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1. Introduction 

Cellular automata (CA) are discrete spatially extended dynamical systems that are used as 
models of physical processes and as computational devices. An Elementary Cellular 
Automaton (ECA) is a collection of “colored” cells on a grid of specified shape that evolves 
through a number of discrete time steps according to a set of rules which are based on the 
states of neighboring cells and the previous state of the evolved cell. The next state of any 
cell in ECA depends only upon its present “neighborhood,” which includes the state of the 
cell itself and those of its immediate neighbors to the left and right. The rules are then 
applied iteratively for as many time steps as desired. ECA model has been used as a 
“universal constructor” and were studied as one possible model for natural and engineered 
systems where comprehensive studies of CA have been performed in which a gigantic 
collection of results and discoveries concerning automata are presented 
[4,5,11,21,22,25,26,28,30,37,38,41,45,49,50,51,53,60,62,71,74,78,79,80,81,83,86,87,92,93,94,97,99, 
100,106,107,108,109,110,111,112,113,114,115]. Several types of CA have been used extensively 
in several science and engineering applications such as: Image Processing [69,72], Finite 
State Machine (FSM) and VLSI circuit testing [2,13,17,19,20,29,30,32,46,48,56,75, 
88,89,90,91,96,103], Encryption [39,59,61,85], Pattern Classification and Recognition 
[15,26,51,52,57,73, 77,95,104], Error Correcting Codes [16,68], Neural Networks [7,18,105], 
Fault Diagnosis [70,91], Fault Tolerance [65], Data Compression [39,69], Game Theory [37], 
Random Number Generator (RNG) [102], Number Sorting [64], and set-theoretic 
Reconstructability Analysis (RA) [117].    
Motivations for pursuing the possibility of implementing ECA using Reversible Logic (RL) 
would include items such as [1,3,4,9,23,31,40,47,54,55,63,76,81,101]: (1) power: the fact that, 
theoretically, the internal computations in hardware RL-based systems consume no power. 
It was proven in [40], it is a necessary (but not sufficient) condition for not dissipating power 
in any physical circuit that all system circuits must be built using fully reversible logical 
components. For this reason, different technologies have been studied to implement 
reversible logic in hardware such as adiabatic CMOS and quantum [3,63,76]. Fully reversible 
discrete systems will greatly reduce the power consumption (theoretically eliminate) 
through three conditions: (a) logical reversibility: the vector of input states can always be 
uniquely reconstructed from the vector of output states, (b) physical reversibility: the 
physical switch operates backwards as well as forwards, and (c) the use of “ideal-like” 
switches that have no parasitic resistances; (2) size: since the newly emerging quantum 
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computing technology must be reversible [3,40,63], the current trends related to more dense 
hardware implementations are heading towards 1 Angstrom, at which quantum mechanical 
effects have to be accounted for; (3) speed: if the properties of superposition and 
entanglement of quantum mechanics can be usefully employed in the reversible ECA 
(RECA) context, significant computational speed enhancements can be expected; and (4) 
mapping: since RECA produces new constraint types of maps, it is interesting to explore the 
new dynamics and advantages of modeling discrete systems using such RL maps in contrast 
to the classical irreversible maps. 
This research extends and implements several of the reversible and quantum computing 
concepts that were developed earlier [3] to the context of ECA and this includes a new 
method for modeling and processing via the reversibility property in the existence of noise. 
The main contribution of this research is the creation of a new algorithm that can be used in 
noisy discrete systems modeling using conservative reversible elementary cellular automata 
(CRECA) and the corresponding quantum modeling of such discrete systems. One of the 
advantages of the use of new families of CRECA is their potential utilization in 
reconfigurable low-power (adiabatic) VLSI circuit designs [76] in contrast to the role of 
classical ECA circuits in classical (non-adiabatic) VLSI systems. M-ary quantum 
representations in ECA of: (1) m-ary orthonormal computational basis states quantum 
decision trees (QDTs) and (2) m-ary orthonormal composite basis states QDTs are also 
introduced as possible quantum representations for the modeling and manipulation of the 
quantum ECA (QECA) dynamics.   
Although several approaches were introduced previously in dealing with reversible ECA 
[23,31,33,34,35, 36,47,54,55], none of these approaches considered the important modeling 
and processing case which uses Swap-based operations (primitives) to represent reversible 
ECA even in the presence of noise. Modeling using Swap-based circuits is important since 
many of the two-valued (binary) and many-valued (m-ary) quantum circuit 
implementations use two-valued and many-valued quantum Swap-based and Not-based 
gates. This can be important, since the Swap and Not gates are basic primitives in quantum 
computing, from which many other m-valued fundamental gates are built such as [3,63]: (1) 
m-valued Not gate, (2) m-valued Controlled-Not gate (C-Not gate or Feynman gate), (3) m-
valued Controlled-Controlled-Not gate (C2-Not gate or Toffoli gate), (4) m-valued Swap 
gate, and (5) m-valued Controlled-Swap gate (C-Swap gate or Fredkin gate). 
The remainder of this research is organized as follows: basic backgrounds on RL and ECA 
are given in Sections 2 and 3. An algorithm for the synthesis of Swap-based CRECA is 
presented in Section 4. Quantum computation (QC) of CRECA is presented in Section 5. The 
extension to the m-ary (m-valued) case is introduced in Section 6. Conclusions and future 
work are presented in Section 7.  

2. Fundamentals of reversible logic 

A (k, k) reversible circuit is a circuit that has the same number of inputs (k) and outputs (k) 
and is a one-to-one mapping between the vectors of inputs and the vectors of outputs, thus 
the vector of input states can be always uniquely reconstructed from the vector of output 
states [3,9,40,63,101]. Thus, a (k, k) reversible map is a bijective function which is both injective 
(“one-to-one”) and surjective (“onto”). The auxiliary outputs and inputs that are needed only 
for the purpose of reversibility are called “garbage” outputs and “garbage” inputs 
respectively. These are auxiliary outputs and inputs from which a reversible map is 
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constructed (cf. Table 1 in Example 1). If a circuit is composed of interconnecting reversible 
elements (primitives or gates) then the overall circuit is also reversible [3].  
A (k, k) conservative circuit has the same number of inputs (k) and outputs (k) and has the 
same number of values in inputs and outputs (e.g., the same number of ones in inputs and 
outputs for binary, the same number of ones and twos in inputs and outputs for ternary, 
etc). 
An algorithm called conservative reversible Boolean function (CRBF) that produces a 
conservative reversible Boolean map from its irreversible counterpart is as follows: 
 

 Algorithm CRBF 

1. Augment the number of outputs to become equal the number of inputs: add a 
sufficient number of auxiliary output variables such that the number of outputs 
equals the number of inputs. Allocate a new column in the mapping table for each 
auxiliary variable.  

2. For the construction of the first auxiliary output, assign a constant C1 to half of the 
cells in the corresponding table column (e.g., zeros), and the second half as another 
constant C2 (e.g., ones). For convenience, one may assign C1 to the first half of the 
column, and C2 to the second half of the column (cf. Table 1, column Y1). 

3. For the next auxiliary output, If non-reversibility still exists, Then assign for identical 
output tuples (irreversible map entries) values which are half zeros and half ones (cf. 
Table 1, bottom two entries of column Y2), and then assign a constant for the 
remainder that are already reversible (cf. first two entries of Y2). 

4. If number of inputs i is now less than number of outputs j, Then add new auxiliary 
inputs (j – i) with constant column entries that will retain conservativeness (cf. Table 
1, constant “0” as first two entries of column c and constant “1” as bottom two entries 
of column c). 

5. Goto steps 3 and 4 until the total map entries are reversible and conservative. 

Example 1. The standard two-variable Boolean OR: Y = a + b is irreversible as in the 
following map: 

a b Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

Following the above CRBF algorithm, the following is one possible reversible two-variable 
Boolean OR: 
 

c a b Y Y1 Y2 

0 0 0 0 0 0 

0 0 1 1 0 0 

1 1 0 1 1 0 

1 1 1 1 1 1 

Table 1. A (3, 3) conservative reversible map for the Boolean inclusive OR. 
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Using CRBF algorithm, the construction of the conservative reversible map in Table 1 is 

obtained as follows: Since Y is irreversible, assign garbage output Y1 and assign the first half 

of its values as constant “0” and the second half as another constant “1”. Since the new map 

is still irreversible, assign garbage output Y2 and assign the 3rd cell value to constant “0” and 

the 4th cell value to constant “1”. Since by now the new map is a reversible 2-input 3-output 

non-conservative map (i.e., Boolean (2, 3) non-conservative OR), add a new garbage input c 

that converts the map to be a Boolean (3, 3) conservative OR. One notes that the solution in 

Example 1 is not unique, i.e., several other conservative reversible maps can be obtained as 

well.                           

As data in real life situations can be exposed to noise sources: (1) environmental (external) 

noise, (2) structural (internal) noise, (3) interfacing (measurement; data acquisition) noise, (4) 

a system output state that will never occur (i.e., don’t care state), or (5) unknown data 

(undecided), it is important to produce a conservative reversible mapping method that 

could incorporate noise in input or/and output data. This problem can be stated as: given 

that certain cells in a map are acceptable to be noisy (i.e., can take values “0” or “1”), generate a 

conservative reversible map from the corresponding irreversible counterpart.    

