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Estimation of Speech Intelligibility Using
Perceptual Speech Quality Scores
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Graduate School of Science and Engineering, Yamagata University

Japan

1. Introduction

Recent advances in mobile wireless communication devices have made possible speech
communication in a variety of noise environments which were not possible before. Also,
sophisticated speech encoders, echo control devices, and noise canceling devices have caused
artificial synthetic noise, e.g. musical noise, which were not seen before with analog or simple
PCM speech communication. Thus, a need for comprehensive speech communication quality
measures and frequent evaluation efforts have become a necessity. Speech quality is generally
measured in one of two measures. The overall listening quality, such as the “naturalness” of
the test speech, is typically measured as the Mean Opinion Score (MOS) (ITU-T, 1996). The
other criteria is speech intelligibility, which tries to measure the accuracy with which the test
speech material carries its spoken content. We will deal mainly with the latter measure in this
chapter.
There were not many variations in the types of degradations seen in conventional speech
communication systems. Common types of degradations seen were simple ones, such as band
limitation and additive noise. Thus, evaluation procedures were fairly simple. Traditionally,
Japanese intelligibility tests often used stimuli of randomly selected single mora, two morae
or three morae speech (Iida, 1987). The subjects were free to choose from any combination
of valid Japanese syllables. This quickly became a strenuous task as the channel distortion
increases. Thus, intelligibility tests of this kind is known to be unstable and often do not
reflect the physically evident distortion, giving surprising results (Nishimura et al., 1996).
English intelligibility tests are also reported to show similar trends. Accordingly, the
Diagnostic Rhyme Test (DRT) (Voiers, 1977; 1983), a closed set selection test that restricted
the reply to two words, was proposed. This test is said to be effective in controlling various
factors including the amount of training and phonetic context, and is known to give stable
intelligibility scores. The DRT has now become an ANSI standard (ANSI, 1989).
In this chapter, we will briefly describe a DRT-type closed set selection test in Japanese (Kondo
et al., 2007; 2001). We categorized Japanese consonants into the same taxonomy used for the
English tests, and proposed a minimum-pair list accordingly which differ only by the initial
consonant and by a single phonetic feature. Subjective test results are also shown with various
noise under various SNR.
Then, we will investigate on methods to estimate intelligibility through objective measures. If
this is possible with reasonable accuracy, we should be able to “screen” the intelligibility in
many of the conditions, and limit the need for full-scale subjective test to a minimum subset.
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2 Will-be-set-by-IN-TECH

Feature m n z J̌ b d g w r j F s š č p t k h N ţ ç

Voicing
(vocalic-nonvocalic)

+ + + + + + + + + + – – – – – – – – + – –

Nasality (nasal-oral) + + – – – – – – – – – – – – – – – – + – –
Sustention
(continuant-interrupted)

– – + – – – – + + + + + + – – – – + – – +

Sibilation (strident-mellow) – – + + – – – – – – – + + + – – – – – + –
Graveness (grave-acute) + – – 0 + – 0 + – 0 + – 0 0 + – 0 0 0 – 0
Compactness
(compact-diffuse)

– – – + – – + – – + – – + + – – + + – – +

Vowel-like (glide-nonglide) – – – – – – – + + + – – – – – – – – – – –

Table 1. The Japanese consonant taxonomy

We will describe our efforts using PESQ (Perceptual Evaluation of Subjective Quality) scores,
an ITU standard which estimates MOS from both degraded and original speech, and try to
map PESQ-derived MOS to intelligibility.

2. The Japanese diagnostic rhyme test

2.1 Diagnostic rhyme test

Diagnostic Rhyme Tests (DRT) are speech intelligibility tests that forces the tester to choose
one word that they perceived from a list of two rhyming words. The two rhyming words
differ by only the initial consonant by a single distinctive feature.
DRT assumes the following simplification and principles which will enable even naive
listeners to provide stable and efficient intelligibility scores (Voiers, 1977; 1983).

