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1. Introduction

Cellular automata (CA) are particularly well suited for cryptographic application and there
are several previous studies in this topic (Benkiniouar & Benmohamed, 2004; Gutowitz, 1995;
Kari, 1992; Nandi et al., 1994; Oliveira et al., 2004; 2008; Seredynski et al., 2003; Tomassini
& Perrenoud, 2000; Wuensche, 2008; Wolfram, 1986). Since CA rule is simple, local and
discrete, it can be executed in easily-constructed massively-parallel hardware at fast speeds.
Basically, the CA-based cryptographic models can be divided into three classes: (i) models
that use CA to generate binary sequences with good pseudo-random properties, which are
used as cryptographic keys, but the effective ciphering process is made by another function
(Benkiniouar & Benmohamed, 2004; Seredynski et al., 2003; Tomassini & Perrenoud, 2000;
Wolfram, 1986); (ii) models based on additive, non-homogeneous and reversible CA, that
use algebraic properties of this kind of rules to generate automata of maximum and/or
known cycle (Kari, 1992; Nandi et al., 1994); and (iii) models based on irreversible CA, which
uses the backward interaction of cellular automata in the ciphering process and the forward
interaction to decipher (Gutowitz, 1995; Oliveira et al., 2004; 2008; 2010a; Wuensche, 2008), as
the cryptographic model discussed here.
Gutowitz has previously proposed a cryptographic model based on backward evolution of
irreversible CA (Gutowitz, 1995). A toggle CA rule transition is used as the secret key in his
model. A pre-image of an arbitrary lattice is calculated adding extra bits in each side of the
lattice. This increment is pointed as the major flaw in the model. CA backward interaction
is also known as pre-image computation and an efficient reverse algorithm was proposed by
Wuensche and Lesser (Wuensche & Lesser, 1992) for a periodic boundary condition, keeping
the pre-image with the same size of the image. Such algorithm was evaluated as encryption
method in (Oliveira et al., 2008). However, its usage has the disadvantage that there is no
guarantee of pre-image existence for any given lattice and any given rule. The only rules with
assurance of pre-image existence are not appropriate for ciphering because they do not exhibit
a chaotic dynamics.
Thus, a new approach was proposed, which alternates the original reverse algorithm and the
variation that uses extra bits, using the second only when the pre-image computation fails.
This variation is similar to pre-image computation adopted in Gutowitz model (Gutowitz,
1995). Although this approach needs to add bits to the ciphertext when a failure occurs, it is
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expected that in practice few failures happen and the ciphertext length will be equal or close to
the plaintext. In the resultant method, encryption always succeeds and the final length of the
ciphertext is not fixed. This method was named Variable-Length Encryption Method (VLE)
(Oliveira et al., 2010a).
Initial experiments were performed using small sets of radius 2 and radius 3 toggle rules.
Subsequent experiments were performed using a representative rule set formed by all radius
2 right-toggle rules, totalizing 65536 rules. These rules represent 50% of the possible secret
keys in radius 2 space, being that the other 50% are the all radius 2 left-toggle rules, which
are dynamically equivalent to the set analyzed. Based on an exhaustive analysis of this rule
space we concluded that, considering a cryptographic purpose, there are a lot of undesirable
behavior rules in the complete set that must be avoided as secret keys; they represent
approximate 5% of the rule space investigated.
It was employed an analysis based on several CA static parameters, trying to capture a pattern
associating such parameters to underperforming rules. Static parameters like Z, Sensitivity,
Absolute Activity, Activity Propagation and Neighborhood Dominance (Oliveira et al., 2001)
were investigated to capture the pattern associated to underperforming rules. A database was
generated associating rules performance in VLE ciphering with their parameters. A genetic
algorithm-based data mining was performed to discover adequate key specifications based
on CA parameters. We deeper investigate these specifications using them as to filter the set
of radius 2 rules as to elaborate new radius 3 rules. By applying such methodology it were
able to discover good secret key specifications for VLE. Using such specifications, ciphertext
length is short, encryption process returns high entropy and VLE has a good protection against
differential cryptanalysis.
This chapter is organized as follows. Section 2 presents some concepts related to cellular
automata with emphasis on forecast behaviour CA parameters. Section 3 reviews some
previous CA models related to the cryptographyc model discussed here. Section 4 details the
major steps of VLE cryptographic model. Section 5 presents results of experiments performed
to evaluate VLE´s ciphering quality and to find a good specification of toggle rules to be used
as secret keys. Section 6 presents the major conclusions.

2. Cellular automata definitions

Cellular automata (CA) are discrete complex systems that possess both a dynamic and a
computational nature. A cellular automaton consists of two parts: the cellular space and the
transition rule. Cellular space is a regular lattice of N cells subjected to boundary conditions.
A state is associated to each cell at time t. The transition rule τ yields the next state for each
cell as a function of its neighbourhood. At each time step, all cells synchronously update
their states according to τ. For one-dimensional (1D) CA, the neighbourhood size m is usually
written as m = 2R + 1, where R is CA radius. In binary-state CA, the transition rule τ is given
by a state transition table which lists each possible neighbourhood together with its output
bit, that is, the updated value for the state of the central cell.
A special kind of CA rule is used as the secret key in the cryptographic model discussed
here: they are toggle transition rules. A CA transition table is said to be a toggle rule if it is
sensible in respect to a specific neighborhood cell, that is, if any modification of the state on
this cell necessarily provokes a modification on the new state of the central cell, considering all
possible rule neighborhoods. Considering one-dimensional radius-1 CA, the neighborhood is
formed by three cells and they can be sensible in respect to the left cell, to the right cell, and to
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the central cell. For example, elementary rules 00101101, 10011010, 10010110 are left-toggle,
right-toggle and left-and-right-toggle rules, respectively.
The dynamics of a cellular automaton is associated with its transition rule. In order to help
forecast the dynamic behavior of CA, several parameters have been proposed in the literature,
as the precursor lambda parameter (Langton, 1990). Some forecast parameters had shown to
be important in the analysis of the key space related to the cryptographic model discussed
here. They are briefly discussed following.

2.1 Z

The definition of Z parameter derived from the pre-image calculus algorithm and it is
composed by Zle f t and Zright. Let us assume that a part of a pre-image of an arbitrary
lattice configuration is known and that we want to infer the missing cell states, successively,
from left to right. Zle f t is defined as the probability that the next cell to the right in the
partial pre-image has a unique value, and it is directly calculated from the transition table,
by counting the deterministic neighborhoods. Zright is the converse, from right to left. Z
parameter is the greater of Zle f t and Zright. A detailed explanation about this parameter is
given in (Wuensche, 1998). In (Oliveira et al., 2001) an analysis of Z parameter is presented
and the main conclusions are: (i) it is good discriminators of the chaotic behavior (ii) rules
with a Z value close to 1 have high probability to be chaotic. The components Zle f t and Zright

have shown very important in the specification of the rule transitions used as secret keys in
the method discussed in (Oliveira et al., 2008).

