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Point Automata Method for Dendritic Growth 

Agnieszka Zuzanna Lorbiecka and Božidar Šarler  
University of Nova Gorica 

Slovenia 

1. Introduction 

Solidification microstructure is very important since it influences the properties of the final 
casting. Because of that has understanding and modelling of microstructures large industrial 
relevance. However, the understanding of solidification processes and related 
microstructures involves very complicated relationships. This is because it is affected by 
many interacting phenomena on different scales, such as heat and solute transfer, fluid flow, 
thermodynamics of interfaces and so on (Rettenmayr & Buchmann, 2006). Experiments that 
allow direct visualization of microstructure formation are difficult to perform. In the last 
decade, several numerical models, which can solve complicated transport phenomena and 
phase transformation under different boundary and initial conditions, were developed to 
calculate various microstructure features of solidifying materials such as grain growth with 
details of solidification interface morphology. Among of all numerical approaches Cellular 
Automata (CA) modeling (Wolfram, 2002) and phase field modeling (Qin & Wallach, 2003) 
are the most popular and widely used. We focus on the CA based approach in this chapter. 
A considerable progress on solidification microstructure simulation (Boettinger et al., 2000; 
Miodownik, 2002) has been made by the CA approach. 
Rappaz and Gandin (Rappaz & Gandin, 1993) were the pioneering researchers who 
developed the CA model for modelling microstructure where the nucleation and the growth 
kinetics could be considered and grain structure with certain shapes and size were 
predicted. Gandin and Rappaz (Gandin & Rappaz, 1994; Gandin & Rappaz, 1997) simulated 
the grain structure by coupling the CA technique for the grain growth with the finite 
element method (FEM) solver for the heat flow (CA-FEM). Later Spittle and Brown (Spittle 
& Brown, 1995) coupled the CA with a finite difference solver (CA-FDM) for solute 
diffusion during the solidification of casting to predict the microstructure. 
Unfortunately, the simple CA models for dendritic growth suffer from the strong impact of 
the anisotropy of the numerical grid. Consequences are that they tend to grow only in the 
grid direction (Zhan et al., 2008). It does not matter which crystallographic orientation will 
be chosen the CA method will always shift the dendrite with respect to the grid axis. During 
growth have the crystallographic orientation axes of different grains different divergence 
angles with respect to the coordinate system. In these cases is the growth stage difficult to 
simulate by the CA method. It is because the configuration of the CA mesh has a direct 
influence on simulated structure and shape. Anderson (Anderson et al., 1984) and later 
Spittle and Brown (Spittle & Brown, 1989) used a hexagonal, rather than the standard square 
2-D lattice in order to better represent the grain anisotropy. But in general even now it is still 
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difficult to properly model the preferred crystallographic orientation. Rappaz and Gandin 
developed a decentered square method (Rappaz & Gandin, 1993) to try to solve this 
problem, which turns out to be very complicated.  
We elaborate a novel Point Automata (PA) method in this chapter which follows the CA 
concept and is able to solve the mentioned crystallographic orientation problem. A basic 
feature of this method is to distribute nodes randomly in the domain instead of using 
regular cells, which leads to different distances between the nodes and different 
neighborhood configurations for each of them. This new approach was first proposed by 
Janssens for modelling the re-crystallisation (Janssens, 2000, 2003, 2010; Raabe et al., 2007). 
(Lorbiecka et al., 2009) were the first to couple the classical CA method with a meshless 
method instead of the FEM or FDM. They successfully predicted the grain structure in 
continuously cast steel billets. Subsequently, they replaced the CA method by the PA 
method in the same physical system (Lorbiecka & Šarler, 2009) and demonstrated the 
suitability of the PA method for cellular to equiaxed and equiaxed to cellular transition 
simulation in steel strands. The preliminary results of the dendritic growth based on the PA 
approach have been presented in (Lorbiecka & Šarler, 2009). This approach is explained and 
evaluated in details in the present chapter where we cope with a simple physical model 
which can simulate the dendritic forms during the solidification of pure metals from the 
undercooled melt. The developed algorithm is able to obtain the dendritic morphology by 
solving the heat transfer equation coupled with the solid fraction field evolution through the 
calculations of crystal growth velocity, interface curvature, thermodynamic and kinetic 
anisotropy, respectively. 
The present chapter is structured in the following way: the CA and the PA methods are 
defined first, followed by the description of the governing equations of the heat transfer 
model and the stochastic model. The solution of temperature field and solid fraction is 
explained afterwards. The differences in numerical implementation of the classical CA and 
the new PA solution procedure are compared and discussed. The dendritic growth is 
simulated for two different orientations with the same random node arrangement with the 
PA method. Afterwards, the influence of two different random node arrangements as well 
as different node randomness was tested on two different crystallographic orientations. 
Finally, the numerical results are shown for seven dendrites growing simultaneously with 
the orientations 0c or 45c  by the classical CA method and with different, more realistic 
orientations for the PA method. This demonstrates the flexibility of the new method for 
simulation of realistic dendritic structures. Conclusions with systematically listed 
characteristics of the PA method and future developments of the PA method complete the 
present chapter. 