• Additive and convolutional noise mostly affect consonants, which carry the bulk of
linguistic information, and not vowels. Thus, exact reproduction of consonants are
essential in voice communications. This is also the basis for the Fairbanks Rhyme Tests
(Fairbanks, 1958), which tested only consonant recognizability.

• Consonant apprehensibility in the initial, intervocalic and final positions are strongly
correlated. Thus, one can measure apprehensibility in all positions just by measuring at
the initial position. This assumption is backed by experiments by Suzuki et al. (Suzuki
et al., 1998), in which they found that there is a strong correlation in the articulation scores
of the first and second mora.

• The effect of word familiarity and phonetic context can be neglected if the number of
response choices (Miller et al., 1951; Voiers, 1977). In the case of the DRT, the response
is restricted to one word out of a pair of words.

In accordance with these assumptions, the DRT uses word-pairs which are minimal pairs in
which only the initial consonant differs by a single phonetic attribute as defined by Jakobson,
Fant, and Halle (Jakobson et al., 1952). The choice of word-pairs from which the listener selects
their response always contains the correct word.

2.2 The Japanese consonant taxonomy

We first proposed a consonant taxonomy for Japanese with the same feature classification used
in English, which were drawn from the classification by Jakobson, Fant and Halle (Jakobson
et al., 1952) (to be denoted as JFH classification). Table 1 shows the proposed Japanese
consonant taxonomy. The “+” shows that the feature is present, the “-” shows the absence,
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Estimation of Speech Intelligibility Using Perceptual Speech Quality Scores 3

and “0” shows that the feature does not apply to the consonant. The following seven features
were used.

1. Voicing: corresponds to the vocalic-nonvocalic classification by JFH. This is a trivial
classification.

2. Nasality: corresponds to the nasal-oral classification by JFH. This is also a fairly trivial
classification.

3. Sustention: corresponds to the continuant-interrupted classification. This classifies
consonants into clearly continuous consonants and other transient phones, such as
plosives.

4. Sibilation: corresponds to the strident-mellow classification. This roughly corresponds to
the randomness of the consonants.

5. Graveness: corresponds to the grave-acute opposition. If the spectrum of the consonant
concentrates in the low frequency region, it is classified as grave, and vice versa. Also, the
oral cavity is not obstructed with grave consonants, while with acute consonants, the oral
cavity is divided into compartments with the tongue.

6. Compactness: corresponds to the compact-diffuse opposition. If the spectrum of the
consonant largely concentrates around the formant, it is classified as compact, and vice
versa.

7. Vowel-like: this classification is not used. It classifies consonants into glides and other true
consonants.

We classified most consonants in Japanese speech roughly in the same manner as English.
However, several exceptions were noted.

• The consonant [g] is often nasalized in intervocalic positions. However, since we are only
dealing with initial consonants, this consonant was classified as oral. Thus, nasality was
classified as “-” (feature absent).

• Allophones such as [N] were not classified.

2.3 The Japanese DRT word-pair list

The consonant taxonomy was then used to compile a word-pair list to be used as stimuli
for the DRT. Ten word-pairs per each of the 6 features, one pair per each of the five vowel
context, were proposed for a total of 120 words (Fujimori et al., 2006; Kondo et al., 2007).
The word-pairs are rhyme words, differing only in the initial phoneme. The proposed
word-pair list is shown in Table 2. The first words in the word-pair list are words whose
initial consonants have the consonant feature under test, and the initial consonants in the
latter words do not. Note that all five vowel context are covered.
The following is specific for the Japanese list:

• Only two morae words were initially considered. Longer words will be considered as
needed.

• Foreign words were avoided when possible. However, words starting with the [p] context
are mostly foreign words, and thus foreign words were included in this case.

• Only words with the same accent type were selected as a word-pair.

