proof of Theorem 1 
Before the proof of Theorem 1, the following lemma is necessary. 
Lemma 2: 

For all vectors 1, n×α β∈R , the following inequality always holds 

2
2

1T T T Tα β +β α ≤ α α + ρ β β
ρ

 for any scale value 0ρ > . 

Let us denote a Lyapunov energy function ( ( )) 0V x t > . Consider the following equivalent 
equation: 
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 [ ] [ ]
0 0

( ( ))
( ) ( ) ( (0)) ( ( )) ( ) ( )

f ft tT T dV x t
x t Qx t dt V x V x x t Qx t dt

dt

⎡ ⎤⎛ ⎞⎡ ⎤ = − ∞ + +⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
∫ ∫E E E E  (A1) 

By the chain rule, we get 

 ( )( ( )) ( ( )) ( ) ( ( ))
( ( )) ( )

( ) ( )

T T
dV x t V x t dx t V x t

F x t Dw t
dt x t dt x t

⎛ ⎞ ⎛ ⎞∂ ∂
= = +⎜ ⎟ ⎜ ⎟

∂ ∂⎝ ⎠ ⎝ ⎠
 (A2) 

Substituting the above equation into (A1), by the fact that ( ( )) 0V x ∞ ≥ , we get 

 [ ] ( )
0 0

( ( ))
( ) ( ) ( (0)) ( ) ( ) ( ( )) ( )

( )

f f

T
t tT T V x t

x t Qx t dt V x x t Qx t F x t Dw t dt
x t

⎡ ⎤⎛ ⎞⎛ ⎞∂⎡ ⎤ ⎢ ⎥⎜ ⎟≤ + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎜ ⎟∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫E E E  (A3) 

By Lemma 2, we have 

 

2
2

( ( )) 1 ( ( )) 1 ( ( ))
( ) ( ) ( )

( ) 2 ( ) 2 ( )

1 ( ( )) ( ( ))
                             ( ) ( )

( ) ( )4

T T

T T

T

T T

V x t V x t V x t
Dw t Dw t w t D

x t x t x t

V x t V x t
DD w t w t

x t x t

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= +⎜ ⎟ ⎜ ⎟

∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂
≤ + ρ⎜ ⎟

∂ ∂ρ ⎝ ⎠

 (A4) 

Therefore, we can obtain 

 

[ ]
0 0

2
2

( ( ))
( ) ( ) ( (0)) ( ) ( ) ( ( ))

( )

1 ( ( )) ( ( ))
                                                       ( ) ( )

( ) ( )4

f f

T
t tT T

T

T T

V x t
x t Qx t dt V x x t Qx t F x t

x t

V x t V x t
DD w t w t dt

x t x t

⎡ ⎛ ⎛ ⎞∂⎡ ⎤ ⎢ ⎜≤ + + ⎜ ⎟⎢ ⎥ ⎢⎣ ⎦ ⎜ ∂⎝ ⎠⎝⎣
⎤⎞⎛ ⎞∂ ∂ ⎟+ + ρ⎜ ⎟ ⎟∂ ∂ρ ⎝ ⎠ ⎠ ⎦

∫ ∫E E E

⎥
⎥

 (A5) 

By the inequality in (10), then we get 

 [ ] 2

0 0
( ) ( ) ( (0)) ( ) ( )

f ft tT Tx t Qx t dt V x w t w t dt⎡ ⎤ ⎡ ⎤≤ + ρ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫E E E  (A6) 

If (0) 0x = , then we get the inequality in (8). 

7.2 Appendix B: Proof of Theorem 2 

Let us choose a Lyapunov energy function ( ( )) ( ) ( ) 0TV x t x t Px t= >  where 0TP P= > . Then 

equation (A1) is equivalent to the following: 

[ ] [ ] ( )

[ ]

[ ]

0 0

0
1 1

( ) ( ) ( (0)) ( ( )) ( ) ( ) 2 ( ) ( )

( (0)) ( ) ( ) 2 ( ) ( ( )) ( ( )) ( ) ( )

( (0)) ( ) (

f f

f

t tT T T

L Lt T T
i j ij i

i j

T

x t Qx t dt V x V x x t Qx t x t Px t dt

V x x t Qx t x t P h z t h z t x t E w t dt

V x x t Qx

= =

⎡ ⎤ ⎡ ⎤= − ∞ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎡ ⎤ ⎟⎜ ⎟≤ + + +⎣ ⎦⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