An observation that can be noted is that if noise occurs, value “0” can turn to value “1” or 

value “1” can turn to value “0”, and thus the reversible map obtained can become 

irreversible. One method to solve this problem is by adding redundant input/output 

variables that will maintain (1) reversibility and (2) conservativeness even with the existence 

of noise. 

Example 2. Let us assume in a simplified noise situation that input data in Table 1 has 

been corrupted with noise as follows: {Y=1,Y1=0,Y2=0}→{Y=1,Y1=1,Y2=0}. One can note 

that the map in Table 1 becomes irreversible since two input sets {c=0,a=0,b=1} and 

{c=1,a=1,b=0}  has the same output {Y=1,Y1=1,Y2=0}. To obtain a reversible and 

conservative map while incorporating noise, one may add another redundant output Y3 

and input k (cf. CRBF): 

 

k c a b Y Y1 Y2 Y3 

1 0 0 0 0 0 0 1 

1 0 0 1 1 0→1 0 0 

1 1 1 0 1 1 0 1 

1 1 1 1 1 1 1 1 

 
The previously illustrated procedure can handle as many cell changes that have altered 

values due to noise. In the most straightforward case a redundant variable is added for each 

noisy cell as an upper extreme. Yet, if the number of noisy cells is N and the number of 

needed added cells (to maintain reversibility) is A, then in general one may need A ≤ N iff 

the bijective mapping is still maintained. To achieve this, a simple exhaustive search 

algorithm using the CRBF algorithm over groups of cells may be utilized to obtain the 

constraint {min (A) for max (N)}, and this depends on the distribution (i.e., type) of noise that 

affects the map.   

Example 3. The following map demonstrates an example for the use of the CRBF algorithm 

for achieving reversibility in the simultaneous presence of three erroneous cells.  
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k c a b Y Y1 Y2 Y3 

1 0 0 0 0 0 0 1 

1 0 0 1 1 0→1 0 0 

1 1 1 0 1 1→0 0 1 

1 1 1 1 1 1 1→0 1 
 

As mentioned previously, in general, the errors (i.e., changes) in the cells may follow a 
pattern of certain noise distribution or may not. The important issue of noise distribution, 
and its direct effect on the method of selecting the needed added auxiliary variables, is to be 
addressed in a future publication. 

3. Basics of elementary cellular automata  

A cellular automaton is a decentralized computing model that provides an excellent 
platform for performing complex computations with the help of only local information 
[14,20,44,48,59,62,93,99,111,112,113,115]. A CA consists of a spatial lattice of cells, each of 
which, at time t, can be in one m states.  
The lattice starts out with some initial configuration of local states (where configuration 
means the pattern of states over the entire lattice) and at each time step, the states of all cells 
in the lattice are synchronously updated [84]. We denote the lattice size (or number of cells) 
as d. For a 2-valued (binary) finite lattices, there is only a finite number of 2d of possible 
configurations. In one-dimensional CA, the neighborhood of a cell includes the cell itself 
and some number of neighbors on either side of the cell. The number of neighbors on either 
side of the center cell is referred to as the CA’s radius r. For example, an elementary one-
dimensional CA is of radius r = 1. The motion equations for a CA are often expressed in the 
form of a rule table, which is a look-up table listing each of the neighborhood patterns and 
the state to which the central cell in that neighborhood is mapped [113].  

The communication in CA between constituent cells is limited to local interaction, and the 

overall structure can be viewed as a parallel processing device. CA exhibits the same 

dynamics behaviors (including fractals and chaos) which is seen in systems of continuous 

differential equations [25,42,49,66,98,106]. Elementary Cellular Automata (ECA) as a special 

type of CA has been proven to be a powerful computing paradigm for the following 

properties [62,113,115]: (1) universality: an ECA can model any discrete system, and thus it 

is a powerful logically complete system from which all functions can be obtained and can be 

used to model complex systems; (2) simplicity: an elementary cellular automaton is the 

building block of the elementary cellular automata, which is a simple structure that evolves 

over time using specific evolution rules, that leads to modeling complex discrete systems 

using such simple structures; and (3) regularity: the evolution of ECA to generate discrete 

time systems consists of geometrically evolving cellular grids. Set-theoretically, a regular 

ECA rule is a mapping of ( ( 1) ( ) ( 1)t t ts i s i s i− ⊗ ⊗ + ) onto st+1(i), where ⊗ is the Cartesian 

product.      
An ECA consists of an array of cells in one dimension (1-D). In a Boolean ECA, each cell can 
take on one of two state {0, 1} where the binary string representing the array changes at 
discrete time steps (intervals). The Boolean ECA dynamics is commonly represented: (1) 
spatially: by a horizontal sequence of 0’s and 1’s or of white and black cells, and (2) 
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temporally: time, in successive rows, is the vertical axis. The next state of any cell in ECA 
depends only upon its present “neighborhood,” which includes (a) the state of the cell itself 
and (b) those of its immediate neighbors to the left and right. That is, if st(i) is the state of cell 
i at time t, the dynamic law governing the Boolean ECA is described by the Boolean 
mapping (function):   

 st+1(i) = f(st(i-1), st(i), st(i+1)) (1) 

Since there are 23 = 8 possible neighborhoods and since each neighborhood can map into 
either of the two states of st(i+1), then there are 28 = 256 mappings (or ECA rules). 
Example 4. Table 2 shows the binary string representation of ECA Rule #30. 
 

st(i-1) st(i) st(i+1) st+1(i) 

0 0 0 0→Automaton1 

0 0 1 1→Automaton2 

0 1 0 1→Automaton3 

0 1 1 1→Automaton4 

1 0 0 1→Automaton5 

1 0 1 0→Automaton6 

1 1 0 0→Automaton7 

1 1 1 0→Automaton8 

Table 2. An illustrative example of ECA rule (Rule #30). 

Figure 1 shows the dark and white cells as a second representation of ECA Rule #30. 
 

 

                 0                 0                0                 1                 1                 1                1                 0  

Fig. 1. A second ECA representation of Rule #30. 

The 256 possible mappings are indexed by the binary number defined by st+1(i) for the set of 
all neighborhoods, where the lowest order bit of this index is f (0,0,0) and the highest order 
bit is f (1,1,1). For example, by using binary number expansion over base 2, the mapping of 
Table 2 is indexed by the number (00011110)2 and is Rule #30.  
A discrete dynamics using Rule #30 can be shown by evolving specific length grid l for n 

steps starting from an initial condition. An example can be shown from [113] as in Figure 2a 

where the total evolution occurs after 15 steps starting from a centered single black cell. The 

temporal behavior in a classical ECA, as shown in Figure 2a, is generally performed using 

overlapping neighborhoods for obtaining the automata evolution, and (as stated previously) 

from the algebraic mathematical modeling perspective, an overlapping-based ECA 

evolution using Equation (1) is a lattice.    

As shown in [111,112,113], the 256 mappings are divided into 88 equivalence classes, given 
that one considers maps to be equivalent if they are related: (1) by reflection , i.e., by left-right 
inversion of their arguments (which, if the dynamics were shown on transparency, would 

  Rule 
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merely involve turning the transparency over), (2) by complementing, i.e., negating the 
arguments and the function (which merely produces a photographic negative reversal), or 
(3) by both reflection and complementing. In general, an equivalence class will have 4 members, 
but f may generate itself under reflection and/or complementing, so that an equivalence 
class may have 1, 2, or 4 members. A representative rule that is chosen consistently is used 
to label the CA classes.  
Other ECA complexities of discrete dynamics also have been reported, and efforts have been 
undertaken to characterize the CA rule space, which is trying to understand and 
characterize the global dynamics from the local CA rules. CA evolution can lead to various 
dynamics that exhibits emergent behaviors such as fractals (Sierpinski triangle or Sierpinski 
gasket in Figure 2c), chaos (Figure 2a), randomness, complexity, and particles [113]. 
Additive CA (Figures 2b, 2c, 2d, 2f, and 2g) and linear CA gained popularity in the VLSI 
field [6,12,14,20,48,58,59] due to local interaction of simple cells, each having two states “0” 
or “1” which are the elements of the second radix Galois field GF(2) [3,67]. Also, it has been 
shown that Rule #110 (as shown in Figure 2e), like the game of life, which is an extremely 
simple one-dimensional system and one which is difficult to engineer to perform specific 
behavior, is universal [113]. From applications point of view, for instance, Rule #30 which 
generates randomness has been proposed to be used for pseudo-random number generator 
(PRNG) and as a possible stream cipher for the use in cryptography [39,59,61,85]. 
One can note that the characteristic features of an ECA are: (1) size: (1a) spatial size l and 
(1b) temporal size n, (2) initial condition, (3) evolution rule, (4) number of cell’s states 
(colors), (5) number of neighbors, and (6) evolution strategy (i.e., the way one conducts 
evolution such as top-to-down and left-to-right, top-to-down and center-to-sides, etc). For 
the ECA evolution using overlapping neighbors, the same evolution result is obtained when 
one uses the same rule and the same initial condition, regardless of the evolution strategy 
used. Thus, one can note that for example for the same evolution rule and different initial 
conditions one would obtain distinct automata evolutions, and equivalently for different 
evolution rules and same initial conditions one would obtain distinct automata evolutions. 
The CA local rules applied to each cell can be either identical or different. These two 
different possibilities are termed as uniform and hybrid CA, respectively [12,32,58,92]. 
While the next state function (rule) in general is deterministic, there are variations in which 
the rule sets are probabilistic [8,10,27] or fuzzy [24]. CA rules can be time-independent rules 
or time-dependent rules in which alternate rules at different time steps are used.  
As mentioned previously, the ECA is divided into 88 classes where the dynamics of these 
classes are governed by different attractors [113]. Several approaches have been investigated 
for the automatic classification of CA [116]. In [113], four attractor types are identified: (1) 
homogeneous (where the dynamics settles (relaxes) to a fixed configuration which is 
uniform that consists of all 1’s or 0’s), (2) Fixed point or periodic (but not uniform), (3) 
chaotic, or (4) complex. An alternate classification has been also provided [43]: (a) null, (b) 
fixed point, (c) periodic, (d) locally chaotic (chaotic in some parts of the cell array but regular 
in other parts), and (e) chaotic. Several approaches were proposed to characterize the 

