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1. Introduction

The core idea is that nature, imaginative by necessity, has already solved many of the
problems we are grappling with. Animals, plants, and microbes are the consummate
engineers. They have found what works, what is appropriate, and most important,
what lasts here on Earth. This is the real news of biomimicry: After 3.8 billion years
of research and development, failures are fossils, and what surrounds us is the secret to
survival (Benyus, 1998).

Morphogenesis is a distributed chemical process that is responsible for co-ordinating the
self-assembly and self-repair of biological systems. One example of morphogenesis in action
is the ability for the human liver to sustain damage to over 75% of its mass and still repair
itself.
Another demonstration of the reliability of morphogenesis is evident in the salamander
family. Salamanders can regrow the same limbs repeatedly, as well as their tail, jaw, and the
lenses and retinas of their eyes. In terms of body mass alone, the salamander can regenerate
approximately 60% of itself in the event that it is damaged.
A final, remarkable, demonstration is the self-repair capability of the ascidian (a type of marine
filter feeder). They have been reported to regenerate from just partial blood cells to give rise
to a fully functional organism (Berrill & Cohen, 1936).
The aim of this research is to apply this robust self-assembly strategy to the design of
self-assembling robotics. Here we describe various models for morphogenesis and existing
techniques for designing self-assembling robotics. Then we introduce our cellular automata
model for morphogenesis and determine the necessary conditions for its robust self-assembly
and self-assembly to a pre-defined shape. Finally we demonstrate it co-ordinating the
self-assembly of a 55,000 cell virtual robot.

2. Morphogenesis

Imagine an island of cannibals and missionaries. The cannibals can have sex, creating other
cannibals in the process. The missionaries cannot have sex but own bicycles; two missionaries
convert a cannibal into another missionary. This is the analogy Alan Turing (Turing, 1950) used
to describe his “Reaction-Diffusion” model of morphogenesis. On such an island pockets of
cannibals surrounded by missionaries are formed (see figure 1).
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Fig. 1. Clumping of cannibals and missionaries formed by Turing’s reaction-diffusion
analogy

Turing proposed that the spots of a cheetah, the stripes of a zebra and every other arrangement
of cells within living systems could be explained by the diffusion of chemicals he named
“morphogens” and their interaction with each other.
To demonstrate this model, let us consider a simple two-morphogen (x1, x2) system of cells in
one-dimension. 1

2.1 The resting state

If, for a moment, we consider small perturbations of the concentrations of the morphogens
about x̄e, the system’s resting state, we can use linear ordinary differential equations (ODEs)
(1) to describe their reaction and diffusion.

dx̄

dt
= Ax̄ (1)

Where A =

[

a11 a12

a21 a22

]

.

Let λ be an eigenvalue of A. According to Cramer’s rule, the system will only have non-trivial
solutions if det(A − λI) = 0.

det(A − λI) = a11a22 − λ(a11 + a22) + λ2 − a12a21 (2)

Let

T = a11 + a22 (3)

D = a11a22 − a12a21 (4)

1 Proof derived from Turing’s paper (Turing, 1950) and notes from Blowey (Blowey, 2007) and Childress
(Childress, 2005).
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Therefore det(A − λI) = λ2 − Tλ + D, its roots are given by:

λ =
T ±

√
T2 − 4D

2
(5)

For the resting state to be stable (change from x̄e is opposed), both roots must be negative.

Therefore D ∈ [0, T2

4 ] and T < 0.

2.2 The transient state

Now let us consider larger permutations of the concentrations of the morphogens, as a result
of diffusion of the morphogens between neighbouring cells.
Let each cell be a small cube of side △ with the chemicals x̄ distributed equally within it. Each
cell has an index i from 0 to N and the cells are arranged in a 1 loop such that the neighbours
of cell xN are xN−1 and x0.
Ficke’s law states:

The flow of chemical from one cell to another is proportional to the difference in the
chemical concentrations of the two cells, the flow being from the higher to the lower.