• We tried to select mostly common nouns. Proper nouns, slang words and obscure words
were avoided where possible.
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4 Will-be-set-by-IN-TECH

Voicing Nasality Sustention Sibilation Graveness Compactness

Zai - Sai Man - Ban Hashi - Kashi Jamu - Gamu Waku - Raku Yaku - Waku
Daku - Taku Nai - Dai Hata - Kata Chaku - Kaku Pai - Tai Kai - Pai

Giji - Kiji Misu - Bisu Shiri - Chiri Shiki - Hiki Mie - Nie Gin - Bin
Gin - Kin Miru - Biru Hiru - Kiru Chiji - Kiji Misu - Nisu Kiza - Piza
Zui - Sui Muri - Buri Suki - Tsuki Chuu - Kuu Muku - Nuku Kuro - Puro

Guu - Kuu Mushi - Bushi Suna - Tsuna Jun - Gun Mushi - Nushi Yuu - Ruu
Zei - Sei Men - Ben Hen - Ken Shea - Hea Men - Nen Gen - Ben

Deba - Teba Neru - Deru Heri - Keri Sheru - Heru Pen - Ten Ken - Pen
Zoo - Soo Mon - Bon Hoshi - Koshi Joo - Goo Moo - Noo Goki - Boki
Goji - Koji Nora - Dora Horu - Koru Shoji - Hoji Poro - Toro Yoka - Roka

Table 2. Japanese DRT word-pair list

• Words which include double consonants and palatalized syllables were excluded when
possible.

Additionally, rare consonant-vowel combinations were substituted with other syllables where
possible.
As stated before, familiarity may affect the intelligibility scores, although using word-pairs
will most likely mitigate this effect. However, to be safe, we selected words which have
relatively high phonetic-text familiarity (average 5.5, standard deviation 0.72 on a 7-point
scale) according to the familiarity listing compiled by Amano et al. (Amano & Kondo, 1999).
Word accents types were judged with reference to both (Amano & Kondo, 1999) and
(NHK Broadcasting Culture Research Institute, 1998). Over 77 % of the words were accent
type 1 (high to low pitch accent transition), and 2 % were type 0 (flat). Both words in the
word-pair had the same accent type. When multiple accent types exist, the speakers were
asked to record using the specified accent type, with the same accent type as the other word
in the word-pair. The recorded speech was checked for clear pronunciation and accent, and
re-recorded as needed.

2.4 The DRT evaluation procedure

Words spoken by multiple speakers should be used. At least 8 listeners should be employed
for the test. The listener listens to the stimulus word speech, and selects the correct answer
from one of the words in the word-pair. The ordering of the stimulus can be completely
random, or it can cycle through the vowel context (i.e. form a 5-word cycle covering the five
vowel context). The intelligibility is measured by the average correct response rate over each
of the six consonant features, or by the average over all features. The correct response rate
(CACR) should be calculated using the following formula to compensate for the chance level,

S =
100(R − W)

T
[%] (1)

where S is the response rate adjusted for chance (“true” correct response rate), R is the
observed number of correct responses, W the observed number of incorrect responses, and
T the total number of responses. In other words, since this is a two-to-one selection test, a
completely random response will result in half of the responses to be correct. With the above
formula, completely random response will give average response rate of 0 %.
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Fig. 1. Comparison of DRT scores for speech with three types of noises

2.5 DRT evaluation experimental setup

We evaluated the DRT on a relatively large Japanese speech database with three typical noise
types in order to compare its sensitivity to noise with DRT results in English. We collected
speech from eight untrained speakers, four male (all in their twenties) and four female (three
in their twenties, and one in her fifties). All words in the DRT word list were recorded using a
head-mount electret microphone (Sennheiser HD 410-6) at a sampling rate of 16 kHz, 16 bits
per sample. No directions on the pronunciation and accents were initially given, so that the
speakers would be able to speak naturally. Re-recordings were made as needed when the
speech samples were not of standard accent, or unclear. White noise, multi-speaker (babble)
(Rice University, 1995) and pseudo-speech noise (Tanaka, 1989) were mixed into these samples
at an SNR of −15, −10, 0 and 10 dB, respectively. Speech for words in the word-pair list
was played out in random order. All speech were played out diotically through headphones
(Sennheiser HD 25-1 II) at the listener’s preferred output level. The listeners were shown
both words in the word-pair to choose from. Eleven listeners underwent the tests for speech
mixed with white noise, and 5 listeners tested speech in pseudo-speech and babble noise.
All listeners were native Japanese speakers in their twenties with reportedly normal hearing.
Each listener listened to 8 speakers, 5 noise levels including clean, 6 phonetic features, and 20
words per feature, bringing the total to 4800 spoken words per noise type.