2. CA and PA definitions 

Numerical models for solving the microstructure equations can briefly be divided into two 
categories: deterministic and stochastic (Stefanescu, 2009). Stochastic modelling represents a 
system where the physical phenomena are described by the random numbers. As a 
consequence the output data can vary from one simulation to another. The most popular 
stochastic methods used to simulate the microstructure formations are: Monte Carlo 
methods, Random Walker and CA approach. CA stochastic method (Wolfram, 2002) 
represents one of the numerical techniques, widely applied in modelling solidification and 
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re-crystallization processes. This algorithm was first established by Neumann (Neumann, 
1987) and is nowadays commonly used in materials science. What follows are the basic 
elements of the CA method 
• n-D (n=1, 2, 3) space is divided into a discrete number of n-dimensional elements which 

are named cells (polygons and polyhedrons). 
• a state is assigned to each CA cell, 
• the neighbourhood configuration is defined deterministic or stochastic for each CA cell, 
• transition rules are defined which create a new state of the cell as a function of the 

states(s) of the cell(s) consisting of the previously defined local neighbourhood of the 
cell. 

The above presented basic features of the CA system are commonly implemented in the 
literature. In the present work an alternative formulation to a common CA method is 
introduced. What follows are the basic elements of this novel PA method 
• the starting point is to distribute PA nodes (not cells) randomly on the n-D 

computational domain, 
• a state is assigned to each PA node, 
• the neighbourhood configuration is defined for each node separately with respect to the 

chosen neighbourhood configuration, 
• the neighbourhood of the node includes all random nodes whose positions are located 

in the domain of a circle in 2D or sphere in 3D. The number of the neighbours can vary 
locally. The transition rules are defined and they create a new state of the point as a 
function of the states(s) of the points(s) consisting the local neighbourhood 
configuration. 

The irregular (also named random) PA cellular transitions rules can be used in exactly the 
same way as for the regular approach. In this sense the PA approach is not much different 
from the conventional one, despite bringing many advantages listed in the conclusions. 

3. Governing equations 

Thermally induced dendritic growth is considered in this example. It is physically described 
by the heat conduction and phase change kinetics. The temperature field is solved by the 
classical deterministic method and the phase change kinetics by the stochastic method. 

3.1 Temperature field 

Consider a two dimensional domain Ω  with boundary Γ  filled with a phase change 
material which consists of at least two phases, solid and liquid, separated by an interfacial 
region, which is usually very thin in pure substances. The thermal field in such a system is 
governed by the following equation (Xu et al., 2008)  

 ( ) ( )h T
t
ρ λ∂

= ∇ ⋅ ∇
∂

  (1) 

where ρ , h , λ , T  represent material density, specific enthalpy, thermal conductivity and 
temperature, respectively. The specific enthalpy is constituted as 

 p lh c T f L= +   (2) 
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where pc , L , lf  represent  the specific heat, the latent heat and liquid fraction, respectively. 
All material properties are assumed constant for simulation simplicity. The solid and liquid 
fractions follow the rules 

 1s lf f+ = ; ( )

1

0

s

l
s s l

l s

l

for T T

T T
f T for T T T

T T

for T T

⎧ ≤
⎪

−⎪= < <⎨
−⎪

⎪ ≥⎩

  (3) 

where sT , lT , sf  represent the solidus temperature, liquidus temperature and the solid 
fraction, respectively. In case of a pure substance are the solidus and the liquidus 
temperature equal to the melting temperature mT . However, for the computational 
purposes a narrow melting interval l m sT T T> > is always involved. The melting temperature 

mT  is defined as ( )1
2m s lT T T= + . We search for the temperature at time 0t t+ Δ by assuming 

the initial conditions  

 ( ) ( )0 0, ;T t T= ∈Ωp p p ; ( ) ( )0 0, ;s sf t f= ∈Ωp p p   (4) 