The flux, f j, of morphogen j into cell i, xi
j , will be:

flux f1 = k1 △
2 (xi−1

1 − xi
1) + k1 △

2 ((xi+1
1 − xi

1) (6)

= k1 △
2 (xi−1

1 − 2xi
1 + xi+1

1 ) (7)

f2 = k2 △
2 (xi−1

2 − 2xi
2 + xi+1

2 ) (8)

where {k1, k2} > 0 are constants of proportionality. Now

dxi

dt
= f (x̄i) + M(x̄i−1 − 2x̄i + x̄i+1) (9)

where M =

[

△
2 k1 0
0 △

2 k2

]

and f (x̄i) determines the proportion of x̄i that remains in cell i.

Note that because the cells form a loop, the system is closed and ∑i xi is constant.
If the width, △, of each cube tends to 0 we can consider the system continuous. If s =△ .i then:

dx(s)

dt
= f (s) = M(x̄(s− △)− 2x̄(s) + x̄(s+ △)) (10)

If we expand each term into its Taylor series through terms in △
2 then:

x̄(s+ △) = x̄(s) +
dx̄(s)

ds
△ +

d2 x̄(s)

ds2

△
2

2
+ · · · (11)

∴ f (s) ≃ M △
2 d2 x̄(s)

ds2
(12)

Let us assume △→ 0, the number of cells, N → ∞, N △→ L, the circumference of the ring.
We want to study the linear stability of the resulting continuous partial differential equation
(PDE) in time.
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∂x̄(t, s)

∂t
= Ax̄(t, s) + M

∂2x

∂s2
(s, t) (13)

Where M has been redefined as

[

µ1 0
0 µ2

]

, µi = ki
△

4

2 . µ1, µ2, the diffusion coefficients are finite

and positive.
As the cells are in a loop we can look for pattern waves of the form:

x = eσt+jksx0 (14)

If for some µ1, µ2, k there exists a solution of this form such that ℜ(σ) is positive, the
concentrations of the morphogens within the tissue will form stable patterns.

Using the identity d2

ds2 ejks = −k2ejks and the product rule, the ∂2 x̄
∂s2 component of (14) can be

found:

d2 x̄

ds2
= −k2 x̄ (15)

Substituting (15) into (13) gives:

dx̄

dt
= Ax̄ + M

[

−k2 0
0 −k2

]

x̄ (16)

=

(

A +

[

µ1k2 0
0 µ2k2

])

x̄ (17)

Thus if B = A −
[

µ1k2 + σ 0
0 µ2k2 + σ

]

the pattern wave solutions are determined by the

non-trivial solution to Bx̄0 = 0.
Again using Cramer’s rule, the determinant of B must equal 0. Thus:

σ2 + τσ + ψ = 0 (18)

where

τ = k2(µ1 + µ2)− (a11 + a22) (19)

= k2(µ1 + µ2)− T (20)

ψ = D − µ1k2a22 − µ2k2a11 + µ1µ2k4 (21)

Both roots must have negative real components. Thus τ < 0 and ψ > 0. For D < 0 both
a11a22 < 0 and a12a21 < 0. For ψ < 0,

a22µ1 + a11µ2 > 0 (22)

If a11 < 0 its corresponding entry in the matrix B, a11 − µ1k2 + σ is also negative. Thus the
chemical, x1 will decay to the rest state x̄e in the absence of x2. Turing called x1 the inhibitor
chemical and x2 the activator chemical.

376 Cellular Automata - Innovative Modelling for Science and Engineering

www.intechopen.com



2.3 Turing instability inequalities

From (22) and (3) one can deduce that, for the system to form stable patterns µ2 < µ1. Thus
the inhibitor chemical must diffuse faster than the activator chemical. Referring back to the
“cannibals and missionaries” analogy, the presence of two missionaries in any given square
inhibits the progress of the diffusion of the cannibals across the island, however because the
inhibitor-missionaries own bicycles they diffuse more rapidly than the activator-cannibals.
Equation (21) is a quadratic in k2, the minimum value of which is:

ψmin = D − (a22µ1 + a11µ2)
2

4µ1µ2
(23)

Therefore:

a22µ1 + a11µ2 > 2
√

µ1µ2D (24)

2.4 An example reaction-diffusion system

An example two-morphogen system that meets (24), (22), (3) and (4) has the following reaction
equations:

x1(x̄) = (16 − x1x2)s (25)

x2(x̄) = (x1x2 − x2 − 20)s (26)

To find the unique equilibrium we set (25) and (26) to zero. Thus xe1 = −4 and xe2 = 4.
Assuming the system is linear about x̄e we can differentiate (25) and (26) to form A.