2.6 Results and discussion

Figure 1 shows the average DRT scores (the chance adjusted correct response percentage,
CACR) over all phonetic features for the three types of noise tested. Figures 2, 3, and 4 show
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Fig. 2. DRT scores for speech mixed with white noise

CACRs for each of the mixed noise types by the phonetic feature. Two-way ANOVA tests
have confirmed SNR and phonetic feature to be main effects in all noise types tested.
The overall trend for all noise types generally agrees with English results obtained by Voiers
(Voiers, 1977; 1983). The following can be drawn from the results:

1. The average DRT score over all phonetic feature vs. SNR is similar regardless of the noise
type. However, white noise seems to affect the scores most, followed by pseudo-speech
noise, and babble. The reason for this seems to be the bandwidth of the noise, especially in
the high frequency regions.

2. Sibilation generally shows high scores when white noise level is low. However, the scores
decrease quickly as white noise level increases. This again agrees well with results by
Voiers (Voiers, 1977; 1983). The reason for this can be that phones with sibilation show wide
frequency bandwidth, similar to white noise. This may also be the reason the scores are
not affected as much by other types of noise since these have much narrower bandwidth.

3. Much less difference by features is seen with pseudo-speech and babble noise compared
to white noise. In other words, each of the phonetic feature is affected similarly with
these noise types. Nasality, sustention, and compactness especially show insignificant
differences. This was observed in English tests as well. The reason for this again may
be the bandwidth of the added noise.

Figure 5 compares the DRT scores for white noise-added speech by speaker gender. As shown
by this figure, the DRT scores are virtually same for both male and female speech for all ranges
of SNR tested, and thus the gender of the speaker has insignificant effect on the DRT scores.
This was also confirmed with ANOVA.
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Fig. 3. DRT scores for speech mixed with pseudo-speech noise

3. Estimation of DRT scores using objective measures

In this section, we will describe our approach to estimating the subjective intelligibility DRT
scores using objective measures. Even though the proposed DRT tests were much simpler
than conventional intelligibility tests, the DRT test still requires human listeners to rate more
than one hundred words per noise condition. Accordingly, in the following, we attempted
to estimate subjective DRT scores using objective measures obtained by some calculations
without human participants. If estimation of intelligibility, at least to some degree, is possible,
we should be able to “screen” the intelligibility in many of the conditions, and limit the need
for full-scale subjective tests to a minimum.

3.1 Estimation of DRT using PESQ

In this section, we will describe results of experiments to estimate DRT scores from PESQ
(Perceptual Evaluation of Speech Quality) scores (Kaga et al., 2006). PESQ is an international
standard which tries to estimate subjective Mean Opinion Scores (MOS) (ITU-T, 1996) from the
original and the degraded signal (Beerends et al., 2002; ITU-T, 2001; Rix et al., 2002). PESQ is
known to be one of the most accurate objective methods to estimate subjective MOS. Although
MOS is a subjective measure of the overall speech quality, we can assume that speech quality is
“loosely” correlated with speech intelligibility. Thus, we can assume that speech intelligibility
is related to estimated MOS values, at least to some degree.
Kitawaki and Yamada have recently conducted a small scale test to employ PESQ to estimate
word intelligibility (Kitawaki & Yamada, 2007). They used speech categorized into four
classes of word familiarity. They found relatively high correlation between subjective word
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Fig. 4. DRT scores for speech mixed with babble noise