2.2 Symmetry

During the evaluation of reverse algorithm described in (Oliveira et al., 2008), a characteristic
that have shown important to secret key specification was the symmetry of the output binary
sequence representing a transition rule. Let m be the number of cells considered in the
neighborhood of a binary cellular automaton and the rule transition defined by k output bits
(k = 2m): b0, b1, ..., bk−1. The symmetry level (S) is the number of pair of bits bi and bk−i−1

(0 ≤ i ≤ k/2 − 1) that have the same value. It can be normalized divided by the total
number of pairs (k/2). For example, considering radius-1 CA rules, the symmetry level of
rules 10111101, 10110010 and 10001111 is 1, 0 and 0.25, respectively. The importance of this
parameter in the specification of CA rules suitable for encryption was first noted due to the
low number of lattices with at least one pre-image when rules with S equal to 1 are used.
That is, the secret key can not be a palindrome. This parameter has also demonstrated to be
relevant in another classical problem in the context of cellular automata field: to find rules able
to classify the density of 1s of a given lattice, the density classification task (DCT). Such kind
of pattern was observed when analyzing good rules suitable to perform DCT (de Oliveira et
al., 2006). Recently, when working with the equivalent dynamical transformations of a CA
rule (reflection, complementary and complementary-plus-reflection) we perceived that this
symmetry is directly related to the bits used to perform the complementary transformation.
In this sense, a rule with S = 0 does not have a complementary equivalent rule, because
when we apply the transformation it returns to the same rule. For example, rule 01101001
of elementary space. Conversely, rules with S = 1 has a complementary rule formed by
the complement of the output bits. For example, equivalent elementary rules 01100110 and
10011001.
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2.3 Absolute activity

This parameter came from the analysis of lambda parameter (or Activity) Langton (1990);
it measures only the rule’s activity level counting how many transitions lead to state 1,
regardless of the states of the neighbors. The goal of Absolute Activity parameter was to
improve the measure of activity verifying the transitions that lead to a different state of the
central cell’s state or it’s neighbors (Oliveira et al., 2001). It quantifies how much change is
entailed by the rule, in the state of the central cell, in relation to the current state of the central
cell, and the states of the pair of cells which are equally apart from the centre (Oliveira et al.,
2001).

2.4 Neighborhood dominance

It verifies whether the new value of the central cell "follows" the state that appears the most
in the neighborhood (Oliveira et al., 2001). For example, in transition 100 → 1 there is no
neighborhood dominance, although the central cell changes. Besides, a relative weight is
associated to each neighborhood in such way that greater is the homogeneity, greater is the
weight of dominance associated to this neigborhood. For example, in elementary space, the
neighborhoods 000 and 111 have weigth 3, and the others, 1 (Oliveira et al., 2001).

2.5 Core entropy

Let τ be the CA transition rule, R the radius, m = 2R+ 1 the neighborhood size and n = 2m the
number of neighborhoods (size of the rule). In a toggle rule, we know that if the neighborhood
Ti has output X, for 0 ≤ i < n:

• If it is right toggle:

– If i is even, Ti+1 → X;

– If i is odd, Ti−1 → X;

• If it is left toggle:

– If i is < n/2, Ti+n/2 → X;

– If i is ≥ n/2, Ti−n/2 → X;

So, if we know half of the rule, we can generate the rule. A default rule generator is the
sequence of the cells in even positions if the rule is right toggle, and the first half of the rule, if
it is left toggle. This generator rule is called rule core. The Core Entropy is the spatial entropy
associated to this core (Oliveira et al., 2010b).

3. Previous CA-based cryptographic models

A classification scheme of the previous approaches used in CA-based cryptographic models
has been presented in the introductory section of this work. In the present section the
methods which use irreversible CA are revised. In the first sub-section we revise the methods
that use toggle rules, which return a strong and fixed increase in the ciphertext length in
relation to the original plaintext. In the second sub-section we revise the methods that
investigated the employment of the reverse algorithm proposed by (Wuensche & Lesser,
1992) as a ciphering process aiming to keep the ciphertext in the same length of the related
plaintext. A comparative analysis of two similar proposes described in (Oliveira et al., 2008)
and (Wuensche, 2008) are also presented.
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3.1 Toggle rules-based methods

Gutowitz proposed and patented the first cryptographic model based on backward evolution
of irreversible CA (Gutowitz, 1995). His model uses toggle transition rules (section 2) as
secret keys. Gutowitz used irreversible CA with toggle rules - either to the right or to the
left - for encrypting. Toggle rules turn possible to calculate a pre-image of any lattice starting
from a random partial pre-image. Using this method, a pre-image of any lattice is calculated
adding R extra bits in each side of the lattice, where R is the radius of the rule. Consider an
initial lattice of N cells and a right-toggle transition rule with radius 1: the pre-image will
have N + 2 cells. Suppose that two initial bits X and Y are randomly chosen to start the
pre-image calculation and they are positioned in the left border of the lattice. The state of
the next right cell (the third one) is deterministically obtained because the only two possible
transitions are XY0 → T and XY1 → T. One can check the value of first cell in the initial
lattice to see if it is T or T and to determine if the third cell in the pre-image is 0 or 1. Once
the state of the third cell is determined, the next step is to determine the state of the forth
cell and the other cells successively up to completing the entire pre-image. The right-toggle
property of the transition rule guarantees that the entire N + 2 pre-image cells can be obtained,
step-by-step, in a deterministic way. The same process can be done for left-toggle rules and in
this case the initial cells must be positioned in the rightmost side. A fundamental characteristic
in Gutowitz’s model to guarantee pre-image for any lattice is the usage of a non periodic
boundary condition. When the pre-image is obtained the extra bits are not discarded and they
are incorporated to the lattice. Therefore, it is always possible to obtain a pre-image for any
initial choice of bits. As the length of initial bits is 2R, it is possible to obtain 22R different
pre-images for each lattice. Therefore, the cellular automaton is irreversible. This pre-image
calculus is specific to the ciphering method and it can be used only when applying toggle
rules.
A toggle transition rule τ is used as the secret key in Gutowitz’s cryptographic model. The
plaintext is the initial lattice and P pre-images are successively calculated, starting with
random initial bits (2R cells) at each step. The ciphertext is given by the last pre-image
obtained after P steps. The decryption process is based on the fact that the receptor agent
knows both τ and P. By starting from the ciphertext the receptor just needs to apply the
transition rule τ forward by P steps and the final lattice will be the plaintext. Let P be the
number of pre-image steps, N the length of the original lattice and R the CA radius. The
method adds 2R bits to each pre-image calculated and the size of the final lattice is given by
N + 2RP. For example, if 50 pre-images were calculated using a radius-2 rule starting from
a plaintext of 128 bits, the size of the ciphertext would be 328. Clearly, it is not a negligible
increment and it is pointed as the major flaw in Gutowitz’s model.
A high degree of similarity between ciphertexts when the plaintext is submitted to a little
perturbation was identified as another flaw in Gutowitz’s model. The original model was
altered by using bidirectional toggle CA rules (to the right and to the left simultaneously) in
(Oliveira et al., 2004). The experiments with this model show that the similarity flaw was
solved with such a modification and it is protected against differential cryptanalysis (Oliveira
et al., 2004). However, the ciphertext increase in relation to the plaintext length remains in this
model.