(where p represents  the position vector) and Neumann boundary conditions 

 ( ) ( ), , , 0 0;
T

F t t t t
n

∂
= ∈Γ < ≤ + Δ

∂
t tp p p   (5) 

where n  represents the normal on Γ  and 0T , 0sf , F  represent known functions.  

3.2 Phase change kinetics 
3.2.1 Interface undercooling 
The phase change situation can be achieved by undercooling a liquid below its melting 
temperature. When a solid seed is placed in such an undercooled melt, solidification will be 
initiated. Due to crystal anisotropy and perturbations in the system, the growth of the solid 
from the seed will not be uniform and an equiaxed dendritic crystal will form. Solid liquid 
interface is undercooled to the temperature Tf defined as (Saito et al., 1988; Nakagawa, et al., 
2006) 

 f mT T K= − Γ   (6) 

where Γ and K are the Gibbs-Thomson coefficient and the interface curvature, respectively.  

3.2.2 Dendrite growth kinetics 
The growth process is driven by the local undercooling. The interface growth velocity is 
given by the classical sharp model (Shin & Hong, 2002) 

 ( ) ( )( )*
,, , ;g K f s lV t T T tμ= − ∈Γp p p   (7) 

where gV ∗ , Kμ , ,s lΓ  are the growth velocity, interface kinetics coefficient and the solid liquid 
interface, respectively.  
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Dendrites always grow in the specific crystallographic orientations. Therefore, it is 
necessary to consider anisotropy in either the interfacial kinetics or surface energy (or both). 
The present model accounts for the anisotropy in the both kinetics. 

3.2.3 Thermodynamic anisotropy 
The Gibbs-Thomson coefficient can be evaluated (Krane et al., 2009) by taking into account 
the thermodynamic anisotropy related to the crystal orientation and type as follows 

 ( )1 cost defSδ θ θ⎡ ⎤⎡ ⎤Γ = Γ − −⎣ ⎦⎣ ⎦   (8) 

where S , θ , defθ , tδ , Γ  represent factors which control the number of preferential 
directions of the material’s anisotropy ( 0S =  for the isotropic case, 4S =  for four fold 
anisotropy and so on), growth angle (angle between the y coordinate and the line that 
connects the centre of the mass of the dendrite and point at ,s lΓ , see Fig. 1), the preferential 
crystallographic orientation, thermodynamic anisotropy coefficient and the average Gibbs-
Thomson coefficient,  respectively. 

3.2.4 Kinetic anisotropy 

The crystal growth velocity is calculated according to the crystal orientation by taking into 
the consideration the crystal growth direction θ  and the preferred orientation defθ . The 
crystal growth velocity follows the equation (Shin & Hong, 2002) 

 ( ) ( )( )* , 1 cosg k defV V t Sδ θ θ⎡ ⎤= + −⎣ ⎦p   (9) 

where kδ  represents the degree of the kinetic anisotropy. 

3.3 Coupling 
The movement of the solid-liquid interface is governed by the evolution of the temperature 
field in the computational domain (Fig. 1).  
 

 
Fig. 1. Scheme of the dendritic growth 
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The dendritic structures are modelled by the stochastic method to track the interface motion 
coupled to the determinate heat transfer calculations. We first describe the solution of the 
temperature field based on the FDM method and subsequently the transition rules for the 
CA (PA) methods for calculation of solid fraction field. The flowchart of the calculations is 
given in Fig. 12. 