A =

[

−x2s −x1s
x2s x1s − s

]

= s

[

−4 4
4 −5

]

(27)

Figure 2 shows the results of this model.

2.5 Experimental evidence for morphogenesis

A two-morphogen system exists in a developing human body, shortly after the creation of the
blastula. Two proteins, the BCD protein and the HB-M protein, create a localised determinant
centered about the zygote (Griffiths, 1976). Since these proteins have different diffusion rates,
and interact with each other, spatial concentration patterns form. Different concentrations
activate different genes in the genome of each cell. These gene selections in turn correspond to
different types of cell. Thus the beginnings of form and cellular differentiation appear in the
developing embryo.
A three-morphogen system exists in the developing fruit fly. The morphogens, bicoid, eve
and caudal, are important for patterning the head, thorax and abdominal regions of the
embryo (Rosee et al., 1997). Figure 3 shows the concentrations of each morphogen shortly after
fertilisation. Figure 4 shows various other morphogenesis patterns that have been sampled
during the development of the fruit fly.
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Fig. 2. Example of Turing’s reaction-diffusion equations

2.6 A more comprehensive model of the developmental cycle

But experimental results suggests that control of the developmental cycle is not as simple as
systems of interacting morphogens. Most tissues have asymmetric distributions of various
properties: for example, in a hydra the nerve cell density is much greater in the head than
the body. Transplantation experiments (Morgan, 1904) suggest that this polarity affects the
decision of where to form structures relative to the tissue.
Further work by the experimental biologist John Gurdon (Gurdon, 1968) suggests that the
concentration levels of morphogens within a tissue are typically very small and undetectable
by the majority of cells. To ensure each cell in this tissue develops in line with the rest of
its surrounding cells, each cell that detects the presence of a signalling protein transmits a
chemical signal to its neighbouring cells. This is known as cell-to-cell communication, or the
“community effect”.
Meinhardt (Meinhardt, 1982) sought to incorporate these theories of development into a more
comprehensive model than that proposed by Turing. The following model, one of many he
proposed, uses five reaction-diffusion equations to form striped patterns.

∂g1

∂t
=

cg2
1

rs1
− αg1 + Dg

∂2g1

∂x2
+ ρ0 (28)

∂g2

∂t
=

cg2
2

rs2
− αg2 + Dg

∂2g2

∂x2
+ ρ0 (29)

∂r

∂t
=

cg2
1

s1
+

cg2
2

s2
(30)
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Fig. 3. Anterior-posterior determination in fruit flies. Image courtesy of the FlyEx database
(Pisarev et al., 2008)

Fig. 4. Morphogenesis patterns in fruit flies
Image courtesy of Dr. Eric Lecuyer, Canadian Institute of Health Research
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∂s1

∂t
= γ

g1 − s1

D s

∂2s1

∂x2
+ ρl (31)

∂s2

∂t
= γ

g2 − s2

D s

∂2s2

∂x2
+ ρl (32)

g1 and g2 are short-range activator substances. They form mutually exclusive feedback loops.
Each is subject to long-range inhibitor substances, s1 and s2. That they are mutually exclusive
is ensured by equation (30).
Figure 5 shows a result of the model with different diffusion rates Dg and Ds.