3.2 Reverse algorithm-based methods

An algorithm for a generic pre-image computation was proposed in (Wuensche & Lesser,
1992). This algorithm is known as reverse algorithm and it is based on the idea of partial
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neighborhoods. The complete description of this method can be found in (Wuensche & Lesser,
1992) and a summary in (Oliveira et al., 2008). Before starting the calculus, R cells are added
to each side of the lattice corresponding to the pre-image, where R is the CA radius and the
algorithm starts the calculus of the pre-image, randomly initializing the 2R leftmost cells. This
procedure is similar to the start of the pre-image calculus used in Gutowitz’s model. However,
in a periodic CA boundary condition, the last cells need to be validated. The pre-image
calculus is concluded verifying if the initial bits can be equal to the final 2R rightmost ones. If
so, the extra bits added to each neighborhood side are discarded returning the pre-image to the
same size of the original lattice. If no, the process returns again to use the last option stored in
a stack, which contains the not evaluated possible values until this point of computation. The
reverse algorithm finds all the possible pre-images for any arbitrary lattice and any arbitrary
rule transition.
The reverse algorithm was evaluated as an encryption method in (Oliveira et al., 2008). An
advantage of this method is that it can be applied to any kind of CA rule. So, it is not a
specialized method as the one used in Gutowitz’s model that works only with toggle rules.
However, its application as a ciphering process has the disadvantage that there is no guarantee
of pre-image existence for any given lattice and any given rule transition. On the other hand,
it is well-known that for a fixed lattice the large majority of cellular automata rule space has
a lot of lattice configurations with no pre-images; they are known as Garden-of-Eden states
(Wuensche & Lesser, 1992). Therefore, the major challenge to apply the reverse algorithm as a
viable cipher method is to find a manner to guarantee the existence of at least one pre-image
for any possible initial lattice representing a possible plaintext to be encrypted.
The first attempt to solve this problem was to use Z parameter (Wuensche, 1998) in rule
specification (Macêdo et al., 2008). It was already known that as higher is the Z value
associated to a CA transition rule as higher is the probability of the cellular automation
exhibits a chaotic behavior (Oliveira et al., 2001) and as higher is the probability of a pre-image
existence for any lattice (Wuensche, 1998). Initially, the set of CA rules with Z equal to 1 was
chosen as potential rules to use as secret keys in a cryptographic model based on the reverse
algorithm. However, the first analysis of some simple Z = 1 rules (elementary rules and some
other radius 2 binary rules manually constructed) have shown that this specification would
not be enough to guarantee of pre-image existence. When this first Z = 1 set of rules was
applied to encrypt random texts with usually cipher-block sizes (32, 64, 128 bits), it was not
possible to cipher a lot of tested initial lattices. Aiming to discover the ideal specification for
a 100% of pre-image existence rule, a simple genetic algorithm (GA) was implemented to find
CA rules with a desirable characteristic (for example, as specific value of Z parameter). The
implemented GA aids the process of generating rule sets to be evaluated as secret keys but it
is not properly a part of the cipher method. Using GA it was possible to evaluate samples of
rules with different specifications and several parameters related to the CA context have been
evaluated as the dynamical forecast parameters Z (Wuensche, 1998), lambda (Langton, 1990),
sensitivity (Binder, 1994), neighborhood dominance (Oliveira et al., 2001) and so on. The
parameters that have presented more dependence to the 100% of pre-image existence problem
was the components of Z known as Zright and Zle f t and the symmetry level parameter S
explained in section 2. When a set of rules generated by GA with specification Z equal
to 1 were applied to cipher some lattices samples with fixed length (32, 64 and 128 bits), a
wide range of performance was obtained, from 0% to 100% of encrypted lattices. However, a
clear characteristic have emerged from the analysis of these rules: the worst performance was
obtained applying Zle f t = Zright = 1 rules and S = 1 rules.
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Using this information, the set of Z = 1 rules could be improved, avoiding these
characteristics. Due to Z definition (Wuensche, 1998), considering a rule with Z equal to
1, either Zright or Zle f t necessarily must be equal to 1. However, the other component is
independent and can assume a value from 0 to 1. As we mentioned before, one component
must be equal to 1 and the other must be different of 1 to avoid the worst performance.
On the other hand, the symmetry level equal to 1 also has to be avoided. Following this
observation, a set of rules was generated with the opposite characterization: rules with a low
level of symmetry (< 0.25) and with one of the components of Z (Zle f t or Zright) equal to 1 and
the other with a low value (< 0.25). Some initial experiments with this set have return in a
first moment a mistaken conclusion that the "ideal rule specification" for a 100% of pre-image
existence was found since they returned 100% of performance when tested in several samples
of 32, 64 and 128 bits (Macêdo et al., 2008). However, an undesirable characteristic has been
latter discovered when the dynamical behavior of some rules of this "ideal" set were analyzed:
they are not chaotic rules as expected for Z = 1 rules; conversely, they are fixed-point
behavior rules (with a spatial shift) (Oliveira et al., 2008) Some experiments using an entropy
measure to characterize the difference between two ciphertexts obtained encrypting to very
similar plaintexts have confirmed this observation for the majority of the rule set, because
the associated entropy of this ciphering was very low. So, they cannot be used as secret
keys since they are not able hide the original information, a primordial pre-requisite for
any encryption process (Oliveira et al., 2008). Therefore, a trade-off was established when
specifying a transition rule to be used with the reverse algorithm: if the rule is perfect in
respect to the existence of pre-images, it does not have a chaotic behavior; if the rule is perfect
in respect to the chaoticity, it can not be able to calculate the pre-image for a large range of
possible plaintexts.
A new round of experiments were performed in (Oliveira et al., 2008) using Z = 1 rules with
an intermediate level both for symmetry and Zle f t/Zright balance: 0.25 < S < 0.5 and 0.25 <