intelligibility and estimated word intelligibility using PESQ scores, especially when the word
familiarity is low. Beerends et al. also used PESQ to estimate intelligibility (Beerends et al.,
2009). They found that PESQ fails to predict intelligibility especially at lower SNR. Thus,
they use several methods to improve the estimation in this region, e.g, the use of spectral
subtraction, silent interval deletion, and steady-state suppression. They show some success
in improving the accuracy. On the other hand, Liu et al. have recently attempted to estimate
speech intelligibility from a number objective measures including PESQ scores (Liu et al.,
2008). They used digits for their speech samples, and found very low correlation between
intelligibility and PESQ scores. In fact, they found low correlation in most of the objective
measures they attempted, highlighting the difficulty of this problem.

3.2 Perceptual Evaluation of Speech Quality (PESQ)

The Perceptual Evaluation of Speech Quality (PESQ) (ITU-T, 2001; 2003; 2005) is an
international standard for estimating the Mean Opinion Score (MOS) from both the clean and
degraded signal. It evolved from a number of prior attempts to estimate MOS, and is regarded
as one of the most sophisticated and accurate estimation methods available today. PESQ was
officially standardized by the International Telecommunication Union - Telecommunication
Standardization Sector (ITU-T) as recommendation P.862 in February, 2001, and extended to
wideband speech as recommendation P.862.2 in November, 2005. A simplified diagram of the
PESQ is shown in Fig. 6.
PESQ uses a perceptual model to covert the input and the degraded speech into an internal
representation. The degraded speech is time-aligned with the original signal to compensate
for the delay that may be associated with the degradation. The difference in the two internal
representation is then used by the cognitive model to estimate the MOS.
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Fig. 5. Comparison of DRT scores of speech mixed with white noise by speaker gender

Fig. 6. Simplified diagram of the PESQ algorithm

Figure 7 is the result of an experiment we conducted to estimated the MOS-LQO (Listening
Quality Objective), which is an estimated MOS output of the PESQ algorithm (ITU-T, 2003).
We used read Japanese sentences of two male and two female speaker, five per speaker for
a total of 20 sentences. White noise was added to these speech samples at 30, 10, and -5dB.
We also encoded and decoded speech samples with the G.729 CS-ACELP codec (ITU-T, 2007).
This codec is commonly used in VOIP applications nowadays. All samples were sampled at
8 kHz, 16 bits per sample. The MOS-LQO for all degraded samples were estimated using
PESQ. We also ran MOS tests using 10 listeners with the same degraded samples and the
original speech. As can be seen this figure, the estimated MOS-LQO generally agrees well
with subjective MOS. The line included in the figure is the fitted line using least mean square

163Estimation of Speech Intelligibility Using Perceptual Speech Quality Scores

www.intechopen.com



10 Will-be-set-by-IN-TECH

y = 1.0254x

1

2

3

4

5

1 2 3 4 5

P
E

S
Q

 M
O

S
-L

Q
O

 (
o

b
je

ct
iv

e)

MOS (subjective)

female speech, 20s

female speech, 30s

male speech, 20s

male speech, 30s

Fig. 7. Example MOS estimation using PESQ

error, which came out to be a gradient of 1.024, also showing that the estimated MOS-LQO
generally are accurate estimation of the subjective MOS.