Fig. 5. Example of Meinhardt stripes

3. Morphogenesis for self-assembling robotics

Within the field of robotics, self-assembly describes the spontaneous aggregation of
pre-formed cells into well-defined, stable assemblies. This assembly happens without the
assistance of any external co-ordinating processes.
The design of large self-assembling systems has been the bailiwick of chaos mathematicians
and computational evolutionists for the last ten years because the relationship between
locally-interacting cells and the general form of the larger assembly is not well understood.
It has, however, been identified as essential to the development of future robotics (Yim et al.,
2007).
To complicate matters further, a common assumption is that each pre-formed cell is identical.
This means that each cell can take the place of another such that the replacement of damaged
cells is trivial. Also the challenge of self-replication is reduced from the procedure of copying
the entire system once to that of copying a small cell of the system many times.
There are various existing techniques for the design of self-assembling systems:
Cartesian co-ordinate mapping. One possible way of organising self-assembly is with a
co-ordinate system. Each cell works out where it is in the system from the co-ordinates of its
neighbours. A map, stored in each cell, that relates each co-ordinate to a particular type of cell
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is then used to determine what form each cell should take. This is the basis of the embryonics
algorithm proposed by Tyrrell (Canham & Tyrrell, 2003).
Hierarchical maps. Murata (Murata et al., 1999) proposed a hierarchical map for the
self-assembly of mechanical structures from “fractum”, small motorized robots capable of
connecting to one another. The assembly program, stored in each cell, contains a description
of the neighbourhood of every cell within a simple structure. Cells move randomly until
every cell has a correct neighbourhood, at which point every cell freezes. Then another simple
structure starts to form about one of the frozen cell. Because repeated simple structures need
only be coded once, this algorithm is more efficient than a cartesian co-ordinate mapping.
Ordinary differential equations (ODE). Fleischer (Fleischer & Barr, 1993) studied the effects
of biological cell migration, cell hereditary and inter-cellular communications using an ODE
model of locally-interacting cells. By using an adaptive euler-solver developed by Barzel
(Barzel, 1992), Fleischer was able to design the model to self-assemble into interesting shapes.
He concluded that it was difficult to design cells to assemble to specific forms, and went on to
suggest the use of evolution as an alternative approach.
Unsupervised evolutionary algorithms. Eggenberger (Eggenberger, 1997) used a multi-cell
model to study the effects of genetic lineage and inter-cellular chemical interactions on
biological tissue development. A genetic algorithm was used to design the model to converge
to interesting patterns. The fitness of each solution was tested against an arbitrary model size
and the symmetry of the system about the x-axis.
Supervised evolutionary algorithms. Most recent experiments have relied on supervised
evolutionary algorithms for the design of self-assembling systems. For instance, Izumi
(Kizotaka et al., 1999) studied supervised genetic algorithms for the self-assembly of Murata’s
“fractum”. Miller (Miller & Banzhaf, 2003) used a 2D array of 256 cells to simulate the
inter-cellular chemical interactions of a biological tissue during development. A genetic
algorithm was used to design the model to self-assemble to a single pattern (3 vertical stripes)
from null or partially corrupt (up to 25%) initial conditions.
Deterministic algorithms for the design of convergent cellular automata (CA). Previous
work by the authors (Jones et al., 2008), which this chapter will build upon, has been on the
design of convergent cellular automata.
We are going to use a cellular automata model of morphogenesis in order to determine the
necessary conditions for robust self-assembly.

4. The conditions for cellular automata convergence

Cellular automata (CA) are dynamic systems in which space and time are discrete. CA consist
of a number of identical cells pre-arranged into an array. Each cell can be in one of a number
of states. The next state of each cell is determined at discrete time intervals according to the
current state of the cell, the current state of neighbouring cells and a next-state rule that is
identical for each cell. Let us index each cell with the tuple (i, j), then describe the state of each
cell with an integer, ci,j,t and the pattern of the entire array as a matrix, Ct.
If C0 is the initial pattern of cell states, f (C0) is its subsequent pattern after one time step, and
f ( f (C0)) or f 2(C0) is its pattern at t = 2; where f() describes the transition from one iteration
to the next. The matrix Ct is first transcribed into a row-major vector, Ct in order for f () to be
a linear function of matrix algebra.
Let us define a simple transition function for the next time step:

ci,j,t+1 = uci,j−1,t + lci−1,j,t + rci+1,j,t + aci,j+1,t + pci,j,t + d (33)
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Where u, l, r, a and p are coefficients of the state of neighbours of each cell, and of the state of
the cell itself.