4. Solution of the temperature field 

A square domain is considered with length l . The number of points in FDM mesh in x  and 
y  directions is N . The total number of FDM grid points is 2N - 4, since the four corner 
nodes are not considered.  
A uniform FDM discretization is made with mesh distance ( )/ 1x y a l NΔ = Δ = = − as seen in 
Fig. 5 (left). The solution for the temperature field is performed by the simple explicit FDM. 
Solution of the temperature field in the domain nodes is thus 

( ) ( ) ( ) ( )

( )

2 2
, 0 , 0 1, 0 , 0 1, 0 , 1 0 , 0 , 1

, 0 ,

( 2 / 2 / )i j i j i j i j i j i j i j i j

p

s i j s i j

p

t
T T T T T x T T T y

c

L
f f

c

λ
ρ − + − +

Δ ⎡ ⎤ ⎡ ⎤= + − + Δ + − + Δ +⎣ ⎦ ⎣ ⎦

+ −
  (10) 

for 2,3,..., 1i N= −  and 2,3,..., 1j N= −  
The boundary nodes are calculated (the Neumann boundary conditions are set to 

0F = W/m2) as: west 1, 2 ,j jT T=  for 2,..., 1j N= − , east , 1,N j N jT T −=  for 2,..., 1j N= − , north 

, , 1i N i NT T −=  for 2,..., 1i N= −  and south ,1 ,2i iT T=  for 2,..., 1i N= − , where tΔ , 0 ,s i jf , 0 ,i jT , 

0 1,i jT + , 0 1,i jT − , 0 , 1i jT + , 0 , 1i jT −  are the time step, initial solid fraction, initial temperature in the 
FDM central, east, west, north and south nodes, respectively. 

5. Solution of the solid fraction field 

We now define and discuss the elements of the classical CA and the novel PA methods in 
details. 

5.1 Definition of mesh and neighbourhood configuration 

Square cells with length /x y a l nΔ = Δ = =  where 1n N= − represents the number of cells in 
x  and y  directions are considering in the CA approach. In the PA approach the square is 
divided in uniform or nonuniformy distributed nodes. Cells are not defined. 

5.1.1 Mesh and neighbourhood in the CA method 
A basic definition of neighborhood originates from the classical CA approach which 
operates on the grid divided into the square cells (Neumann, 1987; Nastac, 2004). The cell 
structure is depicted in Fig. 2. In our calculations the Neumann configuration which takes 
into account only the closest neighbor’s cells during the computation is applied.  
The conventional square mesh structure is commonly applied in the CA calculations. It 
represents a square domain covered by the CA cells , ,,CA i j CA i jx y  located exactly in the 

middle of four FDM nodes, as it is depicted in Fig. 5 (left). 
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 , 1,

1
2 FDM i j FDM i jx x +⎡ ⎤= +⎣ ⎦CA i, j

x ;  , , 1

1
2 FDM i j FDM i jy y y +⎡ ⎤= +⎣ ⎦CA i, j

  (11) 

 
Fig. 2. Graphical representation of the Neumann neighbourhood configuration for the 
conventional CA method 

5.1.2 Mesh and neighborhood in the PA method 
The PA node grows with respect to the heat flow and with respect to the ‘neighbourhood’ 
configuration which is now associated with the position of the neighbouring PA nodes 
which fall into a circle (Janssens, 2000, 2003) with radius RH in 2-D or a sphere in 3-D. It 
means that each PA node can in case of the random mesh contain different number and 
position of the neighbours, which give various possibilities of neighbourhood 
configurations for each node. For the novel PA method the random node arrangement is in 
the present chapter generated from the regular CA mesh. 
 

 
 

Fig. 3. Graphical representation of the neighbourhood configuration proposed for the new 
PA method 
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Fig. 4. Schematic representation of the relationship between FDM nodes (4 corners), CA cell 
(center) and the random PA node 
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To construct the random node arrangements, the CA cell centres are displaced to the 
randomly chosen positions and become random PA nodes , ,,PA i j PA i jx y on the 
computational domain (see Fig. 5 bottom).  
The displacement of each CA centre is assumed only in the square area limited by the four 
FDM nodes. The following procedure is applied 

 [ ], 2 1CA i jx randε= + −PA i, jx ;  [ ], , 2 1PAi j PAi jy y rand= + ε −   (12) 

where 
i, jPA

x , y
i, jPA

, ε  represent coordinates of  PA nodes and the scaling value 0 0.49ε≤ ≤ ,  
respectively. It must be emphasized that the PA procedure is established on the random 
nodes in general. The heat transfer calculations are performed on the regular FDM nodes, 
which is explained in Section 6.  
 
