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1. Introduction

The critical state in type II superconductors determines the maximum current the
superconductor can carry without an energy dissipation. The critical state results from a
competition between the Lorentz force acting on flux lines (quantized vortices), thermal
agitation, pinning force, and repulsive interaction between flux lines. The pinning force
localizes the flux lines on crystal lattice defects (dislocations, voids or impurities) and favors
glassy state of flux lines, whereas the repulsive interaction between vortices results in a regular
flux line lattice. Materials with a strong pinning are called hard superconductors. Such
materials are relevant for power application of superconductors: solenoids for high magnetic
fields or cables for large transport currents. Recently, high temperature superconductor (HTS)
materials with the critical current density jc of the order of 100 GA m−2 at zero temperature
and zero applied field were prepared. The second generation of HTS wires (2GHTSC) is
constituted from RE-Ba2Cu3O6+x (YBCO) films. The critical current density is one or two
orders higher than was achieved in Bi2Sr2CaCu2O8+x (BSCCO) round wires or MgB2, Nb-Ti,
Nb3Sn, and Nb3Al wires. Unlike BSCCO wires whose performance is lowered by a flux flow
at temperature above 35 K the YBCO wires operate even at liquid nitrogen temperature.
Another important field of application of superconductors is superconducting electronics.
Most of today’s superconducting electronics like superconducting quantum interferometer
devices (SQUIDs), radiation detectors (SIS mixers), etc. are made of Nb, NbN, or HTS films.
The flux lines trapped in the superconducting film may deteriorate sensor sensitivity as the
moving flux lines generate noise (Wellstood et al., 1987). The above mentioned elucidates an
interest in flux dynamics in thin films, particularly models to a disk and stripe.
The critical state is affected by material properties, the wire or sensor geometry (shape),
applied current, field, and temperature. Conventionally the critical state is studied (judged)
using contact measurements (four probe resistive method) or magnetic measurements (local
magnetization profile or magnetization loops). The latter method eliminates the need for
electrical contacts and allows us to study the response of the critical state to an applied
magnetic field. Frequency dependent magnetization loops reveal a flux creep or flux flow
while nonlinear magnetization loops reveal surface or bulk pinning. In order to analyze
these magnetic measurements we need appropriate models. In general, these model represent
solution of 3D+t partial differential equations for a magnetic vector potential or flux density.
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Numerical methods apply to conductors and superconductors with axial symmetry, but
otherwise with an arbitrary cross section like cylinders of finite length, thin and thick disks,
cones, spheres, and rotational ellipsoids. The specimen may even be inhomogeneous and
anisotropic as long as axial symmetry pertains (Brandt, 1998). Complete analytical solutions
are known only for particular geometries and quasistatic behavior of the magnetic flux when
the problem may be reduced to 2D. Two such examples are thin disk and strip in Bean critical
state in perpendicular magnetic field.
For magnetization loop measurements, one needs a low frequency magnetic field and low
frequency sensor of the magnetic moment of the sample. The whole system should be of high
linearity, flat frequency and phase dependence - good choice is the superconducting solenoid
and SQUID magnetometer. However, commercial SQUID magnetometers are not suitable for
such measurements because the solenoid operates in a persistent mode during a measurement
and settling time (dead time) affects (slows down) the measurement.1 Further, a residual field
in the high field solenoid causes a nonlinear H(I) dependence. Since the magnetic moment of
the sample is measured differentially, reciprocating the sample punctuates the measurement.

2. Continuous reading SQUID magnetometer

An operation of a continuous reading SQUID magnetometer (CRSM) with an immobile
sample is based on detection coils in a gradiometer arrangement, which are insensitive to
the homogeneous time varying applied magnetic field, but respond to the magnetic sample
placed in proximity of one of the coils. A spontaneous or induced magnetic moment of
the sample creates a difference in a magnetic flux in the coils and generates a current in an
input coil of the SQUID. The SQUID thus measures the variations in the magnetic moment
of the sample. Since the sample is immobile no noise or disturbances are generated due to a
sample motion and measurement is not interrupted due to a reciprocating sample or sample
positioning. The applied field is generated by a superconducting solenoid operating in a
nonpersistent mode.
We use SQUID magnetometers in two basic configurations: Standard Sensitivity and High
Sensitivity. In a Standard Sensitivity SQUID Magnetometer (SSSM), the superconducting
solenoid, gradiometer, and SQUID are immersed in a liquid helium bath, see Fig. 1. The
sample holder with a sample temperature sensor is placed inside an anticryostat.
In a High Sensitivity SQUID Magnetometer (HSSM), the superconducting solenoid,
gradiometer, SQUID, and a sample holder with a temperature sensor and heater are placed in
a copper vacuum chamber with an inset lead can, see Fig. 1. While the solenoid, gradiometer
and SQUID are thermally anchored to the vacuum chamber immersed in a cooling liquid
helium bath, the sample is mounted on a block suspended on a support with a low thermal
conductivity.