average behavior of rules passing from one CA regime (class) to another (e.g., fixed point → 

periodic → complex → chaotic) [42].      
CA are also studied as computational devices, both as theoretical tools and as practical 
highly efficient parallel machines. Computing in the CA context may mean: (a) CA does a 
useful computational task where the rule is interpreted as a “program”, the initial 
configuration is the “input”, and the CA runs for specific number of time steps or until it 
 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

64 

 

(a) 

   

                    (b)                                                  (c)                                                  (d) 

   

                        (e)                                                  (f)                                                   (g) 

Fig. 2. Space-time diagram of the dynamical ECA which is temporally discrete and spatially 
discrete that can possess the following evolution dynamics where each row is an evolved 
Automata: (a) Rule #30, (b) Rule #60, (c) Rule #90, (d) Rule #102, (e) Rule #110, (f) Rule 
#150, and (g) Rule #250. All of the shown evolutions have started from an initial condition 
of a single black cell. 

reaches a final goal “output” pattern (e.g., CA that performs image processing tasks [69,72]),  
or (b) a CA is capable of universal computing given specific initial configuration, which 
means (given the correct initial configuration) a CA can simulate a programmable computer, 
complete with logic gates, timing devices, etc (e.g., Conway’s Game of Life, and the 
speculation that all Class 4 rules have the capacity for universal computing [113]).     
Since real-life data is in general many-valued, the general case of many-valued ECA is used 
to model natural systems and their dynamics [113]. The following example shows an 
example of a ternary ECA.   
Example 5. Discrete dynamics using ternary (i.e., 3-valued) Rule #322 in Figure 3a can be 
shown by the overlapping-neighborhood evolution of the grid of length 9 for 5 steps starting 
from an initial condition as shown in Figure 3b, where color-based values are as follows: 
“white” represents value (state) “0”, “grey” represents value (state) “1”, and “black” 
represents value (state) “2”.  
Note that the number of colors (values) allowed for the input cells defines the input radix 
(mi) and the number of colors (values) allowed in the output cell defines the output radix 
(mo). For the previous cases in Examples 4 and 5, the input radix equals the output radix 
since they use the same number of colors (i.e., values), and for this case the number 
represented by the ECA rule can be expressed by the radix m number expansion  

N = 
1

0

k
n

n
n

c m
−

=
∑ , where cn is the expansion coefficient which takes the value (color) of the 
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                                       (a)                                                                                   (b) 

Fig. 3. Three-valued ECA evolution: (a) Rule #322 which is obtained as: 

1⋅30 + 2⋅31 + 2⋅32 + 2⋅33 + 1⋅35 = 322, and (b) ECA evolution using Rule #322 for the given 
initial condition. 

output of the automaton at index n for number of automata k = m3, and the index n is 
computed using the number expansion over the input colors (values or states).  
Other important types of CA rules were proposed such as the Gacs-Kurdyumov-Levin 
(GKL) CA in which the evolution rule is the “majority vote” rule with m = 2, r = 3 as follows: 

       1 3

1 3

( ) 0, ( 1) [ ( ), ( ), ( )]

( ) 1, ( 1) [ ( ), ( ), ( )]
i i i i i

i i i i i

If s t then s t majority s t s t s t

If s t then s t majority s t s t s t
− −

+ +

= + =⎧
⎨ = + =⎩

 

where si(t) is the state of site i at time t. The GKL rule states that for each neighbor for seven 
adjacent cells (that is r = 3), if the state of the central cell is "0", then its new state is decided 
by a majority vote among itself, its left neighbor, and the cell two cells to the left away, else 
if the state of the central cell is "1", then its new state is decided by a majority vote among 
itself, its right neighbor, and the cell two cells to the right away.  

4. The synthesis of conservative reversible ECA  

The evolution that results from Equation (1) is an irreversible evolution; the evolution of 
ECA according to Equation (1) in general leads to irreversible dynamics, i.e., result is not a 
one-to-one mappings between vectors of inputs and outputs, and thus the vector of input 
states cannot be always uniquely reconstructed from the vector of output states. To achieve 
reversible discrete dynamics, one may use the following alternative definition of ECA 
evolution [4]: 

  scr,t+1(i-1) = f1(st(i-1), st(i), st(i+1)) (2) 

 scr,t+1(i) = f2(st(i-1), st(i), st(i+1)) (3) 

 scr,t+1(i+1) = f3(st(i-1), st(i), st(i+1)) (4) 

where subscript c means conservative and subscript r means reversible, such that the (3, 3) 
mappings from one step to the next are conservative and reversible and thus producing a 
CRECA.  
One of the advantages of the use of new families of CRECA is their potential direct 
utilization in reconfigurable adiabatic (i.e., low-power) VLSI circuit designs [76] in contrast 
to the role of classical ECA circuits in classical (non-adiabatic) VLSI systems. This can be an 
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important application goal, especially that classical (irreversible) ECA have already proven 
their use in the irreversible VLSI applications such as in the testing of VLSI circuits and 
Finite State Machines (FSM) [2,13,17,19,20,29,30,32,46,48,56,75,88,89,90,91,96,103]. 
Example 6. Using the algorithm CRBF, Table 3 shows a (3, 3) conservative reversible map 
for Rule #170.  
 

st(i-1) st(i) st(i+1) st+1(i-1) st+1(i) st+1(i+1) 

0 0 0 0 0 0 

0 0 1 1 0 0 

0 1 0 0 0 1 

0 1 1 1 0 1 

1 0 0 0 1 0 

1 0 1 1 1 0 

1 1 0 0 1 1 

1 1 1 1 1 1 

Table 3. An example of CRECA for st+1(i-1) Rule #170. 

The (3, 3) conservative reversible mapping in Table 3 for Rule #170 can be represented by 
the set of three binary strings as follows {10101010,11110000,11001100}2, which produces the 
set of Rule #{170, 240, 204}.   
Figure 4 shows an example of ECA discrete system dynamics for irreversible Rule #240 
(Figure 4a) versus reversible Rule #{170, 240, 204} (cf. Table 3) using the same initial 
condition {110010101} (Figure 4b). While the evolution in Figure 4a is a non-overlapping 
neighbor evolution, the evolution in Figure 4c is an overlapping neighbor evolution. One 
notes that the irreversible overlapping-based neighbor ECA evolution for Rule #240 in 
Figure 4c leads to a more complex evolution than the irreversible non-overlapping-based 
neighbor ECA evolution for Rule #240 in Figure 4a. One can also observe that if one 
conducts a 3-block reversible evolution with overlapping neighbor (Figure 4d) then several 
cell(s) will result with conflict values inside it, and this case will be forbidden (avoided) 
since the value and its “opposite” cannot possess the same spatial location (address) at the 
same time. Therefore, 3-block reversible non-overlapping neighbor ECA evolutions (such as 
in Figure 4b) will be only used. 
 

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

          

               (a)                                    (b)                                       (c)                                       (d)   

Fig. 4. Discrete system dynamics for: (a) irreversible non-overlapping neighbor ECA 
evolution for Rule #240, (b) reversible non-overlapping neighbor ECA evolution for Rule 
#{170,240,204}, (c) irreversible overlapping neighbor ECA evolution for Rule #240, and (d) 
reversible overlapping neighbor ECA evolution for Rule #{170,240,204} where x means a cell 
with contradictory values, i.e., a cell with more than one value at the same spatial location. 