 

 
Fig. 5. Scheme of the space discretization: (top left) FDM nodes with 21N = , (top-right), CA 
cells with 20n = , (bottom) PA nodes with 20n =  

5.2 Curvature calculations 
The interface curvature is approximated by the counting cell procedure developed by 
Sasikumar and Sreenivasan (Sasikumar & Sreenivasan, 1994).  

x

y

y

x
x

y  
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5.2.1 Calculation of curvature in the CA method 
The expression for curvature K is given by the formula (Krane et al., 2009) 

 
21

1 s CA

t CA

N
K

a N

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
  (13) 

where s CAN  and t CAN  are the number of solid CA cells whose centres fall inside the circle 
of assumed radius cR  and the total number of CA cells whose centres fall inside the circle, 
respectively (see Fig. 6 (top)). 

5.2.2 Calculation of curvature in the PA method 

The expression for PA is derived from the expression for the CA method (equation 13) by 
assuming the average node distance a instead of a  (see Fig. 6 (bottom)). 

 

 
Fig. 6. Top: scheme showing a circle sample with 2cR a=  for calculating the curvature in the 
conventional CA method (example: 8s CAN =  and 12t CAN = ); bottom: in the PA method 
(example: 7s PAN =  and 11t PAN = )  
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5.3 Phase change 
The crystal growth velocity is calculated according to the crystal orientation. The envelope 
of the grain can be expressed by the equation 9 which is depicted in Fig. 7.  
Once a CA cell (or PA node) becomes solid it starts to grow with respect to the 
‘neighbourhood’ configuration (see Fig. 2 and Fig. 3). Each of the CA cells (or the random 
nodes) can have two possible states: liquid or solid. The CA cell (or PA node) becomes solid 
through the growth process. The change of the solid fraction of the CA cell or PA node is 
calculated from the crystal growth velocity. 
 

 
Fig. 7. Schematic representation of the shape function (for parameters see Table 1) 

 

 

Fig. 8. Left: growth front will not reach the closest neighbour id a< . The CA cell will not be 
converted to solid (example for the Neumann neighbourhood configuration); left: growth 
front will reach the closest neighbour id a≥ . The CA cell will be converted to solid (example 
for the Neumann neighbourhood configuration) 

For all neighbours of the treated solid CA cell (or solid PA node), general criterion d  is 
checked which is represented by the following formula 

 
( )

i

l t
d

a
=   (14) 

 
0

,

t

i j

t

l V dt= ∫   (15) 

,i j
V

H
R

d
i

a

d

ia

www.intechopen.com



Point Automata Method for Dendritic Growth   

 

207 

where ia  represent lengths from the analyzed CA cell or PA node to the nearest one.  
If neighbour is one of the four nearest east, north, west, south neighbours then in the CA 
method this distance becomes ia a= . In the PA method ia ( )i Ha R<  represents the different 
distances to the neighbouring PA nodes which fall into the circle with radius HR  (see  
Fig. 9). 
When d a≥ or id a≥  (Fig. 8 (right) and Fig. 9 (right)) the growing solid touches the centre of 
the neighbouring CA cell or PA node and this cell/node transforms its state from liquid to 
solid 1s PAf = . 
 

 

Fig. 9. Left: growth front will not reach the closest neighbour id a< . The PA node will not be 
converted to solid; right: growth front will reach the closest neighbour id a≥ . The PA node 
will be converted to solid  

6. FDM-PA-FDM transfer of temperature and solid fraction 

6.1 FDM-PA transfer of temperature 
The obtained values of temperature on regular FDM grid (see Section 4) are in each time 
step transferred to random PA grid according to the described scheme (Fig. 12). The 
following simple interpolation formula (Xu & Liu, 2001) is used in the present chapter 

 ( )
4

, , 1 1 1, 1 2 1, 3 , 4
1

/PA i j i j i j i j i j i
i

T T l T l T l T l l+ + + +
=

= + + + ∑   (16) 

In case of FDM-CA the equation 16 reduces to  

 ( ), , 1 1, 1 1, , / 4CA i j i j i j i j i jT T T T T+ + + += + + +   (17) 

where ,PA i jT , ,i jT , ,CA i jT and il  represent the temperature of the PA node, the temperatures 
of the four closest FDM nodes, the temperature for the centre CA cell and the distances to 
the nearest four FDM nodes, respectively. The calculation is repeated in each time step (see 
Fig. 10). 