2.1 Applied field generation

The applied homogeneous field is generated using a superconducting solenoid operating
in the non-persistent mode. The solenoid is wound with a Nb-Ti wire (number of layers)
on a coil-former. The solenoid is supplied from a current source driven by a digital
to analog converter (DAC) of a data generation/acquisition card.2 These Σ − ∆ DAC

1 Quantum Design.
2 National Instruments PC card model PCI-4451.
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Fig. 1. Schematic drawing of the SQUID magnetometer

have superior linearity and dynamic range. An applied field h(t) may essentially be of
an arbitrary waveform: an AC field superimposed on a DC field for measurement of
temperature dependence of susceptibility, with a linear or sinusoidal sweep for measurement
of magnetization loops, pulse or step-like for relaxation measurements, frequency sweep, etc.
The waveform is designed numerically.

SSSM HSSM

Field range (Setting resolution) ±25 mT () ±4 mT ()

Frequency range DC - 100 Hz DC - 100 Hz

Temperature range 4.2 - 300 K 4.2 - 150 K

Temperature rate 0.001 - 1 K/min 0.001 - 1 K/min

Sensitivity 7 pA m2 Hz−1/2 5 fA m2 Hz−1/2

Table 1. The parameters of the magnetometers.

Another important property of a SQUID magnetometer is the degree of homogeneity of the
applied magnetic field (both in z and r direction). High homogeneity solenoids generating a
DC bias field have the homogeneity of the order of 10−4 over 4 cm (Vrba, 2001).

2.2 Detection system

The detection system includes superconducting flux transformer and the SQUID. The
transformer comprises of coils in a gradiometric arrangement. Two coils with an opposite
winding (sense) direction and areas S1 and S2 form a first order axial gradiometer which is
insensitive to the homogeneous applied field H0. A balance of the gradiometer, defined as

η = (S1 + S2) · S1/|S1|
2 (1)

is η = 0 in an ideal case. In practise, any gradiometer is manufactured with a finite mechanical
precision and the balance η = 0.0001 may be achieved with a careful construction (Vrba, 2001).
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An inhomogeneous applied field and imperfect gradiometer balance result in a crosstalk of
the field to the SQUID and reduce a dynamic range of the CRSM. In SSSM a compensation
coil wound on an upper part of the solenoid and supplied with an adjustable current derived
from the solenoid supply current minimizes crosstalk. A careful design and construction
keeps down deformation of the field affected by a proximity of magnetic or superconducting
materials (solder) and frequency dependent eddy currents in metallic (nonsuperconducting)
parts.
The magnetic moment of the sample is

m =
1
2

∫

V
(r × j) d3r. (2)

A vector potential of the induced or spontaneous magnetic moment m of the sample is

A = µ
m × r

r3 . (3)

The magnetic flux in the pickup coil is

Φ =
∮

Γ
A · dl, (4)

where Γ is the coil circumference. The SQUID indicates difference in the flux in an upper and
lower coil, ∆Φ = Φupper − Φlower, and thus the SQUID output voltage is proportional to a
projection of the measured magnetic moment on a gradiometer axis, m(t) ∝ ∆Φ(t).
Since the detection system is superconducting, the output voltage m(t) is proportional to the
magnetic moment of the sample and not to a rate of change of the magnetic moment like in
case of induction magnetometers (ac susceptometer (ACS) or vibrating sample magnetometer
(VSM)).
Both the SSSM and HSSM use bulk Nb SQUID of the Zimmerman type operating at the rf
frequency of about 40 MHz. The Josephson junction is a point contact type in the SSSM and
thin film bridge in the HSSM. Both SQUIDs have an equivalent input flux noise density of the
order of 10−4 Φ0 Hz−1/2 in a white noise region (> 1 Hz) and range ±500 Φ0 limited by a slew
rate 104 Φ0/s.3

A shielding of an external dc and time varying electromagnetic field originating from an earth
magnetic field and man-made sources is necessary to utilize the extraordinary sensitivity of
the SQUIDs. The shielding is ensured by a soft magnetic materials (the cryostat is placed
inside the shielding) and superconducting shielding (Tsoy et al., 2000).