Utilizing Figure 4b as an example, one can note that by incorporating the property of 
reversibility in the ECA, one obtains after a single forward pass, using reversible maps, a 
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new relatively complex discrete dynamics that can be obtained with irreversible ECA, for the 
same initial conditions, only with much higher complexity in terms of the need to perform 
many forward iterations (i.e., several forward passes). For example, this can be seen in 
Figure 4, in order to achieve the evolved ECA in Figure 4b from Figure 4a, that one needs to 
evolve the ECA in Figure 4a using the individual evolution Rules {#170, #240, #204} at a 

time in each level and thus one needs a total of 3 4 12
iterations

levels
level

⋅ =  forward passes. This 

fact can reflect itself in the circuit design as an optimization tradeoff between spatial 
complexity (memory used) and time (i.e., temporal) complexity of number of iterations, and 
thus depending on the cost one could select the type of optimization, i.e., spatial optimization 
in irreversible maps versus temporal optimization in reversible maps. 
Given: (1a) 1-D array length l, (1b) time steps n, (2) initial condition (distribution), and (3) 
reversible maps {f1, f2, f3}, the analysis of CRECA refers to the finding of the CRECA 
evolution at step (t+1) from step t. While analysis is useful to explore the whole space of all 
potential reversible system dynamics, the opposite problem of synthesis is the more 
interesting problem. The synthesis problem can be stated as follows: Given (1a) 1-D array 
length l, (1b) discrete time steps n, (2) a priori known or assigned initial condition, and (3) the 
result of a total spatial evolution over time, produce the reversible maps {f1, f2, f3}. It turns out 
that, while CRECA analysis is relatively an easy problem, CRECA synthesis is a more 
difficult one.  
Different types of reversible ECA have been studied [23,31,33,34,35, 36,47,54,55]. Yet, none 
of these approaches considered the important modeling and processing case which uses 
Swap-based operations (primitives) to represent reversible ECA even in the presence of 
noise. As mentioned previously, modeling and processing using Swap-based circuits is 
important since many of the two-valued and many-valued quantum circuit 
implementations use two-valued and multiple-valued quantum Swap-based and Not-based 
gates. This can be important, since the Swap and Not gates are basic primitives in quantum 
computing, from which many other m-valued fundamental gates are built, such as [3,63]: (1) 
m-valued Not gate, (2) m-valued Controlled-Not gate (m-valued C-Not gate or m-valued 
Feynman gate), (3) m-valued Controlled-Controlled-Not gate (m-valued C2-Not gate or m-
valued Toffoli gate), (4) m-valued Swap gate, and (5) m-valued Controlled-Swap gate (m-
valued C-Swap gate or m-valued Fredkin gate). The following is an algorithm to generate 
one possible Swap-based CRECA (SCRECA).   
The SCRECA Algorithm can be used for the representation (i.e., modeling) and the 
operation (i.e., processing) reversibly on the final resulting lattice of the ECA evolution, 
whether that evolution was conducted using a non-overlapping neighbor ECA evolution or 
an overlapping neighbor ECA evolution. 
Since the elementary cellular automaton in its fundamental form is a 3-cell block, then the 
SCRECA algorithm is based on mapping a partition of the spatial state of the automata in 
blocks of three cells and then finding a suitable permutation matrix reflecting the behavior 
of the conservative reversible system. This simplicity of the Swap-based SCRECA algorithm 
is also the reason for its ability to model complex evolutions. 

As SCRECA is (1) reversible and (2) conservative, the output of each automaton ,
T
k t qa +

f
 can 

be always obtained as a permutation of input ,
T
k t pa +

f
. Therefore, the matrix 

( 1) ( 1)( 2) ( 1)...
T

q q p p p pM M M− + + +
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦  (i.e., the total matrix that results from multiplying the 
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 Algorithm SCRECA 

1. For a BECA (Boolean ECA or binary-input binary-output ECA) map specified as 
follows: (1) spatial length (i.e., array length) is l, and (2) temporal length (i.e., number 
of steps) is n. 

2. If the length l is not a multiplication of 3, Then add minimum number of columns 
with zero values to make the length (l/3) is an integer, Else goto 3. 

3. For temporal (row) index K = 1,2,3,…,n, spatial automaton ak with index k = 0,1,2,…, 
(l/3)-1, and evolution matrix from an arbitrary time (z-1) to time z: [M(z-1)z], find 
transformation matrix from time (row) p (i.e., t + p) to time (row) q (i.e., t + q) as 
follows: 

, , ( 1) ( 1)( 2) ( 1)...
T

T T
k t q k t p q q p p p pa a M M M+ + − + + +

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
f f

 or  

, ( 1) ( 1)( 2) ( 1) ,...k t q q q p p p p k t pa M M M a+ − + + + +
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

f f
 

       where t, p, and q are positive integers. 
4. For top-to-down and left-to-right evolution, Goto 5. 
5. Since the CRECA is conservative, then by using the Swap-based reversible primitives, 

synthesize a  reversible circuit for the CRECA map as follows: 
5a.   For (m = 0; m < n; m++)  

        For (k = 0; k  ≤ 1
3

l
− ; k++)     

5b.   Perform one-to-one spatial mapping of permuted automaton cell ak between levels m 
        and (m+1) into (3, 3) Swap-based reversible primitive (cf. Figure 5) between stages m  
        and (m+1) in the corresponding reversible circuit. 
6. End   

 

matrices { }( 1) ( 1)( 2) ( 1),..., ,q q p p p pM M M− + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ) is always a permutation matrix. For example, 

for a 3-input 3-output permutation, Figure 5 shows all possible reversible (3, 3) Swap-based 
permutations using the Wire (Buffer) and Swap reversible logic primitives. The matrix 
representation in Figure 5 is obtained by solving for the output spatial state (vector) 
permutation from the input state (vector). This is shown for Figure 5d as an example as 

follows: 

1 0 0

0 0 1

0 1 0

u u

v w

w v

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

, where 

u

v

w

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 is the input vector and 

u

w

v

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 is the output vector 

in Figure 5d, respectively.        
One notes that the above algorithm SCRECA can be used spatially for any of the following 

three cases: (a1) evolving a single automaton, (b1) evolving any set of automata at the same 

time, and (c1) evolving all of automata at the same time. Also, one notes that the above 

algorithm SCRECA can be used temporally for any of the following three cases: (a2) step-by-

step automata evolution between two consecutive times (i.e., steps) (k-1) and k, (b2) 

automata evolution between any two times (steps) p and q, and (c2) total automata evolution 

for all of steps n. While temporal complexity in methods (a2) through (c2) result in step-by-

step evolution matrix transformations (i.e., matrix multiplications), methods (a1) through 
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(c1) result in spatial complexity that determines the number of input-output permutation 

primitive, e.g., (3, 3), (6, 6), (9, 9), etc. The determining factor for using methods (a1) - (c2) 

can be, for example, the complexity of possible circuit implementation of the resulting 

reversible circuit models.  

 
 

 
 

Fig. 5. Two-valued (binary) reversible and conservative permutation-based circuits: (a) (1, 1) 
Wire (i.e., Buffer), (b) (2, 2) Swap, and (c) - (h) all possible reversible (3, 3) Swap-based 
primitives. 

Example 7. For a discrete system defined as follows: (1) Object: set of two objects {I1, I2} → 

automata; (2) Characteristic Features: location → automaton; (3) Data: spatial grid locations 

→ cells, given an initial condition as {01010}, Figure 6a shows a possible top-to-down and 
left-to-right discrete dynamics of the two objects over 3-step period of time, where the tuple 
(t, s) indicate the cell indices in ECA. A possible conservative reversible discrete dynamics 
for Figure 6a can be obtained using Table 3 as shown in Figure 6b by adding an auxiliary 
cell C.  
 
 

 
 

Fig. 6. An example of an evolution dynamics: (a) evolution of two objects, and (b) reversible 
discrete dynamics for Figure 6a that is obtained using Table 3. 

The reversible circuit model for the evolution in Figure 6b can be obtained by 
interconnecting reversible Swap-based primitives from the permutation circuits that are 
shown in Figure 5. The two-stage step-by-step evolution of the conservative reversible 
discrete dynamics in Figure 6b can be modeled using the Swap-based reversible circuit in 
Figure 7a, and the two-stage total conservative reversible evolution can be modeled using 
the Swap-based reversible circuit in Figure 7b.   

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

70 

 

                                              (a)                                                                                     (b) 

Fig. 7. Conservative and reversible Swap-based circuit model for the reversible dynamics in 

Figure 6b: (a) (6,6) conservative reversible circuit for the two-stage step-by-step evolution of 

the discrete dynamics in Figure 6b, and (b) (6,6) circuit for the two-stage total evolution in 

Figure 6b. 