6.2 PA-FDM transfer of solid fraction 

The temperature field at time 0t t+ Δ can be calculated from the equation 10 for all FDM 

nodes. Then these values are recalculated to all PA nodes according to the equation 16. 
Afterwards the PA procedure takes place (see Section 3). The output information from this 
 

i
a

H
R

d

ia

H
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d
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Fig. 10. Relationship between four FDM nodes and PA node for the calculation of the 
temperature values 
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Fig. 11. Relationship between the FDM node and four neighbouring PA nodes for the 
transfer of solid fraction 

level of calculation is the value of solid fraction for all random PA nodes ,s PA i jf  which have 
to be transferred to the FDM nodes to be able to calculate the new values of temperature 
(Fig. 11). The following equation is applied 

 
4

, , 1 1 1, 1 2 1, 3 , 4
1

( ) /s i j s PA i j s PA i j s PA i j s PA i j i
i

f f l f l f l f l l+ + + +
=

= + + + ∑   (18) 

In case of FDM-CA the equation 18 reduces to  

 ( ), , 1 1, 1 1, , / 4CA i j i j i j i j i jT T T T T+ + + += + + +   (19) 

where ,s i jf  and s PAf  represent the solid fraction for the FDM nodes and for the PA nodes, 
respectively. 
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Fig. 12. Flowchart of the thermal field and solid fraction calculations 

7. Numerical example 

7.1 Numerical implementation 

The model was coded in Fortran. For the dendritic growth in Figs. 13-17, the CPU time 
varies from 10 to 15 minutes depending on the input data. The solid PA nodes or CA cells 
are depicted by a colour pixel which can be observed on the screen during the simulation.  

Set 0T and 
0 s PA

f  

from the initial 
conditions 

in FDM nodes 

Calculation of the 
new temperature field 

in FDM nodes  

Transfer of 
temperatures from 

FDM nodes to PA or 
CA nodes  

PA or CA calculation 
of Sf  

Transfer of Sf  from 

the PA or CA nodes 
to the FDM nodes 

Set  

0
T T= ,

0 s s
f f=  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

210 

7.2 Problem definition and distretization 

Initial conditions. Simplified material properties presented in Table 1 for pure aluminium 
(Kammer, 1999) are used in all prepared numerical examples. The process starts from the 
predetermined solid seed position in one single PA or CA node in the middle of the 
computational domain with the following initial conditions of temperature K K933.45 1.5−  
and solid fraction 1sf = . All other PA nodes are assumed to be liquid 0sf =  and FDM nodes 
with the temperature K770.23 . This data is constant with the problem defined in the article. 
The numerical examples in the present chapter are solved by the FDM based temperature 
calculations and CA or PA based solid fraction calculations. The computational domain is 
the square with length 350 μml =  and uniform discretization 701N = . 
Mesh generation. FDM and CA methods are always constructed on a regular node 
arrangement in the present chapter. In the PA approach the random node arrangement 
needs to be constructed. The PA approach was tested first with the predetermined node 
arrangement PA-(A), see Fig. 14 and then with different types of random node 
arrangements: PA-(B), PA-(C),  see Fig. 15, respectively (Table 2).  
Time step. The time step used in FDM calculation of the temperature field is limited by the 
formula (Zhu & Hong, 2001) 

 
2

;
4.5FDM

p

a
t D

D c

λ
ρ

Δ = =   (20) 

where D represents the thermal diffusivity. For the calculations of the solid fraction field by 
the CA and PA method the following relation is used (Daming et al., 2004) for assuming 
stability 

 
2

max

min ,CA

a a
t

V D
η ∗

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
  (21) 

where η  and maxV ∗  represent the positive constant less then 1 and the maximum growth 

velocity of all interface cells, respectively. 
For the stability of the coupled FDM-CA-PA procedure a minimum of CAtΔ and FDMtΔ  
should be used. All depicted results of simulations are shown for the different 
crystallographic angles after 1500 time steps of the length 106.82 10FDMt x −Δ = s. 
Thermal fluctuations. In order to avoid the symmetric shape of the dendrite (in the 
conventional CA approach) some fluctuations need to be introduced into the calculations. 
The following equation is commonly applied 1P randλ∗= + . Thermal noises are usually 
present by putting the random fluctuations F into the calculations of the latent heat, 
undercooling temperature or velocity (Voller, 2008). It this chapter we use them in the 
velocity calculations V V= x P . 
Neighbourhood configuration. In the CA approach only the closest neighbourhood 
configuration has been analyzed. Larger the value of HR  is chosen in the PA method more 