2.3 Sample mounting and temperature reading and control

In SSSM a sample is glued on a bottom surface of a cylindrical sapphire holder using a varnish
or grease. A sample temperature sensor, the Si or GaAlAs diode4, is mounted on the upper
surface. The sapphire holder is connected to a (nonmagnetic, nonconducting) polyethylene
straw that extends a thin wall stainless tube suspended in an anticryostat. Another Si diode

3 iMAG 303 SQUID: The equivalent input noise for the standard LTS SQUID system is less than 10−5 Φ0

Hz−1/2, from 1 Hz to 50 kHz in the ±500 Φ0 range. The response is flat from DC to the 3 dB points,
slow slew mode 500 Hz (- 3 dB), normal slew mode 50 kHz (- 3 dB). The input inductance of the LTS
SQUID is 1.8 × 10−6 H.

4 Lake Shore or CryoCon
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temperature sensor measures temperature of the anticryostat to facilitate better closed-loop
temperature control. Two section resistance wire (constantan) heater is wound around the top
and bottom part of the anticryostat to ensure uniform warming. Heat is removed from the
sample by a 4He gas at atmospheric pressure.
In HSSM the sample is mounted on the upper surface of the sapphire holder. The holder is
embedded in a copper block whose temperature is measured using the Si diode sensor. The
block is heated using a resistance wire heater and suspended on a low thermal conductivity
fibreglass support which removes heat to liquid 4He bath. The sample is in vacuum.
In both magnetometers, a temperature controller5 connected to the computer regulates
temperature with relative stability of 10 ppm and 1 ppm in SSSM and HSSM, respectively,
and controls cooling or warming with rate from 1 mK/min to 10 K/min.

2.4 Measurement modes

The magnetometers are designed for measurements of: i) temperature dependence of a
response to fixed AC and DC applied magnetic field (temperature dependence of the
susceptibility); ii) response to field sweep at fixed temperature and AC field (magnetization
loops and AC susceptibility); iii) relaxation of a DC magnetic moment (after applied field
pulse or step) as a function of time or temperature; iv) frequency dependence at a fixed DC
field and temperature. Additional measurement modes require only a software change.

2.5 Data acquisition

The dynamic range of the SQUID is extraordinary, the range of ±500 Φ0 and spectral flux
noise density of 10−4 Φ0 Hz−1/2 represent output voltage range ±10 V and voltage noise
density 10 µV Hz−1/2, a range of 7 orders (140 dB).6 The frequency response is flat both in a
frequency and phase. In slow slew mode the -3 dB point is 100 Hz. The SQUID output signal
m(t) falls into an audio range and thus may be easily digitized in "CD" quality as well as the
signal of the applied field H(t), recorded on a hard disk, and digitally processed in real time.7

Processed data file includes temperature readings.

2.6 AC susceptibility measurement (calculation)

Let the time varying applied AC magnetic field is

H (t) = Hac cos (2π f0t) = HacRe exp (i2π f0t) , (5)

where Hac is the amplitude and f0 is the frequency of the applied field. The complex AC
susceptibility of the sample is

χn =
M (n f0)

HacV
, (6)

5 CryoCon model 34
6 This applies to rf-SQUIDs. The flux noise density in DC SQUIDs is lower, 10−6 Φ0 Hz−1/2,

corresponding voltage noise density 0.1 µV Hz−1/2, and dynamic range of 9 orders (180 dB).
7 We use the National Instruments PC cards model PCI-4451 with Σ − ∆ digital to analog and analog

to digital converters for a digital signal generation and acquisition (two input channels with 16 bit
resolution, frequency range from 0 (true DC) to 95 kHz, and sampling rate up to 204.8 kS/s).
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where n denotes harmonics and M(n f0) are the Fourier components of the magnetic moment
m(t). Higher harmonics of the complex susceptibility appear in the case of a nonlinear
response to the applied field. Usually the susceptibility is normalized to a volume V (or mass)
of the sample. Using the susceptibility, the magnetization loops are

M (H (t)) = ∑
n

χn Hac exp (ni2π f0t) , (7)

A common way to measure the AC susceptibility is to detect a signal of the magnetic moment
using a phase sensitive lock-in amplifier, preferably a two phase instrument indicating both
real and imaginary part of the AC susceptibility, and drive the AC field using a signal
generator. The conventional analog lock-in amplifier multiplies the input signal m(t) by a
square wave r(t) derived from a reference signal H(t) and integrates the product. The DC
output are in-phase and out-of-phase components