One notes that the two objects I1 and I2 and the additional object C are of the same type, i.e., 

logically can be represented as value “1”. The two-stage step-by-step evolution of the 

conservative reversible discrete dynamics in Figure 7a is mathematically represented by the 

following transformation matrices (cf. Figures 5d and 5e), where 03x3 is a zero-value matrix 

of dimension 3x3: 

Stage 1: 

3 3

3 3

0 1 0

1 0 0 0

0 0 1

0 1 0

0 1 0 0

0 0 1

x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

,  Stage 2: 

3 3

3 3

0 1 0

0 0 1 0

1 0 0

0 1 0

0 0 0 1

1 0 0

x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 

and the two-stage total evolution of the reversible discrete dynamics in Figure 7b is 
represented by the following transformation: 

3 3

3 3

1 0 0

0 0 1 0

0 1 0

1 0 0

0 0 0 1

0 1 0

x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 = 

3 3

3 3

0 1 0

0 0 1 0

1 0 0

0 1 0

0 0 0 1

1 0 0

x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

3 3

3 3

0 1 0

1 0 0 0

0 0 1

0 1 0

0 1 0 0

0 0 1

x

x

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

                                         

Suppose now, due to an external unknown stimulus in Figure 6b (which is modeled using 

Table 3) that it is acceptable for the output vector {st+1(i-1)=0, st+1(i)=0, st+1(i+1)=1} in the 

conservative reversible map in Table 3 to be {st+1(i-1)=0, st+1(i)=1, st+1(i+1)=1}, i.e., one does 

not care if st+1(i) has value “0” or value “1”, (which happens a lot in circuit design [82] for 

instance), and thus one would like to re-use the same map in Table 3. A sub-map of such (1) 

reversible and (2) conservative map would be as shown in Table 4a. One way to make Table 

4a conservative and reversible is by using the method suggested in Section 2, i.e., by 

incorporating redundancy in inputs (Kt) and outputs (Kt+1).  
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Each row in the new map is a (4, 4) automaton and thus the new map would have 16 

possible automata (i.e., each Rule is made of 16 “0/1” entries).  

 
 

 

                                  (a)                                                                              (b) 

Table 4. Reversible and conservative maps in the existence of noise: (a) reversible 
conservative noisy map model for Table 3 with single erroneous cell, and (b) reversible 
conservative noisy map model for Table 3 with multiple-errors. 

Note that Table 4a will be reversible for both cases if the value of the output noisy cell st+1(i) 

is “0” or “1”. The CRECA and its conservative reversible circuit model can be obtained for 

Table 4 by using the SCRECA algorithm utilizing (4, 4) Swap-based reversible primitives 

that can be obtained using all possible input-output permutations similar to the (3, 3) Swap-

based primitives in Figure 5. Table 4 shows that one way to incorporate noise while maintaining 

reversibility is to add more spatial complexity in terms of adding extra hardware (sub-circuits) that 

correspond to the redundant input/output variables. The problem of obtaining a reversible map 

from an irreversible map is important because, as will be seen in the next section, quantum 

circuits are inherently reversible and thus does not consume power, while irreversible 

circuits and systems, due to an irreversible mapping, do consume power [9,40,63].  

5. Quantum computing for the conservative reversible ECA 

Quantum computing (QC) is a method of computation that uses a dynamic process 

governed by the Schrödinger Equation (SE) [3,63]. The one-dimensional time-dependent SE 

(TDSE) takes the following general form: 

 
22

2

( / 2 )
( / 2 )

2

h
V i h

m tx

ψ ψπ ψ π
∂ ∂

− + =
∂∂

 (5) 

 ( / 2 )or H i h
t

ψ
ψ π

∂
=

∂
 (6)                          

where h is Planck constant (6.626⋅10-34 J⋅s), V(x, t) is the potential, m is particle mass, 1i = − , 

|ψ(x, t)> is the quantum state, H is the Hamiltonian operator (H = - [(h/2π)2/2m]∇2 + V), 

and ∇2 is the Laplacian operator.  
Although more complex forms of the Schrödinger Equation were proposed such as (1) the 

relativistic TDSE, and (2) the master TDSE, Equation (5) is still a good and acceptable useful 

form to model systems’ dynamics utilizing quantum mechanical principles. 
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While the above holds for all physical systems, in the quantum computing (QC) context, the 
time-independent SE (TISE) is normally used [3,63]:  

 2
2

2
( )

( / 2 )

m
V E

h
ψ ψ

π
∇ = −  (7) 

where the solution |ψ> is an expansion over orthogonal basis states |φi> defined in a 

complex linear vector space called Hilbert space Η as follows: 

 
i i

i

cψ φ=∑  (8) 

where the coefficients ci are called probability amplitudes, and |ci|2 is the probability that the 

quantum state |ψ> will collapse into the (eigen) state |φi>. The probability is equal to the 

inner product |<φi|ψ>|2, with the unitary condition ∑|ci|2 = 1. In QC, a linear and unitary 

operator ℑ is used to transform an input vector of quantum binary digits (qubits) into an 
output vector of qubits [3,63]. In two-valued QC, a qubit is a vector of bits defined as 
follows:  

 qubit qubit0 1

1 0
0 , 1

0 1

⎡ ⎤ ⎡ ⎤
≡ = ≡ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (9) 

A two-valued quantum state |ψ> is a superposition of quantum basis states |φi>, such as 
those defined in Equation (9). Thus, for the orthonormal computational basis states 
{|0>,|1>}, one has the following quantum state: 

 0 1ψ α β= +  (10) 

where αα* = |α|2 = p0 ≡ the probability of having state |ψ> in state |0>, ββ* = |β|2 = p1 ≡ 

the probability of having state |ψ> in state |1>, and |α|2 + |β|2 = 1. The calculation in QC 
for multiple systems (e.g., the equivalent of a register) follows the tensor (Kronecker) 

product (⊗) [3]. For example, given two states |ψ1> and |ψ2> one has the following QC: 

 ( ) ( )
1 2 1 2

1 1 2 2

1 2 1 2 1 2 1 2

0 1 0 1

00 01 10 11

ψ ψ ψ ψ

α β α β

α α α β β α β β

= ⊗

= + ⊗ +

= + + +

 (11)          

A physical system, describable as follows: 

 Spinup Spindown1 2c cψ = +  (12) 

(such as the Hydrogen atom), can be used to physically implement a two-valued QC. 
Another common alternative form of Equation (12) is: 

 1 2 1 2

1 1
0 1

2 2
c c c cψ = + + − = +  (13) 

A Quantum circuit, that implements specific mapping, can be modeled as interconnects of 
certain quantum primitives [3]. As quantum circuits must be reversible, the conservative 
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reversible primitives in Figures 5a and 5b are used for quantum circuit synthesis [3,63], and 
therefore the reversible circuits in Figure 5 can be used for QC. Yet, since inputs in the 
quantum domain are vectors of bits rather than scalar bits as in the classical domain, the 
quantum evolution of inputs to outputs in Figure 7 (as an example) is modeled in QC 
differently. In QC, a (1, 1) Wire and a (2, 2) Swap quantum primitives are modeled as in 
Figure 8.  

(1, 1) Wire: 
1 0

0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

      (2, 2) Swap: 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

                                                               (a)                                          (b) 

Fig. 8. Quantum modeling of: (a) Wire (Buffer) gate and (b) Swap gate. 

In Figure 8, the matrix representation is equivalent to the input-output (I/O) mapping 
representation of quantum gates, and we consider the example of the Swap gate to illustrate 
this point as follows. The Swap gate performs the following I/O mapping: 
 

00 00 

01 10 

10 01 

11 11 

 
If one considers each row in the input side of the I/O map as an input vector represented by 
the natural binary code of 2index with row index starting from “0”, and similarly for the 
output row of the I/O map, then the matrix transforms the input vector to the 
corresponding output vector by transforming the code for the input to the code for the 
output. For example, the following matrix equation is the I/O mapping that uses the Swap 
matrix from Figure 8b:  
 

[Swap matrix] ⋅ [input code] = [output code] 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000

0010

0100

0001

 ⋅ 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1000

0010

0100

0001

1000

0100

0010

0001

 

One notes from this example, that the Swap gate, and similarly the Buffer (Wire) quantum 
gate in Figure 8a, is merely a permuter, i.e., it produces output vectors which are 
permutations of the input vectors. Another method for obtaining the matrix representations 
in Figure 8 is as follows [3]: Utilizing the algebraic addition and multiplication operations 
over the 2nd-radix (two-valued) Galois field [3,67], one obtains the following quantum 
transformations of the binary input qubits into the output qubits using the two-valued Swap 
quantum gate: 
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00 00 , 01 10 , 10 01 , 11 11→ → → →  

and by solving for the set of linearly independent equations over the two-valued Galois 
field, one obtains the Swap evolution matrix in Figure 8b. Therefore, the evolution of input 

to output for QC in Figure 7a is performed as follows, where ⊗ is the tensor (i.e., Kronecker) 

product, ⏐ is the quantum parallel interconnection, and ⎯ is the quantum serial 
interconnection [3]: 

       Input1= 2

0 1 0
0 101 1 0 1 0 0 0 0 0 1 0 0

1 0 1

T
C I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⊗ ⊗ = ⊗ ⊗ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

       Input2= 1

1 0 1
0 0 010 0 1 0 0 0 1 0 0 0 0 0

0 1 0

T
I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = ⊗ ⊗ = ⊗ ⊗ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

Sub-System1 = Sub-System2 = [(Swap⏐Wire) ⎯ ((Swap⏐Wire) ⎯ (Wire⏐Swap))] 

       → (Swap⏐Wire) = 

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⊗
1 0

0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

       → (Wire⏐Swap) = 
1 0

0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

⊗

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

. 