Zle f t < 0.5 and Zright = 1. A sample of 100 radius-2 CA rules were evaluated calculating 128
consecutive pre-images starting from 1000 random lattices of 512 bits. All the rules were able
to calculate the 128 consecutive pre-images for all 512-bits lattices. Besides, the average of the
mean entropy obtained for all the rules was high (0.8857) indicating that they exhibit a chaotic
behavior. An important final observation is that although it was possible to specify rules with
a high probability to find at least one pre-image for any lattice and with a good perturbation
spread, even the better rules evaluated can fail when the pre-image computation is applied to
some lattice.
The major conclusion of the analysis in (Oliveira et al., 2008) is that the simple adoption of
the reverse algorithm is not recommended because the possible rules with 100% guarantee of
pre-image existence are not appropriate for ciphering. Two alternative approaches have been
emerged. The first is the application of a variation of the reverse algorithm in which extra
bits are added to the lattice in each cipher step, similar to the process adopted in Gutowitz’s
cryptographic model. Using this approach the 100% guarantee of pre-image existence was
obtained with a good level of entropy. However, this approach is affected by the same
disadvantage of Gutowitz’s model: a considerable and fixed increase in the ciphertext in
relation to the original one. The second propose in (Oliveira et al., 2008) is a method based
on the original reverse algorithm adopting a contour procedure to apply when the pre-image
calculus fail. As the secret key specification previous discussed gives a low probability to
this failure occurrence, we expect to rarely use this contour procedure but it guarantees the
possibility to cipher any plaintext. This method, which is the key point of the present work,
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alternates the original reverse algorithm and the variation that uses extra bits in the ciphering
process, using the second only when the pre-image calculus fails. Although this approach
needs to add some bits to the ciphertext when a failure occurs, it is expected that in practice
few failures happens and the ciphertext length will be equal or close to the plaintext. The
general idea of this second approach was proposed in (Oliveira et al., 2008) but it has been
redefined, implemented and tested first in (Oliveira et al., 2010a). Sections 4 and 5 details the
method and presents experiments performed to evaluate and to improve its and the properly
specification of the secret keys to have a reasonable final length.
In a certain sense, the method proposed in (Wuensche, 2008) is very similar to the initial
method proposed in (Oliveira et al., 2008). It is also based on the employment of the reverse
algorithm to encrypt a plaintext through successive pre-image computations, obtaining a
lattice correspondent to the ciphertext. Deciphering method is performed by CA forward
evolution. Therefore, in essence the idea is the same one applied in the original method
described in (Oliveira et al., 2008), even so the methods have been proposed in an independent
way. The problem of finding rules with 100% guarantee of pre-image existence was also
addressed in (Wuensche, 2008). Aiming to guarantee a good performance of the algorithm
in the ciphering process, the author indicates that keys must be chain-rules with Zle f t = 1
and 0.5 < Zright < 1. The treatment given to failure occurrences when performing
pre-image calculus is an important point to discern the two works in (Oliveira et al., 2008) and
(Wuensche, 2008). The author in (Wuensche, 2008) said that: "for big binary systems, like 1600,
the state-space is so huge, 21600, that to stumble on an unencryptable state would be very unlikely,
but if it were to happen, simply construct a different chain rule". However, there is a practical
viability of any cipher method only if this method assures the encryption of any plaintext
and that the suggested secret key discarding in the case of failure cannot be adopted in a
communication system. Moreover, even with the adoption of lattices with high length (as
1600 bits suggested in (Wuensche, 2008)) the use of rules with Zright/Zle f t > 0.5 do not avoid
the occurrence of rules with a high number of Garden-of-Eden states. Systematic experiments
were not presented in (Wuensche, 2008) to evaluate this possibility. We performed several
experiments using different groups of rules with radius 3 and Zle f t = 1. Approximate 200
rules have 0.75 < Zright < 1 and some of them do not return a good performance attempting
to calculate 20 consecutive pre-images. Therefore, even using a large lattice and a rule within
the specification suggested in (Wuensche, 2008), it is clear that a failure can happen during
the ciphering process. As example of rule of such undesirable performance we can point rule
569A99965999596AA965666AA666A699. Thus, the alternative method discussed in (Oliveira
et al., 2008) to deal with situations in which the reverse algorithm did not obtain the pre-image
is a necessary approach. It is the key point of the method investigated in this work.

4. Variable length encryption method

Since the main conclusion of the analysis in (Oliveira et al., 2008) is that the simple adoption
of the reverse algorithm is not possible, an alternative method was investigated in (Oliveira et
al., 2010a). It is based on reverse algorithm adopting an alternative procedure to apply when
the pre-image computation fails (Oliveira et al., 2008). It is expected that with an appropriate
key specification there is a low probability to this failure occurrence. The alternative procedure
adds extra bits only when the pre-image is not possible to calculate. Therefore, it is expected to
rarely use this procedure but it guarantees the possibility to cipher any plaintext. For practical
reasons related to encryption speed, it can be better to limit the method to operate with only
toggle rules. The method works as it alternates rounds of pre-image computation performed
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by reverse algorithm (a variation of Gutowitz’s model for periodic conditions) with few or
none steps of pre-image computation performed by Gutowitz’s model. Ciphering is made
by computing P consecutive pre-images starting from a lattice of size N corresponding to the
plaintext. The secret key is a radius-R CA rule τ generated with an appropriate specification
based CA static parameters.
Suppose that it started to calculate pre-images using reverse algorithm and the secret key τ

and it fails in the K-th pre-image such that K ≤ P. In such situation the ciphering process uses
the modified reverse algorithm with extra bits to calculate the K-th pre-image. Thus, the K-th
pre-image will have N + 2R cells. Ciphering returns again using the original reverse algorithm
to calculate the remaining pre-images. If all the subsequent pre-images computation succeeds
the final ciphertext will have a size of N + 2R. If the pre-image computation fails again,
the ciphering process changes and adds 2R more bits to the lattice. If the process fails in
F pre-images (F ≤ P) the final lattice will have N + 2FR. Starting from a lattice of N
cells, the size of the ciphertext after P pre-images computation is given by N ≤ ciphertext
size ≤ N + 2PR. Therefore, it is a variable-length encryption model, named VLE. However we
expected that in practice the ciphertext size will be next to N due to the characteristics of the
rule used as secrete key. It is important to note that the ciphertext obtained using Gutowitz’s
model will have exactly N + 2PR bits – the worst and improbable situation in the proposed
method. For example, if N = 512, P = 64 and R = 5 the size of the ciphertext using
VLE will be situated between 512 and 1152 bits. However, we expected that in practice the
ciphertext size will be next to 512 due to the characteristics of the rule used as secret key. On
the other hand, the ciphertext obtained using Gutowitz model will be exactly 1152 bits.
Deciphering will be executed applying the forward interaction of cellular automata rules. By
starting from the ciphertext the recipient needs to apply the transition rule τ forward by P
steps and the final lattice will be the plaintext. He also needs to know in which pre-images
failures happened to recover the original text. An improvement of the method in relation
to the one proposed in (Oliveira et al., 2008) is the usage of a non-retroceding method in a
case of failure. Tests performed in (Oliveira et al., 2008) have used the following retroceding
strategy: when calculating a sequence of 10 consecutive pre-images to cipher a plaintext,
suppose that a failure occurs in the 8th pre-image, for example. In this case, the algorithm
returns to the last lattice in which there is a possibility to have another pre-image. So, when
we try to calculate 10 consecutive pre-images starting from a given lattice and this process fail
in the end we can affirm that all the possible backward trajectories were evaluated and it is
really impossible to find 10 consecutive pre-images starting from the given lattice. Using this
retroceding procedure the number of lattices possible to be ciphered by the original reverse
algorithm is increased. However, during the experiments, we perceived that this procedure is
high-time consuming as expected and with low actual return to the final performance of the
rules. Besides, with the increase of the block size, this inefficient behavior is more probable. So
for the simplicity and the speedy of the method, we decided to implement the variable-length
ciphertext method using a non-retroceding method. When the pre-image computation fail,
the method changes to the computation using extra bits without trying to backtrack to find
another pre-image with lower order.
CA backward interaction-based ciphering method is more adjusted to encryption as a
block-cipher method using a restricted lattice length instead of encryption as a stream
cipher method with an arbitrarily large lattice. This argument is motivated by the fact
that the pre-image computation is an algorithm of considerable computational cost. A
major advantage of the pre-image calculus adopted is that the process never retrocedes
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when a pre-image is calculating and it always succeeds, although there is an increase of
cells during the process. Using a parallel hardware in Gutowitz’s model, it is possible
to calculate simultaneously different pre-images to reduce significantly the final time of
processing. Unfortunately, using the reverse algorithm with periodic boundary conditions
this kind of parallelism is not possible. Using the simplification to apply only toggle rules (as
in Gutowitz’s model), it speeds up the pre-image computation, since that will be removed the
ambiguities and there is no possibility of the algorithm to come back in the computation before
arriving at the end of the lattice. However, various pre-image initializations are possible and
typically only one will succeed. Using a stream cipher approach, since reverse calculus is
essentially sequential, the idea to parallel the calculus of a unique pre-image starting from a
specific initialization is probably unfeasible. On the other hand, if a block cipher approach
is used, a parallel architecture can be used to perform the blocks ciphering in a distributed
way increasing the throughput of the entire encryption method. Therefore, we claim that
the employment of the reverse algorithm-based ciphering is more adequate as a block-cipher
method and we suggested the following block sizes: 256 or 512 bits. Although the reverse
algorithm-based block-cipher method can be applied using any operation mode already
investigated in the literature for other block-cipher method (ECB, CBC, PCBC, OFB, CFB
or CTR) (Stallings, 2003), we strongly suggest the use of counter operation mode (CTR) to
increase the security and the throughput of the entire encryption process.