ReM( f0) =
4

πτ

∫ t

t−τ

[

∞

∑
n=1

1
n

sin(n
π

2
) cos

(

n2π f0t′
)

]

m(t′)dt′, (8)

ImM( f0) =
4

πτ

∫ t

t−τ

[

∞

∑
n=1

1
n

sin
(

n2π f0t′
)

]

m(t′)dt′, (9)

where n is odd and τ is the averaging time constant. Since the reference signal r(t) is a square
wave, the DC output is proportional not only to the Fourier component of the first harmonic
but also to 1/3 of third, 1/5 of fifth, etc. Evidently, this way of signal processing is not suitable
for the measurement of a nonlinear response. One can apply input filters that sufficiently
suppress third and higher odd harmonics, but remain unaffected the fundamental frequency.
However, suitable tunable filters are complex and expensive.
In the digital signal processor (DSP) lock-in amplifiers the signal is filtered with a simple
anti-aliasing filter and digitized by over-sampling ADC with subsequent digital filtering. The
DSP chip then synthesizes digital reference sine (and cosine) wave at the reference frequency
n f0 and multiplies the signal by this reference. After multiplication, stages of digital low-pass
filtering are applied to average over the signal period. The DSP lock-in amplifier generates
the true rms values of the complex Fourier components of M( f0) or nth harmonic M(n f0):

M (n f0) =
1

N∆t

N−1

∑
k=0

m (tk) exp (ni2π f0tk) , (10)

where ∆t = tk − tk−1 is the sampling interval and N∆t is averaging time. However,
commercial DSP lock-in amplifiers provide only components at single frequency. Hence,
unless successive measurements of the harmonics are done, one needs an extra instrument
for the each additional harmonic.
With computational power of today’s processors in personal computers (PC) and data
generation/acquisition hardware the problem as a whole may be solved much more
effectively. The single PC card, with essentially the same ADC as are used in the DSP lock-in
amplifier, substitutes for the generator and lock-in amplifiers. Since the DACs generating
the applied field and ADCs sampling m(t) and H(t) use the same clock, synchronization is
guaranteed. In reality, an approach using a direct digital signal generation, acquisition, and
processing is more cost effective and less time consuming.

266 Superconductivity    – Theory and Applications
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The nth harmonic of the AC susceptibility is given by generalized Eq. 6,

χn =
M(n f0)

Hac exp(niϕ)
, (11)

where complex Hac exp(niϕ) ≡ |H( f0)| exp(ni argH( f0)) takes into account a phase of the
Fourier component of the applied field H( f0), i.e. a time shift between a Fourier transformed
data segment and cosine field. The M( f ) and H( f ) spectra are computed using a discrete fast
Fourier transform (FFT) of real data arrays m(tk) and H(tk).

Ml ≡
N−1

∑
k=0

m(tk) exp (i2πkl/N) , (12)

(the same holds for H(t) ⇔ H( f )), where N is the transform length (Press et al., 1992). Spectra
of the complex amplitudes M( f ) and H( f ) are calculated for frequencies l∆ f , Ml ≡ M(l∆ f ).
With an applied FFT algorithm N must be a power of 2, FFT is computed in N log N

operations, and ∆ f = fs/N, where fs = 1/∆t is the sampling frequency.8 Unlike the DSP
lock-in amplifiers, where another instrument performing N operations to process N∆t long
record is need for each measured harmonic, here the whole frequency spectrum from DC to
f /2 is computed with only N log N operations using the single instrument. Computation time
takes few ms.
Strictly speaking, the measurement of temperature dependence of the susceptibility represents
a continuous measurement of magnetization loops at slowly varying temperature. Since
the input signals are recorded as well as temperature readings, various time domain and
frequency domain filters may be applied thereupon. The magnetization loops may be
processed using different time windows (for example to remove a linear trend in m(t)) or
different averaging times.