= +

∫ ∫

∑ ∑∫

E E E E

E E A

E E

$

0
1 1

) ( ( )) ( ( )) 2 ( ) ( ) 2 ( ) ( )
f

L Lt T T
i j ij i

i j

t h z t h z t x t P x t x t PE w t dt
= =

⎡ ⎤⎛ ⎞
⎡ ⎤⎢ ⎥⎜ ⎟+ +⎣ ⎦⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ A

 (A7) 
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By Lemma 2, we have 

 
2 ( ) ( ) ( ) ( ) ( ) ( )T T T T

i i ix t PE w t x t PE w t w t E Px t= + 2
2

1
( ) ( ) ( ) ( )T T T

i ix t PE E Px t w t w t≤ + ρ
ρ

 (A8) 

Therefore, we can obtain 

[ ] (
0 0

1 1

2
2

( ) ( ) ( (0)) ( ) ( ) ( ( )) ( ( )) ( )

1
                                                      ( ) ( ) ( ) ( )

    

f f
L Lt tT T T T

i j ij ij
i j

T T T
i i

x t Qx t dt V x x t Qx t h z t h z t x P P x

x t PE E Px t w t w t dt

= =

⎡ ⎤ ⎡ ⎡≤ + + + +⎣⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤⎞⎤
+ + ρ =⎥⎟⎥ ⎟ρ ⎥⎦ ⎠ ⎦

∑ ∑∫ ∫E E E A A

[ ]
0

1 1

2
2

                           ( (0)) ( ) ( ) ( ( )) ( ( )) ( )

1
                                                      + ( ) ( ) ( )

f
L Lt T T T

i j ij ij
i j

T T
i i

V x x t Qx t h z t h z t x t P P

PE E P x t w t w t dt

= =

⎡ ⎛
⎡⎢ ⎜= + + + +⎣⎜⎢ ⎝⎣

⎤⎞⎤
+ ρ ⎥⎟⎥ ⎟ρ ⎥⎦ ⎠ ⎦

∑ ∑∫E E A A

 (A9) 

By the inequality in (20), then we get 

 [ ] 2

0 0
( ) ( ) ( (0)) ( ) ( )

f ft tT Tx t Qx t dt V x w t w t dt⎡ ⎤ ⎡ ⎤≤ + ρ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫E E E  (A10) 

This is the inequality in (9). If (0) 0x = , then we get the inequality in (8). 

7.3 Appendix C: Proof of Lemma 1 

For [ ]1 2 3 4 5 6 0e e e e e e ≠ , if (25)-(26) hold, then 

1 11 14 15 11 12

2 22 23 21 22 23 24

3 32 33 36 32 33

4 41 44

5 51 55 42 44

6 63 66

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

T
e a a a b b

e a a b b b b

e a a a b b

e a a

e a a b b

e a a

⎧⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎨

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

2

3

4

5

6

e

e

e

e

e

e

⎫⎡ ⎤
⎪⎢ ⎥
⎪⎢ ⎥
⎪⎢ ⎥⎪
⎢ ⎥⎬
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭  

1 11 14 15 1

2 22 23 2 1 11 12

3 32 33 36 3 2 21 22 23 24

4 41 44 4 3 32 33

5 51 55 5 5

6 63 66 6

0 0 0

0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

T

T

e a a a e

e a a e e b b

e a a a e e b b b b

e a a e e b b

e a a e e

e a a e

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1

2

3

42 44 5

0

0 0

e

e

e

b b e

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ <
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 
 

This implies that (27) holds. Therefore, the proof is completed. 
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7.4 Appendix D: Parameters of the Fuzzy System, control gains and observer gains 

The nonlinear innate immune system in (33) could be approximated by a Takagi-Sugeno 
Fuzzy system. By the fuzzy modeling method (Takagi & Sugeno, 1985), the matrices of the 
local linear system iA , the parameters B , C , D , jK  and iL  are calculated as follows: 

1

0 0 0 0

3 1 0 0

0.5 1 1.5 0

0.5 0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 2

0 0 0 0

3 1 0 0

0.5 1 1.5 0

0.5 0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 3

0 0 0 0

3 1 0 0

0.5 1 1.5 0

0.5 0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A ,  

4

2 0 0 0

9 1 0 0

1.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 5

2 0 0 0

9 1 0 0

1.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 6

2 0 0 0

9 1 0 0

1.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A ,  

7

4 0 0 0

15 1 0 0

2.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 8

4 0 0 0

15 1 0 0

2.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A , 9

4 0 0 0

15 1 0 0

2.5 1 1.5 0

0.5 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎣ ⎦

A  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

B , 

0 1 0 0

0 0 1 0

0 0 0 1

C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

17.712 0.14477 -0.43397 0.18604

0.20163 18.201 0.37171 -0.00052926

0.51947 -0.31484 -13.967 -0.052906

0.28847 0.0085838 0.046538 14.392

jK

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1, ,9j = A  

12.207 -26.065 22.367

93.156 -8.3701 7.8721

-8.3713 20.912 -16.006

7.8708 -16.005 14.335

iL

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 1, ,9i = A . 
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