5. Experiments

Using VLE we have the guarantee that ciphering is possible even if an unexpected
Garden-of-Eden state occurs. However a short length ciphertext depends on the secret key
specification. Some initial experiments were performed to analyze method’s performance
and to evaluate rules specification proposed in (Oliveira et al., 2008) and (Wuensche, 2008).
In these experiments small groups of radius 2 and radius 3 rules were used. Section 5.1
presents these experiments. Subsequently, a deeper investigation about an appropriate rule
specification using a more representative key set was carried out. Aiming to perform a more
exhaustive analysis, some experiments were conducted using the complete set of radius 2
right-toggle rules: it was used all possible radius 2 transition rules with Zle f t = 1. Sections 5.2
and 5.3 report these experiments.

5.1 Small sets of radius 2 and 3 rules

A computational environment was implemented to analyze method’s performance and to
evaluate rules specification, starting from the information presented in (Oliveira et al., 2008)
which uses Zle f t, Zright and S. The extreme parameters values (Zright ≤ 0.05, Zright ≥ 0.95,
S ≤ 0.05 and S ≥ 0.95) were excluded due to rules in these ranges present low performance
in relation to either pre-images existence or entropy. Two groups of rules with Zle f t = 1 were
established, each one containing 500 rules for each radius analyzed (2 and 3). The first group
was formed by rules with Zright specified in the range 0.25 < Zright ≤ 0.5 as suggested
in (Oliveira et al., 2008); it was named Group 0. The second group was formed by rules in
the range 0.5 < Zright < 0.95 as suggested in (Wuensche, 2008); it was named Group 1.
Each group was used in the ciphering process using samples of 256 bits plaintexts: 100 initial
lattices randomly generated with a Gaussian distribution. The number of pre-images steps
(P) was defined according to the rule radius (R) (considering the block size of 256 bits): it was
used P = 128 for radius 2 rules and P = 85 for radius 3 ones. The results for each group of
rules are presented in Table 1. The objectives of this investigation are: (i) to determine which is
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the average length of the final lattices (ciphertexts), related to the average number of failures
occurred during the ciphering; and (ii) to determine which is the difference associated to
two ciphertexts obtained starting from two very similar plaintexts, to evaluate the encryption
quality and specially its protection against a differential cryptanalysis-like attack.
(i) Calculating ciphertexts final length: applying the method described in Section 4, any rule
with Zle f t = 1 is able to complete the ciphering process starting from any initial lattice,
independently of the number of pre-image previously established. However, the final length
of the ciphertext can be between N (best case) and N + 2PR (worst case). We want to evaluate
if the expected final length is in fact close to the best case and which is the behavior of each
group in such evaluation. Table 1 presents group performances: the average length of the final
lattice or ciphertext (Lmean) and the average number of failures occurred during ciphering
process (Fmean). Table 1 shows Lmean and Fmean for each group of rules and for each radius
size R. Each average was computed considering 50000 tests: 500 rules applied over 100 initial
lattices.
(ii) Comparing ciphertexts generated by pairs of similar plaintexts: cryptanalysis methods try to
find the plaintext after getting the ciphertext without knowing the secret key. The differential
cryptanalysis is based on the analysis of some pairs of ciphertexts generated by similar
plaintexts. Although the origins of differential cryptanalysis are related to studies in how
to break ciphertexts encrypted by DES algorithm (Biham & Shamir, 1991), Sen et al. (2002)
have used the same idea to analyze their CA cryptosystem named CAC and they compared
their results with the results obtained with DES and AES cryptosystem (Sen et al., 2002). In
this analysis, several pairs of plaintext (X, X′) are used, which differ one of the other by a
fixed and small difference D. Each pair (X, X′) is used to generate a pair of ciphertexts (Y,
Y′) which differ one of the other by a difference D′. D and D′ are obtained by applying
the XOR operations between the pair members. For each pair (Y, Y′), the number of 1s in
D′ is counted, which corresponds to the number of different bits between Y and Y′, and the
standard deviation of this measure is calculated over all the analyzed pairs. As higher the
deviation standard in D′, as higher is the probability of the ciphertext be broken by differential
cryptanalysis. An algorithm with standard deviation below 10% is said to be protected against
differential cryptanalysis (Sen et al., 2002). Difference D between two plaintexts X and X′ was
fixed in only one bit in any arbitrary position over the lattice (single bit perturbation) and the
value of D′ was determined for each plaintext evaluated. D′ was calculated to each pair (Y,Y′)
to obtain the standard deviation (σ) for each group set. The total number of tests is 200000:
50000 tests for each group and for each fixed radius. A standard deviation of 4.47% was
obtained considering all the 200000 tests. Therefore, the proposed CA cryptographic model
can be considered secure in relation to differential cryptanalysis. Considering groups 0 and 1,
we obtained 4.81% and 4.13%, respectively. Table 1 shows the standard deviation (σ) for each
group of rules (0 or 1) and for each radius size (2 or 3).
Additionally, to ensure that the final difference D′ obtained between Y and Y′ generated from
two similar plaintexts X and X′ does not keep any pattern which eventually could help a
cryptanalyst using a differential cryptanalysis-like attack, a second measure was applied: we
calculated the entropy associated to each D′. A measure of spatial entropy was applied on
D′ to evaluate the existence of some undesirable regularity on this difference. Entropy above
0.75 assures a random difference enough to affirm that ciphertexts Y and Y′ do not maintain
any similarity, even so they started from similar plaintexts. Entropy below 0.5 indicates a
strong pattern in difference D′. Entropy values between 0.5 and 0.75 had been considered
fuzzy, since it cannot guarantee the existence of an ordered or random pattern. Therefore, if
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any cryptography method is applied to similar texts returning an average of spatial entropy
(Emean) above 0.75 (with a low standard deviation), it indicates a good protection to differential
cryptanalysis. Furthermore, it assures that the ciphering adds a high level of entropy during
the process, a necessary characteristic in any encryption method.