Fig. 6. A simple linear transition function

A transition function for the entire array can be formed from (33) such that f (Ct) = ACt + D
where D is a constant and the transition matrix (for a three by three CA), A, takes the form:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p l 0 u 0 0 0 0 0
r p l 0 u 0 0 0 0
0 r p 0 0 u 0 0 0
a 0 0 p l 0 u 0 0
0 a 0 r p l 0 u 0
0 0 a 0 r p 0 0 u
0 0 0 a 0 0 p l 0
0 0 0 0 a 0 r p l
0 0 0 0 0 a 0 r p

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟



(34)

The spacing of the coefficients a, r, p, l and u within A depend on the size of the CA.
By the repeated application of f (), the transition from C0 to Cn (where n > 1) becomes:

f 2(C0) = A(AC0 + D) + D (35)

f 3(C0) = A(A(AC0 + D) + D) + D (36)

f 3(C0) = A3C0 + A2D + AD + D (37)

This can be expanded to form:

f n(C0) = AnC0 + An−1D + An−2D + ... + AD + D (38)

Using the geometric series equation this can be simplified to form:

f n(C0) = AnC0 + (
I − An−1

I − A
)D (39)

Equation (39) determines the pattern the CA forms after n iterations of the transition function
(33) have been applied to every cell synchronously.

382 Cellular Automata - Innovative Modelling for Science and Engineering

www.intechopen.com



Given a sufficiently large n in order for the dynamic non-linear system to converge, the final
pattern, Cn, must be independent of the initial pattern, C0. Thus no matter what the starting
pattern (where t = 0 refers to the initial pattern or any pattern that might be the result of
system corruption), the pattern of cell states will always return to the same stable pattern.
Thus An, the coefficient of C0, must equal zero. For this to be so, referring to the coefficients of
the states of the cells above, below, left and right and of the cell itself respectively, the following
must hold: either l or r must equal zero, either u or a must equal zero, p must equal zero. That
is, A must be an upper-diagonal or lower-diagonal matrix.
Let us now analyse the conditions for convergence of a non-linear transition function, g().

g(C0) =
k

∑
i=0

AlC0 where Ai =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

pi li 0 ui 0 · · ·
ri pi li 0 ui

0 ri pi 0 0
ai 0 0 pi li

0 ai 0 ri pi
...

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟



(40)

If k is greater than three, expanding gn(C0) gives a coefficient of C0 formed by the multinomial
of the transition matrices:

(A0 + A1 + A2 + · · ·+ Am)
nC0 (41)

The multinomial expansion can be described as:

(x1 + x2 + · · ·+ xm)
n = ∑k0,k1···,km

(

n

k0, k1, · · ·, km

)

xk0

1 xk1
2 · · ·xkm

m (42)

Where the summation is taken over all sequences of k1, k2, · · ·, km such that:

m

∑
i=1

ki = n (43)

And the multinomial coefficient can be expressed as:

(

n

k0, k1, · · ·, km

)

=
n!

k0!k1!· · ·km!
(44)

Thus the coefficients of every C0 term are constructed from a multinomial coefficient and n
members of the set of A transition matrices:

A = {A0, A1, A2, · · ·, Ak} (45)

For every coefficient of C0 to be zero, every possible product of n members of A must be
zero. Thus every member of A must be a lower-diagonal matrix or every member must be an
upper-diagonal matrix.
As g() is a sum-of-products function, it can be represented as a two-input one-output logic
function. This logic function is best described as a list of rules that form the entries of a
look-up table (LUT). Each unique combination of two input-values that is required by the
design would form an entry in the LUT.
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5. Determining the local rules for a regular CA to converge

Before we can consider the design of self-assembling systems, we need to examine the
relationship between the next-state rule each cell obeys and the general form the system
converges to. An algorithm is needed to design the next-state rule, f (), of a regular CA such
that the automata converges to a specific pattern. A technique that works for a limited set of
patterns simply assumes the automata has already reached this final pattern, derives the rules
each cell must obey in order to stay in the same state then forces every other input combination
to a next-state of zero. Figure 7(a) shows a simple example of a pattern to which we would like
the automata should converge, figure 7(b) shows the next-state rule, f (), that each cell must
obey such that the automata converges to this pattern. This example can also use an algebraic
next-state rule:

ci,j,t+1 = 1 − ci−1.j.t − ci,j−1,t (46)

Figure 8 shows the automata using equation (46) to converge from null (a) and random (b)
initial conditions.