3. Critical state in type II superconductors

3.1 Vortex matter

Type II superconductors, ie. those with λ/ξ > 2−1/2, where λ is the flux penetration length
and ξ is the coherence length of a superconducting order parameter, remain superconducting
even in a high magnetic field due to lowering of their energy by creating walls between normal
and superconducting regions. Consequently, flux lines (vortices) with a normal core of a
radius of ≈ ξ, where the order parameter vanishes, and persistent current circulating around
the core and decaying away from the vortex core at distances comparable with λ are created
at sample edges and penetrate into an interior of the superconductor. The vortex is a linear (in
three dimensions) object which is characterized by a quantized circulation of the phase of the
order parameter around its axis and carries a single quantum of the magnetic flux Φ0 = h/2e.
The superconductor penetrated with the flux lines is called to be in a mixed state. A repulsive
interaction between the flux lines eventually forms flux line bundles and consecutively a flux

8 Let us take N = 214 (16 K samples), easy for real time processing on a common PC. With fs = 6.4 kS/s
the ∆ f = 0.390625 Hz. A right choice for the AC field frequency f0 is an integer multiple of ∆ f . For
example, with f0 = 4∆ f = 1.5625 Hz, one period of the AC field is represented by 4 K samples. In this
case the 16 K FFT means averaging over 4 periods (2.56 s) of the AC field. If the 16 K data are shifted
by 4 K and a void part is replaced with samples of the latest read period, the spectra are averaged over
2.56 s and updated in 0.64 s interval. The index of the nth harmonics amplitude is l = n4.
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line lattice. In increasing applied field the flux lines enter into the superconductor when the
magnetic field exceeds the lower critical field Hc1 ≈ Φ0/µ0λ2. Type II superconductors
experience a second-order phase transition into a normal state at the upper critical field
Hc2 ≈ Φ0/µ0ξ2. In type I superconductors this transition is a first-order in a nonzero field.

3.2 Pinning and surface barrier

In a real type II superconductor there are always crystal lattice distortions, voids, interstitials,
and impurities with reduced superconducting properties. The superconducting order
parameter is either reduced or suppressed completely, just as within a vortex core. That
implies that such defects are energetically favorable places for vortices to reside and the
vortices will be pinned in the potential of these so-called pinning centers. The efficiency of
such a pinning center is at its maximum if its size is of the order of the coherence length ξ. If
there is almost no pinning, flux flow occurs (Bardeen, 1965). On the other hand, when there is
finite pinning, flux creep of a vortex bundles takes place (Anderson, 1962; 1964). The bundle
size is determined by the competition between pinning and the elastic properties of the vortex
lattice.
An edge or surface barrier may oppose a flux entry into the sample (Beek et al., 1996). A
surface barrier arises as a result of the repulsive force between vortices and the surface
shielding current. The first example is Bean-Livingston barrier, which is a feature of flat
type II superconductor surfaces in general and is related to a deformation of the vortex at the
surface (mirror vortex). The second example is the edge-shape barrier, which is a geometric
effect related to the distribution of the Meissner shielding current density in non-ellipsoidal
samples.
When an increasing magnetic field is initially applied, flux cannot overcome the barrier, and
M = −H. At the field of the first flux penetration Hp, the magnetic pressure is sufficiently high
to overcome the barrier. If there is no pinning, vortices will now distribute themselves through
the sample in such a way that the bulk current is zero and vortex density is homogeneous.

3.3 Flux line dynamics

When the superconductor is carrying a bulk transport or shielding current density j the
flux lines experience a volume density of the driving Lorentz force fL = j × B, where B

is the flux density inside the flux line. When the Lorentz force acting on the flux lines is
exactly balanced by the pinning force density, i.e. FL = Fp, the current density is called the
depinning current density, jc. Under this force the flux lines may move through the crystal
lattice and dissipate energy. In this case the electrical losses are no longer zero. In an ideal
(homogeneous) type II superconductor there is nothing to hinder the motion of flux lines and
the flux lines distribution is homogeneous. The flux lines can move freely, which is equivalent
to a vanishing critical depinning current density jc. On the other hand, the non-dissipative
macroscopic currents are the result of the spatial gradients in the density of flux lines or due
to their curvature. This is possible only due to the existence of pinning centers, which can
compensate the Lorentz force.
The moving flux lines dissipate energy by two effects which give approximately equal
contributions: (a) eddy currents that surround each moving flux line and have to pass through
the vortex core, which in the model of Bardeen and Stephen is approximated by a normal
conducting cylinder (normal currents flowing through the vortex core) (Bardeen, 1962); (b)
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Tinkham’s mechanism of a retarded recovery of the order parameter at places where the
vortex core has passed (Tinkham, 1996).
In general, the current density in type II superconductors can have three different origins: (a)
Surface currents within the penetration depth λ. In the Meissner state the current passing
through a thick superconductor is restricted to a thin surface layer where the magnetic
field can penetrate. Otherwise the magnetic field due to the current would exist inside the
superconductor; (b) A gradient of the flux-line density; (c) A curvature of the flux lines.
A flux line motion is discouraged (inhibited) by pinning of individual flux lines, their bundles
or lattice. In cases of flux flow and flux creep, the vortices are considered to move in an
elastic bundle. With discovery of HTS, however, more complex forms of vortex motion are
considered. When the driving force is small, the vortices move in a plastic manner - plastic
flow where there are channels in which vortices move with a finite velocity, whereas in other
channels the vortices remain pinned (Jensen, 1988). Thus, between moving channels and static
channels there are dislocations in the flux lattice. With further increasing driving current,
vortices tend to re-order. Through dynamic melting, a stationary flux lattice changes into a
moving flux lattice via the plastic flow (Koshelev & Vinokur, 1994).
If pinning is efficient the critical depinning current density jc becomes high and the material
is interesting for applications. The properties of the flux line lattice and the pinning properties
are important for applications; on the other hand they are complex and interesting topics of
condensed-matter physics and materials science.