R N P Group Zright Lmean Fmean Emean σmean(%)

2 256 128
0 0.25 < Zright ≤ 0.5 256.19 0.047 0.89 5.29

1 0.5 < Zright < 0.95 269.80 3.449 0.87 4.32

3 256 85
0 0.25 < Zright ≤ 0.5 267.07 1.845 0.87 4.33

1 0.5 < Zright < 0.95 325.50 11.583 0.85 3.94

Table 1. Mean values obtained for all rules and for the 500 worst rules in each set in first
experiment.

Looking over radius 2 rules in Table 1, rules of group 1 (Zright > 0.5) have high entropy
and a low standard deviation, confirming that these rules quickly spread any perturbation.
However, they produce a significant increase in lattice size, confirming that these rules have
high probability of failures during pre-image computation. The analysis of radius 2 rules
indicated that group 0 presented the best results, i.e. the rules with Zright between 0.25 and
0.5 also have high entropy and low standard deviation in the ciphertext pairs analysis and
the number of expected failures in pre-images is very low (< 0.5), turning the texts ciphered
starting from plaintexts with 256 bits very close to the original size. Analyzing the results
using the radius 3 rules, one can observe that although the rules still presented good measures
related to the pairs of ciphertexts analysis (high entropy and low standard deviation), the final
size of the ciphertexts tend to increase when comparing with radius 2 rules, even that the
number of pre-images used is smaller when using radius 3 rules. Rules with Zright between
0.25 and 0.5 (Group 0) presented again the best performance in relation to the average number
of failures. However, the number of expected failures is above 1 and the expected final length
is almost 5% longer than the original lattice size: 267.07. Group 1 presented a high average
number of failures (above 11 failures in 85 pre-image steps), returning ciphertexts 27% longer
than the original size.
Therefore, Group 0 presented the best performance, despite having increased the average
number of failures from radius 2 to 3; the number of failures is acceptable for both radius
and the final lattices have an average size close the minimum. They represent the rules with
0.25 < Zright ≤ 0.5 as suggested in (Oliveira et al., 2008). Group 1 is formed by the
rules with 0.5 < Zright ≤ 0.95; they represent the rules with Zright > 0.5 as suggested in
(Wuensche, 2008) and presented a non-satisfactory performance: although they returned good
entropy values, they also returned the largest values of ciphertext length. Therefore, they
were considered inappropriate to use in a block-ciphering system, at least in the block size
investigated here: 256 bits. Similar experiments were performed in (Oliveira et al., 2010a) with
other block sizes: as the block size increases, the adequacy of these rules also tends to increase
in both groups. However, as a general conclusion, rules using Group 0 specification returns
better performance than rules like Group 1. Despite of this comparative analysis between
groups’specification, our expectative about the usage of the variable length method had been
confirmed: it has a good quality of ciphering entropy and the ciphertext length is close to the
original block size, specially using rules specified according to (Oliveira et al., 2008). However,
a lot of open questions remained since the experiments were performed based on very limited
samples of rules.
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5.2 Investigating the complete radius 2 rule set with a variable number of pre-image steps

Subsequent experiments were conducted using the complete set of radius 2 right-toggle rules;
all of them have Zle f t = 1 and 0 ≤ Zright ≤ 1. Radius 2 toggle rules are defined by only
16 bits since the other 16 bits are deterministically defined. This set is composed by 65536
(216) rules, being that all of them have Zright =1. These rules represent 50% of the possible
keys in radius 2 space (restricted to use only toggle rules for faster encryption), being that
the other 50% are the left-toggle rules (Zle f t = 1), which are dynamically equivalent to the
set analyzed. We employed the VLE environment to cipher one hundred 256-bits plaintexts
using each right-toggle rule of the complete set. In previous experiments described in Section
5.1 the number of consecutive pre-images employed during ciphering was fixed: P = 128 for
radius 2 rules and 256-bits plaintexts. Here, the number of consecutive pre-image steps was
dynamically defined between 16 and 128, depending on the results obtained during ciphering.
In that way, the ideal number of consecutive pre-images employed during ciphering was also
experimentally investigated. Based on an exhaustive analysis of radius 2 right-toggle rule
space we analyze the effects of using as secret keys the following sets of rules: (i) Fullset - the
complete set of rules in which the unique restriction is the right-toggle property (Zle f t = 1 is a
consequence); (ii) SubsetA - the restricted rule set defined by the specification 0.25 < Zright ≤

0.5 and S = 1 as proposed in (Oliveira et al., 2008). Fullset is formed by 65536 rules while
SubsetA is composed by only 21019 rules (32.1% of Fullset rules). Therefore, using SubsetA

specification, the reduction of possible keys is severe and the number of available secret keys
is reduced to approximate 1

3 .
The objectives of this investigation are the same of those related on last subsection. The first
objective is to calculate ciphertexts final length: Table 2 presents the performance of each
set/subset: the average length of the final lattice or ciphertext (Lmean) and the average number
of failures occurred during ciphering process (Fmean). Each average result was computed
considering the application of each rule of the set to cipher 100 lattices of 256 bits. The
second objective is to compare ciphertexts generated by pairs of similar plaintexts (X, X′)
aiming to verify if the method is secure against differential cryptanalysis-like attacks. D′ was
calculated to each pair of ciphertexts (Y,Y′) to obtain the standard deviation (σ) for each rule
set. Spatial entropy (E) (Oliveira et al., 2008) was calculated on D′ to evaluate the existence
of some undesirable regularity on this difference. E above 0.75 indicates a random difference
enough to expect that ciphertexts Y and Y′ do not maintain any similarity. Table 2 shows σmean