1 0
0 1

ci−1,j,t ci,j−1,t ci,j,t+1

0 0 1
0 1 0

1 0 0

1 1 0

(a) (b)

Fig. 7. A CA pattern and the necessary next-state rule for each cell

t = 0
0 0

0 0

5 6

-5 1

↓ ↓
t = 1

1 1

1 1

1 -4

-4 0

↓ ↓
t = 2

1 0

0 -1

1 0

0 9

↓ ↓
t = 3

1 0
0 1

1 0
0 1

(a) (b)

Fig. 8. Example CA convergence from null (a) and random (b) initial conditions

There still exist certain patterns that cannot be generated using this simple deterministic
algorithm. This is because the same two input combinations cannot map to different output
values. Figure 9(a) shows a pattern that cannot be formed using this approach if the inputs are
from above and to the left of each cell.
This is because a portion of this pattern is impossible to form with f () alone because it would
require f (2, 2) = 2 for cell c2,3 and f (2, 2) = 1 for cell c3,3, something that is not permissible in
a many-to-one mapping.
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Fig. 9. A pattern for which the design is not trivial

To this end additional computation must be introduced in the form of a many-to-one
state-to-output mapping function denoted by g(). Figure 10(a) shows an example
implementation of how the next state and output of each cell might be calculated. The reader
is referred to (Jones et al., 2008) for further information.

Fig. 10. A possible implementation of f () and g()

Thus the pattern of figure 9(b) could be rewritten as figure 11(a). The state of cell c1,2 has
been replaced with the first available integer that does not form a mapping that contradicts
previously determined mappings. Figure 11(b) is the mapping from figure 9(b) to figure 11(a)
and figure 12 is the next-state rules each cell must obey.
By introducing as many state values for each output as is necessary, any desired pattern can
be generated. However an optimum solution would use as few state values as possible. If
the sequence in which cells are assigned a state value starts from the corner furthest from the
direction of state-input, a minimum number of state values will be needed. Hence if the inputs
are taken from above and to the left of each cell, the first cell to be assigned a value would be
the cell in the bottom-right of the array.
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4 4 4 2

1 2 3 2
2 2 1 1

2 2 1 1

ci,j,t output

1 1
2 2

3 2

4 1
5 1

6 1

(a) (b)

Fig. 11. A solution to figure 9(b)

ci−1,j,t ci,j−1,t ci,j,t+1

0 0 6

0 4 2
0 5 4

0 6 5

1 0 2
1 1 1

1 2 1

2 1 1
2 2 2

2 3 2

4 2 3
5 1 2

6 0 1

Fig. 12. The ruleset to figure 9(b)

Figure 13 shows the CA converging from null initial conditions. Figure 14 shows the CA
converging from random initial conditions.
Implementing the design algorithm using a python script, the derivation for this 120 by 60 cell
convergent CA took 180 seconds to complete on a 3.2GHz Intel Xeon processor.

6. Fundamental criteria for convergence of a self-assembling systems

We have so far only considered systems of cells which are pre-arranged into regular arrays. If
the state of each cell also includes the position at which a cell should reside relative to other
cells, the analysis can be extended to the design of self-assembling systems.
The scheme proposed so far relies on each cell computing its next-state from the current state
of two neighbouring cells; the relative location of each neighbour to the cell is common to
every cell in the array. Therefore if one cell updates according to the state of cells above
and to the left of itself, so does every cell. In a rectangular array of cells, most will have two
neighbours upon which they determine their next state from, some will have one neighbour
and one will have no neighbours. In effect the desired pattern emerges from this one cell (the
origin cell); as shown in figure 15(a). In the case of a partially-assembled CA, or a CA that
converges to form an irregular shape, this is not necessarily the case. This is shown in figure
15(b).
A solution is to allow each cell to determine its next-state according to the current state of
two neighbouring cells as before, but to determine which two cells (above or below, to the
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Fig. 13. The convergence of a 120 by 60 CA from null initial conditions

Fig. 14. The convergence of a 120 by 60 CA from corrupt initial conditions
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(a) (b) (c)

Fig. 15. Inputs combinations, an irregular 2D CA and the flow of state information from the
origin cell

left or right) according to its current state. Thus, while one cell may determine its next-state
according to cells above and to the left of itself, another might determine its next-state
according to cells from below and to the right of itself. This “state to neighbourhood-function”
is a many-to-one mapping (see figure 16).