3.3 Correlation between PESQ MOS-LQO and DRT intelligibility score (CACR)

We selected two male and two female speech with standard Japanese DRT words from the
collected data described in section 2. All samples were sampled at 16 kHz, 16 bits monaurally.
These speech samples were mixed with white noise and babble (Rice University, 1995) at SNR
of -15, -10, 0 and 10 dB. Standard subjective DRT tests were run with these samples. Ten
listeners were employed. We also estimated MOS-LQO of the degraded samples using PESQ.
The wide-band option (+wb) was used in all tests.
Figures 8, and 9 plots the estimated MOS-LQO using PESQ against the corresponding DRT
Chance-Adjusted Correct Response (CACR) for speech mixed with white noise, and babble
noise, respectively. The speech was pooled for both speakers, for all of the SNR tested in each
Figure. As can be seen in both noise types, the correlation between raw MOS-LQO and CACR
is quite low. In fact, the Pearson correlation coefficient is 0.47 and 0.44 for female and male
speech mixed with white noise, and 0.36 and 0.42 for babble noise. Most of the MOS-LQO
is close to the lower end of the scale, i.e. well below 2.0, close to 1.0. This is not surprising
since PESQ was designed to estimate MOS, and not intelligibility. MOS generally measures
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Estimation of Speech Intelligibility Using Perceptual Speech Quality Scores 11

the overall speech quality with relatively small degradation, i.e. high SNR range, typically
well above 0 dB. However, as we have seen in the previous section, intelligibility is measured
in the lower SNR range, typically -20 to 0 dB. Thus we need to re-map the MOS-LQO to match
the SNR range of interest for intelligibility estimation.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

MOS−LQO

C
A

C
R

Fig. 8. MOS estimation of DRT words using PESQ (white noise)

3.4 Estimation of intelligibility by mapping per-word MOS-LQO to DRT CACR

We now attempt to map MOS-LQO to CACR using polynomial mapping. We estimated a
quadratic polynomial to map the estimated MOS-LQO to DRT CACR on one training speaker.
Then we used this polynomial to map MOS-LQO of a different test speaker to DRT CACR.
The mapping was estimated for each noise type since it is reasonable to assume that we
can obtain a small sample of the noise environment in which we want to estimate the DRT
CACR beforehand. We also estimate one polynomial for each phonetic feature, as well as
over all features. Table 3 shows an example of the estimated coefficients of the polynomials
used to map the female speech mixed with white noise, y = a1x2 + a2x + a3, where x is the
MOS-LQO, and y the estimated CACR. As can be seen, the coefficients differ significantly
by phonetic feature. The coefficients were also shown to differ significantly by noise type or
speaker gender as well.
Tables 4 through 7 tabulate the root mean square DRT CACR estimation error, and the Pearson
correlation between subjective and estimated DRT CACR for speech (female and male) mixed
with white noise and babble noise, respectively. As can be seen, average estimation errors
range from approximately 0.2 to close to 0.7 in some cases. The correlation also ranges from
0.7 to virtually 0.0 in one extreme cases. Thus, the estimation accuracy varies widely by the
phonetic feature. Estimation over all features generally perform worse than when using a
single phonetic feature.
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Fig. 9. MOS estimation of DRT words using PESQ (babble noise)

Phonetic feature a1 a2 a3

voicing -0.853 2.80 -1.35

nasality -1.93 6.15 -3.75

sustention -3.28 10.3 -7.06

sibilation -1.50 5.15 -3.26

graveness -1.75 6.02 -4.22

compactness 0.76 -0.893 0.513

all features -1.84 6.06 -3.94

Table 3. Polynomial coefficients of the mapping function used to map PESQ MOS-LQO to
DRT CACR (white noise, female speech)

Figure 10 plots the subjective DRT CACR vs. the estimated DRT CACR for female speech
samples for sustention mixed with white noise. This is one of the combinations showing the
lowest RMSE and the highest correlation, i.e. one of the best predictions. However, the plots
scatter widely from the equal rate line. Still the plots are evenly spaced around the equal rate
line, and the best fit line is almost equal to the equal rate line. This gives us a clue leading to
the approach taken in the next section.