and Emean for each set of rules. We also used entropy E to determine when stop pre-image
computation (P). D′ entropy was calculated in some P steps to determine in which one the
ciphering will be stopped. D′ entropy (E) is first calculated in P = 16. If E is above 0.75 the
pre-image computation stops and the 16th pre-image is the ciphertext. Otherwise, this process
is repeated to P = 32, 64 and 128. If until P = 128 entropy E does not meet 0.75, the ciphertext
is the 128th pre-image. A mean standard deviation (σmean) below 5% was obtained for all
the sets of rules. Therefore, the proposed CA cryptographic model can be considered secure
in relation to differential cryptanalysis. The mean number of faults (Fmean) during ciphering
process is very low for all set - below 0.1 – which returns a mean ciphertext size very close to
the original size 256 bits.
SubsetA returned the smaller ciphertexts, indicating that this specification indeed reduce the
final size as observed in last subsection. When considering the mean entropy of D′ (Emean), all
sets returned high values, above 0.87, indicating that the rules are able to add a high entropy
during ciphering. Therefore, considering only the mean values of each set analyzed, all of
them returned good values on the measures analyzed and there was no need to reduce the set
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of keys. However, the worst performing rules in Fullset indicate the existence of secret keys
not appropriate for ciphering purpose. Such rules are highlighted in the right side of Table 2,
in which only the 500 worst performing rules in each set are considered. The mean number
of faults (Fmean) is above 5 in Fullset, indicating that these rules return ciphertexts with size
superior to 276 bits in average. Moreover, Fmean represents the mean value size for each rule
considering all the 100 lattices used to test it. However, if we consider the worst result in such
lattices, we can find ciphertexts with a considerable size: column Fmax shows the mean of
the maximum ciphertext size obtained considering the 500 worst rules in each set. This metric
highlights the existence of secret keys in Fullset returning ciphertexts with size superior to 290
bits. It was possible to notice that there are more than 200 rules in Fullset returning ciphertext
lengths between 280 and 740 bits in the worst case and more than 270 bits in average. There
are only 17 rules in SubsetA that returns ciphertext length above 300 bits in the worst case
and only 97 rules with mean value between 260 and 280 bits. Therefore, considering the final
ciphertext length, rules of SubsetA presented much better performance both in mean values
considering the entire rule set and in mean and maximum values considering the worst rules
(Table 2). Naturally, this better performance is a consequence of the low number of fails. No
significant difference is clear in mean entropy considering all rules in Table 2. Only when
observing 500 worst performing rules considering entropy values differences are highlighted.
The mean entropy in D′ (Emean) is bellow 0.5 in Fullset and SubsetA, indicating that they do not
perform an actual encryption of the plaintexts in average. Emin represents the worst entropy
found for each rule considering all the 100 lattices. Emin is below 0.1 for Fullset and SubsetA. It
indicates the existence of lattices that are not encrypted by some few rules. The most probable
behavior of such CA rules is that they only shift the initial lattices, not performing an actual
encryption of plaintexts. Although this behavior is a minor occurrence in the entire set of CA
rules it cannot be allowed in a cryptosystem.

All rules 500 worst rules

Set
Number
of rules

Lmean Fmean Emean σmean(%) Fmean Fmax Emean Emin

Fullset 65536 256.38 0.095 0.879 3.66 5.851 13.448 0.170 0.036
SubsetA 21019 256.10 0.025 0.872 3.65 0.932 3.212 0.396 0.037

Table 2. Mean values obtained for all rules and for the 500 worst rules in each set.

Concluding our analysis: (i) There are a lot of undesirable behavior rules in Fullset –
considering a cryptographic purpose - that must be avoided as secret keys. Therefore
the entire rule space formed by all radius 2 toggle rules (totalizing 130816 rules including
left-toggle and right-toggle and the existence of 256 left-and-right-toggle) cannot be applied
as secret keys in VLE method. Approximate 6000 rules must be avoided (3500 due to low
entropy and 2500 due to long ciphertext length). (ii) The specification proposed in (Oliveira et
al., 2008) and evaluated in last section try to filter such undesirable behavior keys. However,
its application is not so effective. The specification in (Oliveira et al., 2008) was proposed
with the major goal of reducing ciphertext lengths, what is really achieved. But, the reduction
imposed in key space is high (approximate 66%) and it could not avoid a great number of low
entropy rules.
In respect to the number of pre-images P used during ciphering, the average of the maximum
number of P used for each radius 2 rule of the Fullset was of 33.10 pre-images (considering
the 100 plaintexts of 256-bits analyzed). Thus, we conclude that a fixed number of pre-images
P < 64 could be enough to cipher 256-bits plaintexts although P = 128 was used in the first
experiments using VLE (Oliveira et al., 2008; 2010a).
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5.3 Investigating the complete radius 2 rules set with a fixed number of pre-image steps

A new experiment was performed using the complete radius 2 rules set to cipher samples of
256-bits plaintexts employing a fixed and predefined number of pre-image steps (P). Different
values of P were considered in this analysis: 32, 40, 48, 56 and 64. Using P = 64, the best
result related to perturbation spread was obtained as expected (that is, the highest entropy)
but additionally the number of fails increased (when compared with P = 32). On the other
hand, using P = 32, it was possible to observe that this number of steps was not enough to
spread perturbations when using a considerable portion of rules of the entire set. Considering
the trade-off between perturbation spread and number of fails we conclude that the best
evaluated value of P was 48. VLE environment were used to cipher one hundred 256-bits
plaintexts by calculating 48 consecutive pre-image steps. We obtained Lmean = 257.90 and
Fmean = 0.476, which returns a mean ciphertext size very close to the original size (256 bits).
We obtained σmean = 3.83% and Emean = 0.876 for the complete set of right-toggle rules.
Since σmean is below 10%, the proposed CA cryptographic model can be considered secure in
relation to differential cryptanalysis. Emean is above 0.85 indicating that rules were able to add
a high entropy during ciphering, using P = 48. However, the analysis of the worst performing
rules in the set indicates the existence of secret keys not adequate for ciphering purpose. The
entire rule space formed by all radius 2 right-toggle rules is not appropriate to be applied as
secret keys in VLE method. Approximate 4000 rules (6% of the key space) must be avoided:
3200 due to low entropy and 800 due to long ciphertext length.
Aiming to better understand the relation between CA static parameters and underperforming
rules, several parameters was used trying to identify a pattern to filter such rules; they
are: Zright, Symmetry (S), Absolute Activity (AA), Neighborhood Dominance (ND), Core
Entropy (CE), complementary-plus-reflection Symmetry (BWLR), reflection Symmetry (LR),
Sensitivity and Activity Propagation (AP) (Oliveira et al., 2001; 2010b). These nine parameters
were calculated for all the 65536 radius 2 rules. A database was elaborated in which each
register corresponds to one right-toggle transition rule and the fields are composed by the
values of the nine parameters calculated for the rule, and the values of the metrics calculated
when the transition rule is applied to cipher 100 plaintexts: Fmean and Emean (results obtained
with 48 pre-image steps). We first analyze the fields Fmean and Emean of each register of
the database to characterize the underperformed rules in specific classes. Field Class was
added to the database with the classification of each register in one of these classes: (1) 886
rules with low mean entropy (< 0.5); (2) 750 rules with large mean ciphertext length (> 300
bits); and (3) 63900 remaining rules. As a pattern associating parameters with the worst
performing rules in ciphering was not possible to recognize by a simple visual inspection,
it was applied a data mining process (Fidelis et al., 2000). A standard GA was elaborated to
mining IF-THEN rules associating the parameters (antecedent) with the performance class
(consequent) (Oliveira et al., 2010c). The antecedent part of such rules is composed by a
conjunction of conditions of the type: IF <parameter> <operator> <value>, being that the
operator can be < (minor), ≥ (larger or equal) or �= (different). The consequent part is always
in the format THEN <class> = C, being that C can be "(1) Low Entropy", "(2) Large Ciphertext"
or "(3) Adequate". The classification rule that was indeed intended to be mined is Class
3, because it represents appropriate transition rules to be used in cryptography. However,
the other two classification rules (classes 1 and 2) were also important to achieve our goal,
because they better characterize low entropy transition rules and long ciphertext ones, given
us some important information to prune the rules returned by GA for Class 3. After several
executions and post-processing pruning procedures we have found the best rules following:
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RuleND: IF S �= 1 AND ND < 0.54 AND CE > 0.645 AND Zright �= 1 AND Zright > 0.35
THEN Class = Adequate
RuleAA: IF S �= 1 AND AA ≥ 0.46 AND CE > 0.645 AND Zright �= 1 AND Zright > 0.35
THEN Class = Adequate
Both rules employ four of the nine CA parameters to characterize adequate secret keys, being
that tree of them are Symmetry (S), Core Entropy (CE) and Zright parameters. Additionally,
the first uses Neighborhood Dominance (ND) parameter and the second one uses Absolute
Activity (AA) parameter, then we named them as RuleND and RuleAA. We applied each
one of them as a filter in the complete radius 2 right-toggle CA rule set to remove all secret
keys that non attending its conditions. The filtered set obtained applying RuleND has 41556
right-toggle rules and it was named SubsetND. The filtered set obtained applying RuleAA was
named SubsetAA and it has 47263 right-toggle rules. By using the environment implemented
based on VLE, we employed them to cipher one hundred 256-bits plaintexts, by calculating
48 consecutive pre-image steps, as performed to the complete rule set. Table 3 shows the
results obtained with SubsetND and SubsetAA rules (considering all the remaining rules in
each set), including mean values obtained with each set. Results of the complete set (65536
rules), named as Fullset, are also presented in this table.