Fig. 16. The state-neighbourhood function mapping

If we divide the CA into partitions with common neighbourhood configurations (as shown
in figure 15(c)), where each partition directly or indirectly derives its neighbouring states
from the first partition (P1) which contains the origin cell, the pattern of this irregular CA
effectively emerges from the origin cell. Thus provided f () conforms to the requirements for
the automata to converge, a multiple-partition automata with f () as its transition function,
will also converge to a steady pattern.

6.1 Determining the local rules for an irregular CA to converge to an arbitrary pattern

The design algorithm for a convergent irregular CA is similar to that for a regular CA.
The desired pattern is first divided into partitions of cells with common neighbourhood
configurations. This is done so as to maximise the size of each partition. This maximises the
number of cells that have two neighbours in their neighbourhood configuration, thus reducing
the number of state values needed for the design.
The design algorithm is then applied to each partition in turn. The sequence of partitions is
reversed, so the first partition to be solved is the partition furthest from the origin cell. There
are now three mappings against which each state-assignment must be tested:

1. The mapping from the current state of its neighbours to the next state of the cell (g()).

2. The mapping from the current state of the cell to its output (h()).

3. The mapping from the current state of the cell to the relative location of the neighbouring
cells to which it transmits this state.
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Every mapping created by each state assigned by the design algorithm must first be tested
against each mapping previously created by the design algorithm, including those created for
cells in different partitions.

6.2 The assembly algorithm

In previous demonstrations the automata has consisted of a pre-assembled array of cells.
However the new algorithm makes the self-assembly of the automata possible. If un-used cells
fasten themselves to used cells only where that cell is transmitting state-values, the automata
will self-assemble from the origin cell until complete. This self-assembly depends on the origin
cell already existing.

6.3 Demonstration

Figure 17 shows the five partitions of a 1000 cell 2D system. Figure 18 shows this system
self-assembling and converging to the desired stable shape. Figure 19 shows this same system
self-healing from a corrupted shape.
Implementing the algorithm of section 6.1 using a python script, the derivation for this 1000
cell self-assembling system took 30 seconds on a 3.2GHz Intel Xeon processor.

Fig. 17. The partitions of a 2D array of 1000 cells

7. Designing 3D self-assembling systems

To adapt the design algorithm so far presented for the design of 3D systems is straightforward.
To expand the analysis presented in section 3 to consider the convergence of 3D automata we
must replace the row-major vector representation of the automata with a row-column-major
vector. This analysis shows that for a 3D automata to converge each cell must determine its
next-state according to the present state of at most three neighbours; one per axis.
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Fig. 18. The array self-assembling and converging from the origin cell

Fig. 19. The array converging from a corrupt pattern

390 Cellular Automata - Innovative Modelling for Science and Engineering

www.intechopen.com



Thus f (), the transition function used by each cell to determine its next-state, must be a
function of three variables and the design algorithm of section must be adapted to reflect
this.
Figure 20 shows the 80 partitions of a 3D irregular system of 55,000 cell. Figure 21 shows this
3D irregular system of identical cells self-assemble into the desired form. Figure 22 shows the
same system repair itself after being corrupted.
Implementing the algorithm of section 6.1 using a python script, the derivation for this 55,000
cell 3D self-assembling system took 12 hours on a 3.2GHz Intel Xeon processor.