3.5 Estimation of intelligibility by mapping per-feature MOS-LQO to DRT CACR

The standard procedure to measure the subjective intelligibility of a phonetic feature, as
measured by CACR, is to test all 20 words on a large listener population, and average
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Phonetic feature RMSE Correlation

voicing 0.20 0.51

nasality 0.23 0.59

sustention 0.26 0.77

sibilation 0.34 0.54

graveness 0.30 0.63

compactness 0.34 0.49

all features 0.65 0.23

Table 4. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (white noise, female speech)

Phonetic feature RMSE Correlation

voicing 0.68 -0.06

nasality 0.21 0.65

sustention 0.30 0.67

sibilation 0.35 0.52

graveness 0.32 0.61

compactness 0.39 0.41

all features 0.33 0.55

Table 5. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (white noise, male speech)

Phonetic feature RMSE Correlation

voicing 0.27 0.42

nasality 0.33 0.50

sustention 0.32 0.50

sibilation 0.08 0.38

graveness 0.29 0.66

compactness 0.28 0.54

all features 0.52 0.26

Table 6. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (babble noise, female speech)

the correct response rates for each of the conditions, e.g. noise type, SNR, etc. This is
because subjective test inherently include a large degree of variations, both due to the tester
individuality, and due to variations in the acoustics of the test word speech. By averaging the
results for sufficiently large population of testers and over all words in the test list, we can
expect to obtain stable reproducible results.
We will attempt the same procedure used to calculate the subjective CACR with the estimated
per-word CACR to obtain the per phonetic feature DRT CACR. We pooled all CACR for a
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Phonetic feature RMSE Correlation

voicing 0.49 0.16

nasality 0.31 0.58

sustention 0.30 0.54

sibilation 0.08 0.36

graveness 0.31 0.61

compactness 0.30 0.56

all features 0.31 0.30

Table 7. Root mean square estimation error and correlation of DRT CACR estimated from
PESQ MOS-LQO (babble noise, male speech)
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y = 1.05*x + 0.00446 (best fit)

y = x (equal rate line)

Fig. 10. Subjective CACR vs. estimated CACR (sustention, female speech with white noise)

single phonetic feature, per noise level (SNR) and type, into one CACR. The same quadratic
polynomial mapping is used to map the MOS-LQO to DRT CACR, one mapping function
per phonetic feature. Again, the mapping was calculated on one training speaker, and this
mapping function was used to map MOS-LQO obtained using the PESQ algorithm to calculate
the estimated DRT CACR for a different test speaker.
Figures 11 and 12 plot the subjective DRT CACR vs. estimated DRT CACR by pooling for
female and male speech in white noise, respectively, while Figures 13 and 14 plot the DRT
CACR for female and male speech in babble noise, respectively. Compared to Fig. 10, all plots
in these figures are generally much closer to the equal rate line, as expected. This is the result
of averaging out the deviation that was present with each of the words in the test word per
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phonetic feature. However, as can be seen in Fig. 14, we do not see any estimated DRT CACR
below 0.4 for male speech in babble noise. This is due to the limited range that is seen with
MOS-LQO under these conditions.

y = 1.1099x - 0.0537 (best fit) 
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Fig. 11. Subjective CACR vs. estimated CACR (pooled for each feature, female speech with
white noise)

Table 8 tabulates the root mean square estimation error and the correlation between subjective
and estimated DRT CACR. The RMSE decreased to below 0.2, but even more surprising is the
correlation, which is generally above 0.8 now. This level of accuracy is well within practical
range if we want to “screen” tested conditions before testing with actual human listeners, as
was stated as the goal of this research.

Noise speaker gender RMSE Correlation

white female 0.15 0.88

white male 0.20 0.80

babble female 0.18 0.78

babble male 0.17 0.82

Table 8. Root mean square estimation error and correlation of DRT CACR estimated from
pooled PESQ MOS-LQO
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y = 1.169x - 0.0876 (best fit)
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Fig. 12. Subjective CACR vs. estimated CACR (pooled for each feature, male speech with
white noise)