Set
Number of
Rules

Complete rule sets 500 worst performing rules
Lmean Fmean Emean σmean Fmean Fmax Emean Emin

Fullset 65536 257.903 0.476 0.876 3.83% 24.607 33.212 0.125 0.036
SubsetND 41556 257.442 0.361 0.889 3.67% 10.045 16.608 0.839 0.625
SubsetAA 47263 257.488 0.372 0.889 3.68% 10.479 17.220 0.837 0.575

Table 3. Mean values of the complete rule sets and the 500 worst performing rules.

Fig. 1. 500 longest ciphertexts found in each set/subset.

Considering the totality of the rules, SubsetND and SubsetAA results are better than those
obtained using the entire radius 2 set, but the differences are not so expressive. However,
when the worst performing rules are analyzed the advantage of such filters is evidenced. The
mean values obtained considered only the 500 worst performing rules in Table 3 (Fmean, Fmax,

280 Cellular Automata - Innovative Modelling for Science and Engineering

www.intechopen.com



Fig. 2. 500 lowest entropy found in each set/subset.

Emean and Emin). The number of fails exhibits a significant decay in both subsets and the
longest ciphertexts were also smoothed. But the most expressive results are related to low
entropy rules: the mean entropy of the worst rules improved from 0.125 to acceptable values
(above 0.8) in both subsets. These results are highlighted in figures 1 and 2. Figure 1 shows the
500 longest ciphertexts while Figure 2 shows the 500 lowest entropy found in each set/subset.
Comparing SubsetND and SubsetAA, the reduction of rules is more severe in SubsetND (41556
against 47263). Besides, it is possible to see that SubsetND returned results slightly better
than SubsetAA, but this improvement does not justify such reduction imposed by RuleND.
However, we decided to kept RuleND as one of the best filters because the generalization
of Neighborhood Dominance (ND) parameter from radius 2 to bigger radius is better than
Absolute Activity (AA) parameter, as discussed in (Oliveira et al., 2000). Some experiments
using radius 3 toggle rules specified using a filter rule based on ND are presented in (Oliveira
et al., 2010c). The rule based on ND presented here is better than this previous filter rule
which was obtained in preliminary data mining analysis. The tests performed using radius 3
rules returned adequate mean values. Moreover, no rule returns low entropy in any ciphered
plaintext (Oliveira et al., 2010c).

6. Conclusions

The variable-length encryption method named VLE is a cryptographic model based on the
backward interaction of cellular automata toggle rules. The general idea of this method
was proposed in a previous work (Oliveira et al., 2008). This method alternates during the
ciphering process the employment of the original reverse algorithm (Wuensche & Lesser,
1992) with a variation inspired in Gutowitz’s model (Gutowitz, 1995), which adds extra bits
when a pre-image is calculated. The plaintext is encrypted using this method to calculate
P consecutive pre-images using a CA toggle rule τ as the secret key. As the number of
failures when calculating consecutive pre-images using the reverse algorithm is not fixed,
the final ciphertext length is variable. However, in practice, it is expected to obtain ciphertext
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length close to original plaintext. Starting from the ciphertext, the recipient needs to apply the
transition rule τ forward by P steps and the final lattice will be the plaintext.
We performed three series of experiments. The first one uses a small number of radius 2 and
radius 3 rules and a number of pre-image steps fixed in 128 as suggested in previous works.
The second experiment uses a variable number of pre-image steps (from 16 to 128) and a more
representative set of radius 2 rules: the complete set of all possible radius 2 rules with Zle f t

equal to 1. The third one uses a fixed number of pre-image steps (P equal to 48), pruned
based on the results of the second experiment in the same representative set of radius 2 rules.
The average of standard deviation found is 3.83%, showing this method is very robust to a
differential cryptanalysis-like attack being much lower than the upper bound limit suggested
in (Biham & Shamir, 1991): 10%. Comparing with the results presented in (Sen et al., 2002) the
superiority of VLE is clear in such criteria: 12%, 7% and 5% returned by DES, AES and CAC
respectively, being the last one a CA-based method. Besides, the absence of an ordered pattern
when ciphering similar plaintexts was evidenced by the mean entropy found: 0.876. Using
VLE we have the guarantee that ciphering is possible even if an unexpected Garden-of-Eden
state occurs. However a short length ciphertext depends on the secret key specification. The
properly specification of the rules/key was deeper investigated in the present work using
all the 65536 radius 2 right-toggle rules. Initially, we investigated specifications based on
previous works (Oliveira et al., 2008) and (Wuensche, 2008), which uses static rule parameters
Z and S. Our experimental results showed that none of these previous specifications are
satisfactory. Thus, in a subsequent phase, we employed an analysis based on several CA
static parameters. Therefore, we were able to find two good specifications of rules to be used
as valid secret keys. The first specification is based on Neighborhood Dominance parameter
while the second is based on Absolute Activity. These specifications had shown to be good to
filter the complete set of radius 2 rules.
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