⇒ [(Swap⏐Wire) ⎯ ((Swap⏐Wire) ⎯ (Wire⏐Swap))] = 

1 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⋅⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢
⎢ ⎥ ⎢⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⋅⎢ ⎥
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 00 0 0 0 1 0 0 0

0 0 0 0 0 0 1 00 0 0 0 0 0 1 0

0 0 0 0 0 1 00 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

⎡ ⎤⎡ ⎤⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎦ ⎣ ⎦ =⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

0

0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

www.intechopen.com



Conservative Reversible Elementary Cellular Automata and their Quantum Computations   

 

75 

⇒ Output1: 2

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
1 1 0 110 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0

CI

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⊗ ⊗ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,  

Output2: 1

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0
0 0 1 001 00

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⊗ ⊗ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

One can note that the classical method using Figure 5 and the quantum method using Figure 
8 produce formally the same output in two distinct ways: the first uses linear transformation 
upon classical bits while the second uses (equivalently) distinct linear transformation upon qubits.  

While the previous example considered that the probability of the quantum system is 100% 

in one state and 0% in the rest (i.e., 1.0 0 0.0 1iψ = +  or 0.0 0 1.0 1iψ = + ), the 

following example illustrates the evolution of a general superimposed quantum state.   
Example 8. Feynman gate is the quantum XOR and plays a fundamental role in quantum 
computing [63]. The fundamental Swap gate (cf. Figure 8b) can be decomposed into serially-
interconnected Feynman-based primitives. This example illustrates the evolution of the 
input superimposed quantum states into output quantum states using the quantum circuit 
in Figure 9d which is related to the fundamental Swap gate via using the quantum circuit in 
Figure 9c. The quantum matrix representations for the basic gates in Figures 9a and 9b is 
shown within the two Figures respectively, and is obtained using any of the two methods 
that were shown previously for obtaining the quantum matrix representation for the Swap 
gate. The quantum matrix representation for the circuit in Figure 9d is obtained using the 
regular matrix multiplication of the matrix representations of the serially interconnected C-
Not and flipped C-Not gates.  

For the two quantum input states: ( )1

1
0 1

2
ψ = + , 2 0 1a bψ = + , the evolution of the 

superimposed input quantum state: 

 ( ) ( ) ( )1 2 1 2

1 1
0 1 0 1 00 01 10 11

2 2
a b a b a bψ ψ ψ ψ ψ= = ⊗ = + ⊗ + = + + +  

using the circuit in Figure 9d is obtained as follows: 
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Fig. 9. Quantum gates and circuits and their quantum matrix representations: (a) 2-valued 
Controlled-Not gate (2-valued C-Not gate or 2-valued Feynman gate), (b) flipped 2-valued 
Controlled-Not gate (flipped 2-valued C-Not gate or flipped 2-valued Feynman gate), (c) 
Swap gate as an equivalent to a serial cascading of CNot-FlippedCNot-CNot gates, and (d) a 
sub-circuit of the quantum circuit in Figure 9c which is composed of a serial interconnection 
between a C-Not gate and a flipped C-Not gate. 

/ 2 / 21 0 0 0

0 0 1 0 / 2 / 2

0 0 0 1 / 2 / 2

0 1 0 0 / 2 / 2

a a

b a

a b

b b

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Thus, the superimposed output quantum state is:     

( ) ( ) 2 1 2 1

1
00 01 10 11 0 1 0 1

2 2 2 2 2

a a b b
a bψ ψ ψ ψ ψ′ = + + + = + + = ⊗ =   

One can note from Example 8 that the quantum matrix holds the orthonormal axes in the 
corresponding quantum space that define that particular quantum space, the quantum state 
is a vector of probabilities in that quantum space, and  the quantum evolution is a 
transformation of the vector of probabilities in the corresponding quantum space. 
Equivalently, one may interpret the quantum evolution as the application of the 
transformed quantum space (that is the transformed orthonormal axes) upon the input 
vector of probabilities. This can be directly observed from the following Equation: 

/ 2 / 21 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 1 0 0 / 2 0 0 1 0 / 2
00 01 10 11 00 01 10 11

0 0 1 0 0 0 0 1 0 0 0 1/ 2 / 2

0 1 0 0 0 0 1 0 0 1 0 0/ 2 / 2

/ 2

/ 2
00 01 10 11

/

a a

b b

a a

b b

a

a

b

ψ

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ⎡ ⎤ ⎡ ⎤= ⋅ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⎣ ⎦ ( )

/ 2

/ 2 1
00 11 01 10 00 11 01 10

22 / 2

/ 2 / 2

a

b
a b a b

a

b b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎡ ⎤= = + + +⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

Although Example 8 demonstrates the method for evolving the input superimposed 
quantum states into output quantum states for two-valued quantum circuit, the same 
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method is straightforward extended to the many-valued case that will be introduced in the 
following section. 
For the superposition of quantum states in the corresponding quantum ECA (QECA), one 
can spatially obtain the total superimposed quantum state from the individual quantum 
cells (quantum states), by superimposing recursively two quantum cells (states) at a time, 
due to the fact that the tensor (Kronecker) product possesses the associative property, as 
follows:  

 1 2 1 2 1 2 3 4... ... (...((( ) ) ) ... )n n nψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ= = ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗ ⊗  (14) 

The decomposition in Equation (14) can be directly utilized in using a binary tree for the 
representation of each pair of the quantum states’ tensor product, and the resulting 
quantum decision tree (QDT) [3] can be used as a data structure for simulating the evolution 
dynamics in the corresponding QECA. This is shown in Figure 10 for the two quantum 
states of the Wire (Buffer) in Equations (15) and (16), respectively. 

 1

1

1 0
0 1

0 1A

α
ψ

β
⎡ ⎤ ⎡ ⎤

⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

 (15)          

 2

2

1 0
0 1

0 1B

α
ψ

β
⎡ ⎤ ⎡ ⎤

⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

 (16) 

Where 
1 0

0 1

⎡ ⎤
⎢ ⎥
⎣ ⎦

 is the Buffer quantum operator [3]. 

 

Aψ                       Bψ                                   ABψ  

0=A            1=A  

0=A            1=A   0=B  1=B  0=B 1=B 0=B 1=B  

α1 β1 α2 β2             α1α2       αα1β2            β1α2      β1β2  
 

                          (a)                                     (b)                                                     (c) 

Fig. 10. Two-valued computational basis states QDT representations for: (a) Equation (15), 
(b) Equation (16), and (c) Equation (11). 

As an example, Figure 10c shows the quantum decision path 01AB =  in a dashed dark 

line that leads to the highest probability α1β2 into which the QECA spatially superimposed 
state will collapse. 
The QDTs in Figure 10 use the quantum computational basis states to model the ECA 
dynamics. Other quantum basis states such as the 1-qubit quantum systems’ orthonormal 

composite basis states 
0 1 0 1

,
2 2

⎧ ⎫+ −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 and the 2-qubit quantum systems’ Einstein-
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Podolsky-Rosen (EPR) basis states 
00 11 00 11 01 10 01 10

, , ,
2 2 2 2

⎧ ⎫+ − + −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 can be used 

[3,63] for the quantum representation of ECA, where various tree representations will lead 
to different computational optimizations in terms of (1) number of internal nodes used (i.e., 
memory used or spatial complexity) and (2) the speed of implementation operations using 
such representation (i.e., temporal complexity). For instance, by using the quantum Walsh-

Hadamard operator 
1 11

1 12

⎡ ⎤
⎢ ⎥−⎣ ⎦

 [3,63], Equations (17) and (18) represent the equivalence of 

Equations (15) and (16) in terms of the orthonormal composite basis states 

0 1 0 1
,

2 2

⎧ ⎫+ −⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 as follows [3]:               

 
1 1 1 1

1 1 1 1
1 1

0 1 ,
2 2

.
2 2

A α β α β

α β α β λ μ

+ + − + − −
Ψ = + = +

+ −
= + + − = + + −

 (17) 

         

 
2 2 2 2

2 2 2 2
2 2

0 1 ,
2 2

.
2 2

B α β α β

α β α β λ μ

+ + − + − −
Ψ = + = +

+ −
= + + − = + + −

 (18) 

where 
0 1 0 1

,
2 2

⎧ ⎫+ −⎪ ⎪+ = − =⎨ ⎬
⎪ ⎪⎩ ⎭

 and 0 , 1
2 2

⎧ ⎫+ + − + − −⎪ ⎪= =⎨ ⎬
⎪ ⎪⎩ ⎭

. 

Consequently, measuring AΨ  with respect to the new basis { },+ −  will result in the 

state (basis) +  with probability 
2

1 1| |

2

α β+
and the state (basis) −  with probability 

2
1 1| |

2

α β−
. Similarly, measuring BΨ  with respect to the new basis { },+ −  will result in 

the state (basis) +  with probability 
2

2 2| |

2

α β+
and the state (basis) −  with a probability 

of 
2

2 2| |

2

α β−
. Figure 11 shows the corresponding QDTs using Equations (17) and (18), 

respectively [3]. 