4. Conclusion

In this chapter, we have shown that it is possible to estimate the subjective speech
intelligibility, as measured by the Diagnostic Rhyme Test (DRT) Chance-Adjusted percentage
Correct Rate (CACR), from objective PESQ MOS-LQO scores if we have a mapping function
for the noise and the phonetic feature to be tested beforehand. PESQ itself was proven to
be too sensitive to noise to serve as a good scale to map to DRT CACR for wide range of
signal to noise ratio. In other words, PESQ MOS-LQO saturated quickly to low scores as
noise is increased, while DRT CACR stayed relatively high even with considerable noise. This
suggests that PESQ may not be a good match to serve as estimation variable for DRT scores
for the whole range of SNR we are interested in.
We then attempted to map the MOS-LQO of a test word to DRT CACR using polynomials
trained on a training speaker, and mapped the MOS-LQO of an unknown speaker to the DRT
CACR. If we use one mapping function per phonetic feature, we showed that it is possible to
map the MOS-LQO to DRT CACR to some extent. However, this mapping per word generally
showed a large root mean square estimation error (RMSE), mostly larger than 0.3, and the
correlation between estimated and subjective DRT CACR was generally low, below 0.5 in
most cases.
We then pooled the CACR of the words in each phonetic feature category to estimate the
CACR for each feature, as is done in subjective testing. This was shown to dramatically
decrease the error, resulting in RMSE below 0.2, and increase the correlation, to above 0.8
in most cases. This dramatic improvement was seen because the estimated CACR for the
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y = 1.1099x - 0.0537 (best fit) 
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Fig. 13. Subjective CACR vs. estimated CACR (pooled for each feature, female speech with
babble noise)

individual words in a phonetic feature category was evenly distributed around the subjective
CACR values. By pooling all CACR, we were able to average out this deviation.
Although we have shown that it is possible to estimate the DRT CACR using PESQ-derived
MOS-LQO, we still can only do so with limited accuracy. This is because PESQ itself is too
sensitive to any amount of noise. Thus, we need to use the internal representation within
PESQ and calculate a measure which has more linear correlation with noise levels, or we need
to look at completely different objective measures. Accordingly, we have started looking at
other candidate objective measures which may show higher correlation with intelligibility, i.e.
DRT CACR. Segmental SNR and its derivatives, e.g. frequency-weighed segmental SNR (Hu
& Loizou, 2008), seems to show much higher correlation. The composite measure proposed
by the same author, which combines several objective measures, seem to be promising as
well (Hu & Loizou, 2008). These measures can be mapped to DRT CACR using polynomials
per phonetic feature as we have done in this paper. Preliminary results show significantly
improved estimation accuracy. We plan to reveal these results in the near future in a separate
paper and conference presentations.
On the other hand, we are also trying out a completely different approach to the same
problem. We applied automatic speech recognizers with language models that force one of the
words in the word-pair, mimicking the human recognition process of the DRT. The acoustic
models were adapted to each of the speakers in the corpus, and then adapted to noise at
a specified SNR. We tested with white noise, babble noise, and pseudo-speech noise. The
match between subjective and estimated scores improved significantly with noise-adapted
models compared to speaker-independent models and the speaker-adapted models, when
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y = 1.2248x - 0.1308 (best fit)
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Fig. 14. Subjective CACR vs. estimated CACR (pooled for each feature, male speech with
babble noise)

the adapted noise level and the tested level match. However, when SNR conditions do not
match, the recognition scores degraded especially when tested SNR conditions were higher
than the adapted noise level. Accordingly, we adapted the models to mixed levels of noise,
i.e., multi-condition training. The adapted models now showed relatively high intelligibility
matching subjective intelligibility performance over all levels of noise. The correlation
between subjective and estimated intelligibility scores increased to 0.94 with babble noise,
0.93 with white noise, and 0.89 with pseudo-speech noise, while the root mean square error
(RMSE) reduced from more than 0.40 to 0.13, 0.13 and 0.16, respectively. Detailed results are
described in a separate paper (Kondo & Takano, 2010; Takano & Kondo, 2010).
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