Fig. 20. The 80 partitions of a 3D robot shape, each colour is a different partition

The design required 31,637 rules and 4692 states. This compares with the 55,000 that
would be required for a cartesian design (suitably adapted to cope with irregular shapes).
As there is little evidence of hierarchy in the design, a hierarchical map would offer
little improvement over a cartesian design. The successes of the adaptive euler-solver and
evolutionary algorithms to small self-assembling systems design do not easily scale to larger
systems. Their application to the design of a 55,000 cell system would require prohibitive
computational resources.

8. Conclusions

During the self-assembly of a system of identical cells, each cell independently determines its
state and location within the system based on local interactions with neighbouring cells and
an algorithm common to each cell.
Various schemes for this algorithm have been investigated. A co-ordinate scheme; each cell
determining its location from the location of its neighbours then using a map to determine
where and what type of cell it should be - works for small systems but the size of the map
each cell must store is impractical for larger systems. Computational genetic algorithms have
been successfully used to create more efficient self-assembling solutions, but only for small
simple systems. Thus an alternative is needed for large complicated systems.
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Fig. 21. A 3D system of 55,000 cells self-assembling from the origin cell

Fig. 22. The same 3D system self-healing from a corrupt shape
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In this chapter we have presented a new, deterministic algorithm that can design
self-assembling, self-repairing systems in two and three dimensions. The solutions generated
by this design algorithm are often more efficient than those based on a co-ordinate scheme
and capable of forming larger, more complicated systems than those designed by genetic
algorithms.
This research has a broader application potential than just self-assembling robotics. Here we
list a few of the fields where morphogenesis-inspired self-assembly may have applications:
Self-assembling micro and nano systems. Attempts to engineer biological, chemical and
nano systems to self-assemble to a particular form have been limited by the difficulties of
creating specific modules. If overcome, the limited complexity of each module will restrict
any attempts to implement complicated self-assembly algorithms. Thus the bio-inspired
minimalist strategy presented here may be an appropriate scheme.
Self-assembling micro-electromechanical systems (MEMS). Attempts to engineer MEMS
to self-assemble are currently limited by the difficulties of manufacturing the complicated
locomotive and inter-module bonding mechanisms. However this field is making progress
in the development of small, easy to manufacture components capable of locomotion
and gripping. As smaller components become possible, the emphasis on the self-assembly
algorithms will be on simple schemes capable of assembling large numbers of components.
Image processing and compression. Images can be encoded as a self-assembling cellular
automata described by its next-state rule. Analysis of this rule provides insight into repetition
and feature scale within the image. For some images, especially images which contain
repeating pattern, this next-state rule is smaller than the image bitmap - providing a means
for losslessly compressing an image.
Distributed computing. Computing systems formed from large collections of
processing elements are particularly difficult to co-ordinate and write software for.
Morphogenesis-inspired software may provide a means of self-organising these systems, be
they supercomputers or smart dust.
Plastic electronics. These are electronics that no longer reside on standard FR4 composite
PCBs. Instead their components are laid on flexible substrates that are prone to stretching
and ripping. One of the few remaining hurdles to the commercialisation of this technology
is reliability - billions of plastic radio-frequency identification (RFID) tags cannot be printed
if ten percent will fail, nor can large flexible LCD screens be rolled up if the system cannot
withstand the stretching of the substrate. Morphogenesis-inspired reliability engineering may
be one means of overcoming this hurdle.
Space technology. Since 2002 NASA have been running a series of workshops under the title
“Ultra reliability”; this with the goal of increasing systems reliability by an order of magnitude
across complex systems, hardware (including aircraft, satellites and launch vehicles) and
software (Shapiro, 2006). It is not difficult to see the challenges that standard redundancy
techniques will face in long life missions that are vulnerable to cosmic rays.
Heat-resistant processors. Failure rates of electronic systems increase exponentially with
temperature, so perhaps morphogenesis-inspired reliability could enable computer processors
to run without needing cooling fans.
Multi-agent techniques. A popular technique for modelling complex systems in software,
multi-agent systems study the global effects of locally-interacting agents. Where some global
effect is required of the system, it is normally very difficult to design appropriate rules of
the local behaviour of the agents. We have limited this current research to the domain of a
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specific type of multi-agent system, cellular automata, but it may prove applicable to the larger
domain.
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