As an example, Figure 11c shows the quantum decision path AB = + −  in a dashed dark 

line that leads to the highest probability λ1μ2 into which the QECA spatially superimposed 
state will collapse.  
The representation in Equation (14) is the quantum superposition over the spatial axis of 
QECA and leads to the tensor (Kronecker) matrix multiplication for all of the 3-block cells, 
and the quantum evolution (dynamics) is performed over the time (temporal) axis of QECA 
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that transforms the input qubits into the corresponding output qubits using the spatially-
obtained evolution matrix.   
 

Aψ                       Bψ                                      ABψ  

+=A            −=A  

+=A        −=A    +=B    −=B     

+=B    −=B +=B −=B  
λ1 µ1 λ2 µ2

             λ1λ2       λλ1µ2             µ1λ2       µ1µ2  
 

                   (a)                                        (b)                                                    (c) 

Fig. 11. Two-valued orthonormal composite basis states QDT representation for: 
(a) Equation (17), (b) Equation (18), and (c) Equation (11). 

6. Extensions to the many-valued conservative reversible ECA 

Binary ECA that was introduced previously (cf. Figures 1 and 2) can be extended to the 
general case of many-valued ECA [113], where each ECA cell can take any value of "many" 
different values (cf. Figure 3). The next state of any cell in the many-valued ECA depends 
upon its present “neighborhood,” which includes (a) the state of the cell itself and (b) those 
of its immediate neighbors to the left and right which also can take one of "many" values. 
Many-valued QC can also be accomplished for the case of many-valued ECA. For the three-
valued QC, the qubit becomes a 3-dimensional vector, called quantum discrete digit (qudit), 
and in general, for many-valued QC (MVQC) the qudit is of dimension “many”. For 
example, one has for 3-state QC (in Hilbert space H) the following qudits: 

 qudit qudit qudit0 1 2

1 0 0

0 0 , 1 1 , 2 0

0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≡ = ≡ = ≡ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (19) 

A three-valued quantum state is a superposition of three quantum orthonormal basis states 

(vectors). Thus, for the orthonormal computational basis states { }0 , 1 , 2 , one has the 

following quantum state 0 1 2ψ α β γ= + + , where αα* = |α|2 = p0 ≡ probability of 

having state ψ  in state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ  in state 

1 , γγ* = |γ|2 = p2 ≡ the probability of having state ψ  in state 2 , and 

|α|2 + |β|2 + |γ|2 = 1.  
The calculation in QC for many-valued multiple systems follow the tensor product in a 

manner similar to the one demonstrated for the higher-dimensional qubit in two-valued QC 

[3]. It has been shown that a physical system comprising trapped ions under multiple-laser 

excitations can be used to reliably implement MVQC [3]. A physical system in which an 

atom (particle) is exposed to a specific potential field (function) can also be used to 

implement MVQC (two-valued being a special case). In such an implementation, the 

resulting distinct energy states are used as the orthonormal basis states. 
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In ternary QC, as a special case of the general many-valued (m-valued or m-ary) QC, a (1, 1) 

Wire and a (2, 2) Swap quantum primitives are modeled as in Figure 12 [3] (as compared to 

the binary case in Figure 8).  

W = 

1 0 0

0 1 0

0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

    S = 

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

                                                   (a)                                         (b) 

Fig. 12. The ternary unitary matrices as mathematical representations of: (a) Wire (i.e., 
Buffer) (W) quantum gate and (b) Swap (S) quantum gate.  

In the many-valued ECA context, the general m-valued QC will be performed as one-to-one 

mapping permutation-based automaton cell between levels m and (m+1) into (3, 3) Swap-

based reversible primitive (cf. Figure 13) between stages m and (m+1) in the corresponding 

reversible circuit. The idea of the previously introduced Algorithms CRBF and SCRECA (in 

Sections 2 and 4, respectively) can be generalized in a straightforward manner from the case 

of binary to the case of many-valued. The only difference would be that all Swap-based 

gates must be of "many" valued in their (a) representations and (b) operations.  

The many-valued quantum circuits obtained through the implementation of the new 

quantum logic synthesis method in this Section evolve (i.e., transform) the input qudits into 

output qudits using the underlying mathematical transformation that is demonstrated in the 

following example. 

Example 9. The following circuit in Figure 14 represents a parallel quantum interconnect 
between ternary Wire (W) (i.e., Buffer) and ternary Swap (S) quantum primitives from 
Figures 12 and 13. 

Let us evolve the ternary input qubit 120 = 1 2 0⊗ ⊗ using the ternary quantum circuit 

in Figure 14 (which is also the special permutation circuit in Figure 13d). This is done using 
the following general two quantum synthesis rules [3]: (1) the total multiple-valued 

quantum evolution transformation [ ]M  of the total serially-interconnected quantum circuit 

is equal to the matrix multiplication of the individual evolution matrices [ ]qN  that 

correspond to the individual quantum primitives, i.e., [ ] [ ]serial q

q

M N=∏ , and (2) the total  

evolution transformation [ ]M  of the total parallel-interconnected quantum circuit is equal 

to the tensor (i.e., Kronecker) product of the individual evolution matrices [ ]qN  that 

correspond to the individual quantum primitives, i.e., [ ] [ ]parallel
q

M N= ⊗ .  
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                                                           (a)   W                       (b)   S 

 

 

                                        (c)  W ⊗ W ⊗ W                                 (d)  W ⊗ S 

 

 

                                             (e)  S ⊗ W                                (f)  (S ⊗ W)⋅(W ⊗ S) 

 

 

                                      (g)  (W ⊗ S)⋅(S ⊗ W)            (h)  (S ⊗ W)⋅(W ⊗ S)⋅(S ⊗ W) 

 

Fig. 13. Many-valued (m-ary) reversible and conservative permutation-based circuits: (a) m-
ary (1, 1) Wire (W), (b) m-ary (2, 2) Swap (S), and (c) - (h) all possible m-ary reversible and 

quantum (3, 3) Swap-based primitives. The symbol ⊗ is the Kronecker (i.e., tensor) product. 

 
 

 

Fig. 14. A ternary quantum circuit composed of a parallel interconnect of a ternary Wire (W) 
and a ternary Swap (S) quantum gates. 

The evolution matrices (transformations) of the parallel-interconnected dashed boxes in (1) 
and (2) in Figure 14 are as follows, where the symbol | means a parallel interconnection, 
and the utilized unitary matrices are the mathematical representations of the quantum gates 
in Figures 12 and 13 in the quantum domain [3,63]. 

b

(1) 

 (2) 

   (3) 

a

c

x

y

z
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       ⇒ (3) = (1) | (2) = Wire ⊗ Swap ⇒ M = W ⊗ S =  

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 01 0 0

0 0 0 0 1 0 0 0 00 1 0

0 0 0 0 0 0 0 1 00 0 1

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

∴ M =

 

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣
1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎤⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎦⎢
⎢ ⎡ ⎤
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎢ ⎥
⎢ ⎣ ⎦⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. 

For the input qudit 

I
f

 = 120 = 1 2 0⊗ ⊗ = ( )3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 10 0 0 0 0 1 0 0 0 0 0
T

x x x x x x x x   
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∴ The output qudit 

[ ]O M I=
f f

 = ( )3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 10 0 0 0 0 1 0 0 0 0 0
T

x x x x x x x x   

= 1 0 2⊗ ⊗  = 102 .                                                                                     

By observing the transformed output qudit from Example 9, one can note that the output 

qudit is a Swap-based transformation of the input qudit, i.e., the element values of the input 

qudit has been permuted within the output qudit. Similarly, all the fundamental m-valued 

(m-ary) Swap-based circuits in Figure 13 do this basic quantum operation of permutations. If 

a circuit is composed of interconnecting m-valued reversible elements (primitives or gates) 

then the overall m-valued circuit is also reversible. Thus, analogously to the binary case, and 

due to the permutation operations, the many-valued ECA circuits that are constructed from 

such basic elements as in Figure 13 are both conservative and reversible. 

For the superposition of quantum states in the corresponding many-valued quantum ECA 

(m-valued QECA), then one can obtain the total superimposed quantum state from the 

individual quantum cells (quantum states), by superimposing recursively two quantum cells 

(states) at a time according to Equation (14). The decomposition in Equation (14) can be 

directly utilized in using an m-ary tree for the representation of each pair of the quantum 

states’ tensor product, and the resulting many-valued quantum decision tree (MVQDT) [3] 

can be used as a data structure for simulating the evolution dynamics in the corresponding 

QECA. As an example, for the ternary case, the ternary Wire (Buffer) QDT is shown in 

Figure 15 for the two quantum states in Equations (20) and (21), respectively.  