dendritic and irregular structures can be observed. A more extended area of neighbours 
needs to be taken into the consideration in the PA method. The radius of neighbourhood 
should be kept at a minimum of 1.5 μm in case of 0.5a = μm. For smaller values the 
dendritic shapes become distorted and the preferred orientations lost as well. 
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Symbol Value Unit 
ρ  2700 kg/m3 

mT  933.45 K 

sT  933.45-1.5 K 

lT  933.45+1.5 K 

λ  210 W/mK 

pc  955.56 J/kgK 

L  259259.26 J/kg 
η  0.222 1 

Γ  1.6 x 10-7 Km 

tδ  0.3 1 

kδ  0.75 1 

S  4 1 

cR  1.5 μm 

HR  2 μm 

Kμ  2 m/sK 

l  350 μm 

n  700 
PA nodes/ 

CA cells 
N  701 FDM nodes 

Table 2. Nominal parameters used in the calculations 

7.3 Simulated results 
The dendritic morphologies were calculated by the classical FDM-CA and the novel FDM-
PA approaches. The following numerical examples were prepared 
• From CASE 1 to CASE 2 the dendritic growth process is simulated by the PA method 

with the same random node arrangement denoted (PA-(A)) for the following two 
orientations 22defθ = c  and 37defθ = c . 

• From CASE 3 to CASE 4 the dendritic growth process is simulated by the PA method 
with different random node arrangements (PA-(B), PA-(C)) for the orientation 

10defθ = c . 
• From CASE 5 to CASE 6 the dendritic growth process is simulated by the PA method 

with different randomness of the node arrangement 0.10ε = and 0.49ε = , for the 
orientation 8defθ = c  . 

• From CASE 7 to CASE 8 the dendritic growth process is simulated by the PA method 

including the factor responsible for the correction in the lengths of the x  and y  
branches for different random node arrangements (PA-(F)-F, PA-(G)-F). 

The results have been arranged and represented in the following way. Fig. 13 represents 
seven dendrites growing simultaneously at orientations 0c  and 45c  as the grid is 
constructed by the classical FDM-CA method. The FDM-PA calculations with different 
orientations of the crystallographic axis are depicted in Fig. 14 based on the same node 
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arrangement. Then Fig. 15 shows the FDM-PA results with the varied random mesh 
structure for a single dendrite with orientation 10defθ = ° . Fig. 16 represents dendritic 
growth for a single dendrite with 8defθ = °  for a different node arrangement randomness. In 
Fig. 17 the results for the PA method, where the randomness correction factor is applied, are 
represented (see discussion in the next paragraph). Finally, Fig. 18 represents seven 
dendrites growing simultaneously at different orientations by the FDM-PA method. 
 

CASE defθ  ∗λ  ε  
 

node 
arrangement 

1 22°  0  0.49  PA-(A) 

2 37°  0  0.49  PA-(A) 

3 10°  0  0.49  PA-(B) 

4 10°  0  0.49  PA-(C) 

5 8°  0  0.49  PA-(D) 

6 8°  0  0.10  PA-(E) 

7 0°  0  0.49  PA-(F)-F 

8 0°  0  0.49  PA-(G)-F 

Table 1. Parameters used in the calculations 

7.4 Discussion of the results 
The orientations of crystallographic axes of different dendrites have different orientations in 
general. It is commonly recognized that this process is difficult to simulate by the classical 
CA method since the dendrite will always switch to 0c  or 45c  direction during the growth. 
Our testing is thus primarily focused on the growth of the dendrite at different orientations 
by the novel PA method. Simulated examples are for the random node arrangements PA-
(A),…, PA-(F) presented in Figs. 14-17, respectively. They show that when employing the 
PA method any of the crystallographic orientation can easily be achieved. Results show that 
the proper growth direction is always observed with increasingly random ( 0.49ε → ) node 
arrangement. 
For the same input parameters the dendritic growth process simulated by the CA and PA 
method for the 0defθ = c  preferential crystallographic orientation gives the different lengths 
of x  and y  branches. This is due to the influence of the random node arrangement and 
subsequent variable distances between the nodes. In the CA method the same value of a  is 
taken while for the PA method this distances are different and might vary between 
maximum 2x y aεΔ = Δ =  and minimum ( )2 1x y aεΔ = Δ = − .  
It can be concluded that the differences in the length between x  and y  directions with 
respect to the random node arrangement are almost constant and kept below 5%≈ . 
The average length of the dendrite at ten different orientations and some random node 
arrangement with 0.49ε =  is 152.8 +