 
1

1

1

1 0 0

0 1 2 0 1 0

0 0 1
A

α
ψ β

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (20) 

 
2

2

2

1 0 0

0 1 2 0 1 0

0 0 1
B

α
ψ β

γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21) 

Analogously to the two-valued case, the QECA superimposed state ABψ  in Figure 15 will 

collapse into the quantum state with the highest probability. 
The ternary QDTs in Figure 15 use the quantum computational basis states to model QECA 
dynamics. For instance, by using the quantum Chrestenson gate 

1 2

2 1

(3)
(1)

1 1 1
1

1
3

1
normalizedC d d

d d

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 [3], Equation (24) presents the equivalence of Equations (20) 

and (21) in terms of the ternary orthonormal composite basis states as follows [3]: by using 

the ternary quantum signal Ψ  = 0 1 2α β γ+ + as an input to the ternary normalized 

quantum Chrestenson gate, one obtains the following quantum signal at the output of the 
gate [3]: 
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              (a)                                      (b)                                                              (c) 

Fig. 15. Ternary computational basis states QDT representations for: (a) Equation (20), (b) 

Equation (21), and (c) the superposition of Equations (20) and (21): BAAB ψψψ ⊗= . 

 

1 2

1 2

2 1

2 1

1 2 2 1

31 1 1
1

' 0 1 2 1 0 1 2 ,
3 3

1

3

0 1 2 .
3 3 3

d d
d d

d d
d d

d d d d

α β γ

α
α β γβ

γ
α β γ

α β γ α β γ α β γ

+ +⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤Ψ = =⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ + +⎢ ⎥
⎢ ⎥⎣ ⎦

+ + + + + +
= + +

 (22) 

 

 

1 2

2 1

1 2 2 1

1 1 1
1

' 0 1 2 1 ,
3

1

0 1 2 0 1 2 0 1 2
,

3 3 3

| | .

d d

d d

d d d d

α
β
γ

α
β
γ

α
β α β γ
γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤Ψ = ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤+ + + + + + ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎡ ⎤= + − = + + + −⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (23) 

 

Where: 

{ }1 2 2 10 1 2 0 1 2 0 1 2
,| ,

3 3 3

d d d d+ + + + + +
+ = = − =  and  

{
2 1 1 2| | |

0 , 1 , 2
3 3 3

d d d d+ + + − + + + − + + + −
= = = }.          
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Thus, one obtains at the input of the quantum Chrestenson gate the following quantum 
state: 

 2 1 1 2

2 1 1 2

0 1 2 ,

| | |
         ,

3 3 3

         | |
3 3 3

d d d d

d d d d

α β γ

α β γ

α β γ α β γ α β γ λ μ η

∴ Ψ = + +

+ + + − + + + − + + + −
= + +

+ + + + + +
= + + + − = + + + −

 (24) 

{ }1 2 2 1

| , ,
3 3 3

d d d d
p p p

α β γ α β γ α β γ
− +

+ + + + + +
∴ = = = .  

 

Consequently, measuring Ψ  with respect to the new basis { } , ,> + > − >  will result in the 

state (basis) { }|  with probability equals to 
2| |

3

α β γ+ +
, will result in the state (basis) { }−  

with probability equals to 
1 2

2| |

3

d dα β γ+ +
, and will result in the state (basis) { }+  with 

probability equals to 
2 1

2| |

3

d dα β γ+ +
, where:    

2 1 1 2

4 2

3 3
1 1

(1 ) (1 3 ) , (1 ) (1 3 ) .
2 2

i i

d d i e d d i e

π π

= − + = − + = = − + = − − =   

Similar to the composite-based QDT in Figure 11, one can use the ternary composite basis 
states {| | >, | + >, | - >} to construct the ternary orthonormal composite basis states QDT 
as shown in Figure 16. Analogously to the two-valued case, the QECA superimposed state 

ABψ  in Figure 16 will collapse into the quantum state with the highest probability. 

 
 

ABψ  

Aψ                         Bψ                            +=A |=A  −=A  

+=A |=A  −=A     +=B |=B  −=B        +=B |=B −=B +=B |=B −=B +=B |=B −=B  

  λ1   λ2            λ1λ2  λ1µ2  λ1η2            µ1λ2  µ1µ2   µ1η2         η1λ2    η1µ2   η1η2   
µ1          η1 µ2          η2 

 

                 (a)                                     (b)                                                           (c) 

 

Fig. 16. Ternary computational basis states QDT representations for: (a) Equation (24) for 

Aψ , (b) Equation (24) for Bψ , and (c) the superposition of: BAAB ψψψ ⊗= . 
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In general, a data structure called multiple-valued quantum decision diagrams (MvQDDs) 

can be constructed for the corresponding multiple-valued quantum decision trees [3]. The 

rules for such quantum decision diagrams are the same as in classical decision diagrams [3]: 

(1) join isomorphic nodes, and (2) remove redundant nodes. MvQDDs can result in a more 

efficient representation than the corresponding MvQDTs in terms of memory space (more 

compact) and faster processing speed [3].  

For any quantum evolution matrix (i.e., the quantum superposition over the spatial axis of 

QECA that leads to the tensor (Kronecker) matrix multiplication for all of the 3-block 

cells) the evolution (as was shown in Example 8) leads to: (a1) the permutation of the 

probability amplitudes or (b1) the permutation of the orthonormal bases. Consequently, 

in terms of the QDT representation, either: (a2) the evolution matrix leads to the 

permutation of the QDT leaves (probability amplitudes) while retaining the order of the 

QDT paths or (b2) the paths in the corresponding QDT will be permuted while retaining 

the order of the QDT leaves.     

The state in the general case of m-valued (m-ary) QECA (which is the spatial superposition 

of the individual states) can be either: (1) decomposable as shown in Equation (25), or (2) non-

decomposable (i.e., entangled) as shown in Equation (26).           

 12...
11

n d

n k k
kp p

Dψ α
==

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∏  (25)         

 12...
11

n d

n k k
kp p

Dψ α
==

⎛ ⎞
≠ ⎜ ⎟

⎝ ⎠
∑∏  (26) 

where αk is the probability amplitudes and kD  is the elementary (fundamental) basis 

states.  
As an example of the entanglement in the QECA context, for the two-valued case, if the state 

vectors of quantum systems A and B were entangled with each other, then if one changes 

the state vector of one system A, then the corresponding state vector of the other system B is 

also changed, instantaneously, and independently of the medium through which some 

communicating signal must travel. By measuring one of the state vectors of a quantum 

system A, the state vector collapses into a knowable state. Instantaneously and 

automatically, the state vector of the other quantum system B will collapse into the other 

knowable state.  

7. Conclusions and future work 

In this research, an algorithm to model noisy discrete systems utilizing conservative 

reversible elementary cellular automata (CRECA) is introduced and the corresponding m-

ary quantum computing is presented. The ECA representations in the quantum domain of 

(a) m-ary orthonormal computational basis states quantum decision trees (QDTs) and (b) m-

ary orthonormal composite basis states QDTs are also introduced as quantum 

representations for the modeling and manipulation of the quantum ECA (QECA) dynamics. 

The new CRECA circuits and systems can play an important role in the synthesis of future 
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reversible circuits and systems that consume minimal power such as in the quantum 

technology. 

As was introduced in this research, the new method of adding auxiliary variables, to 

incorporate the effect of noise while retaining conservativeness and reversibility, is costly in 

terms of the resulting structural complexity. Therefore, future work will include the creation 

of other less complex and more efficient CRECA algorithms to incorporate the effect of 

noise.  

Future work will also include items such as: (1) The investigation of implementing the 

proposed new synthesis algorithms using Quantum Dot Cellular Automata; (2) The 

investigation of using the new reversible and quantum ECA algorithms that were 

introduced in this research for testing logical reversible and quantum circuits to (a) test, 

(b) localize and (c) correct circuit errors; (3) The investigation of chaos in reversible ECA 

and quantum ECA; (4) The investigation of the previously introduced methods for the 

case of rule-varying ECA; (5) The incorporation of the reversibility property in error 

correcting codes to correct for noisy cells within the context of ECA; (6) Some CAs are 

considered to conserve a kind of energy measure, a Hmiltonian, and these are reversible, 

thus the investigation of defining a Hamiltonian that is conserved within the context of 

reversible and quantum ECA that has been presented in this research will be conducted; 

(7) The generalization of the results introduced in this research to the general case of 

reversible m-valued k-dimensional CA; (8) Exploration of using genetic algorithm (GA) 

and genetic programming (GP) to evolve reversible CA rules to perform particular 

computational tasks; (9) The investigation of configuring the local settings (rules and 

initial conditions) of a CRECA from a given prescribed global situation (behavior) which 

is generally called the inverse problem will also be performed; (10) The development of a 3-

block reversible overlapping-based neighborhood ECA evolution algorithm that doesn’t 

result in conflict values inside map cells (which is naturally forbidden since the value and 

its “opposite” cannot possess the same spatial location (address) at the same time); (11) 

Since CA are increasingly being studied as a class of efficient parallel computers, and as 

the main bottleneck in applying CA more widely to parallel computing is programming, 

future work will involve the investigation of the automatic programming of reversible CA 

using GA and GP; and (12) The implementation of Soft Computing (i.e., Computational 

Intelligence) techniques for the newly introduced types of Reversible Cellular Automata 

(RCA) such as: (a) Fuzzy Reversible Cellular Automata (FRCA), (b) Fuzzy Evolutionary 

Reversible Cellular Automata (FERCA), and (c) Neuro-Fuzzy Reversible Cellular 

Automata (NFRCA). 
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