−  5.18 μm. The average length of the dendrite calculated 
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with four different random node arrangement for the fixed angles 5° , 15° and 30°  is 
153.37 +

−  5.39 μm, 156.12 +
−  6.44 μm and 151.75 +

−  5.36 μm, respectively (Lorbiecka & Šarler, 
2010). From this one can conclude that the errors caused by the rotation of the dendrite are 
at the same order as the errors cussed by different random node arrangements. Fig. 16 
demonstrates that when reducing ε from 0.49 to 0.1 the PA starts to behave like the CA and 
the proper simulation of the dendrite is not possible. We are too close to the classical node 
structure in such case and CA limitations appear. 
 
 
 
 
 

 
 
 
 

Fig. 13. Seven dendrites growing simultaneously at orientations 0c and 45c after 350, 700,  
1500 and 2500 time steps of the length x10

106.82 − s.  FDM-CA solution procedure 
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Fig. 14. Simulated dendritic growth for a single dendrite for two orientations by the PA 
method for the same PA-(A) random node arrangement 22defθ = ° and 37defθ = °  

 
 
 

 

 
 
 

Fig. 15. Simulated dendritic growth for a single dendrite with 10defθ = °  for different 

random node arrangement structures: PA-(B), PA-(C), respectively 

CASE 1

l

 

l

22def =
cθ

l

 

l

CASE 2

37def =
cθ

CASE 3

l

 

l

10def =
cθ

l

 

l

CASE 4

10def =
cθ
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Fig. 16. Simulated dendritic growth for a single dendrite with 8defθ = c for different node 

arrangement randomness 0.49ε = PA-(D) and 0.1ε = PA-(E).  

 
 
 

 

 
 

Fig. 17. Simulated dendritic growth for a single dendrite  by the PA method with factor 1.25  

To achieve the same dendrite length in PA method as in the CA method, an empirical factor, 
which multiplies the calculated velocity in the PA method, was added in the code. It can be 
shown that putting factor 1.25, (for the random node arrangement ε = 0.49) in the PA 
calculations, the branches will have the same length in both methods (see Fig. 17).  

l

 

l

CASE 5

8def =
cθ

l

 

l

CASE 6

8def =
cθ

0def =
cθ with factor  

CASE 7

l

l

CASE 8

0def =
cθ with factor  

l

l
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Fig. 18. Seven dendrites growing simultaneously at different orientations after 350, 700, 1500 
and 2500 time steps of the length x10

106.82 − s.  FDM-PA solution procedure 
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In the present study it is not necessary to put any thermal fluctuations in the PA method. 
The random node arrangements in the PA method replace the thermal fluctuations of the 
CA method.  

8. Conclusions 

In this chapter a novel PA method is developed and applied to model the dendritic growth 
process. The principal characteristics and advantages of the developed PA method are 
• No need for mesh generation or polygonisation. Only the node arrangement has to be 

generated, but without any geometrical connection between nodes. 
• In the new PA method the governing equations are solved with respect to the location 

of points (not polygons) on the computational domain.  
• The random grid PA method allows to rotate dendrites in any direction since it has a 

limited anisotropy of the node arrangements. 
• PA method offers a simple and powerful approach of CA type simulations. It was 

shown that both methods are able to qualitatively and quantitatively model a diverse 
range of solidification phenomena in almost the same calculation time. 

• The dimension of the neighborhood radius and generation of the random node 
arrangement has to be chosen carefully in order to be able to rotate the dendrite. 

• Straightforward node refinement possibility. 
• Straightforward extension to 3-D. 
The use of FDM-PA method instead of FDM-CA method implies transfer of the results from 
the regular FDM mesh to the irregular PA node arrangements and vice versa. This is not the 
case in the classical FDM-CA method. A replacement of the FDM method with a meshless 
(Atluri, 2004; Liu & Gu, 2005; Šarler et al., 2005; Šarler & Vertnik, 2006) method that is able 
to directly cope with irregular node arrangement is underway. 
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