3.4 Equation of motion of vector potential

In general, computation of magnetization loops represents a full treatment of a nonlinear 3D
problem described by a partial differential equation for a vector potential

∂A

∂t
= D∇2A, (13)

where D is the diffusivity. Due to an axial symmetry or for a long sample in a parallel field,
the problem may reduce to 2D and the current density j, vector potential A, and electric field
E are parallel to each other and have only a y or φ component (applied field is parallel to z

axis) (Brandt, 1998). The magnetization loops are obtained solving Eq. 13 using specialized
software packages or directly by the time integration of the nonlocal and nonlinear diffusion
equation of motion for the azimuthal current density. A long cylinder or slab in parallel field
or thin circular disk and strip in an axial field are 1D problems. The flux density and electric
field are B = ∇× A and E = −∂A/∂t, respectively.
In the normal (nonsuperconducting) state with an ohmic conductivity σ is D = 1/µ0σ =
m/µ0ne2τ. In Meissner state the diffusivity is the pure imaginary D = iωm/µ0nse2 with a
linear frequency dependence, where ns is the superconducting condensate density.
In an inhomogeneous type II superconductor with flux pinning the electric field is given by
nonlinear local and isotropic resistivity ρ(j). A material law E(j) reflects a flux line pinning.
In case of a strong pinning E(j) is zero up to the critical depinning density jc at which electric
field raises sharply. A power law voltage current relation

E(j) = Ec|j/jc|
nj/j = ρc|j/jc|

n−1j, (14)
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where j = |j|, is observed in numerous experiments (Brandt, 1996). From the theories on
(collective) creep, flux penetration, vortex glass picture, and AC susceptibility one obtains the
useful general interpolation formula

U(J) = U0
(jc/j)α − 1

α
. (15)

Here U(j) is a current-dependent activation energy for depinning which vanishes at the
critical current density jc, and α is a small positive exponent. In the limit α → 0 one has a
logarithmic dependence of the activation energy U(j) = U0 ln(jc/j), which inserted into an
Arrhenius law yields

E(j) = Ec exp
(

−
U (j)

kBT

)

= Ec

(

j

jc

)U0/kBT

. (16)

When we compare Eq. 16 with Eq. 14 the exponent is n = U0/kBT. For α = −1 the Eq.
15 coincides with the result of the Kim-Anderson model, E(j) = Ec exp[(U0/kBT)(1 − j/jc)],
(Blatter et al., 1994). For α = 1 one gets E(j) = Ec exp[(U0/kBT)(jc/j − 1)].
In general, the Ec and activation energy U in Eq. 16 depend on the local induction B(r) and
thus also α(B, T) and jc(B, T) depend on B.
With E = −∂A/∂t and Eq. 14 one obtains for the diffusivity in Eq. 13

D(j, jc, U0, T) =
1

µ0

∂E

∂j
=

1
µ0

Ec

jc

(

j

jc

)U0/kBT−1
=

ρc

µ0

(

j

jc

)U0/kBT−1
. (17)

Power-law electric field versus current density (Eq. 14) induces:
i) An Ohmic conductor behavior with a constant resistivity ρ = E/j for U0/kBT = 1. This
applies also to superconductors in the regime of a linear flux flow or thermally activated
flux flow (TAFF) at low frequencies with flux-flow resistivity ρ f = ρnB/µ0Hc2, known as
the Bardeen-Stephen model. The diffusivity D is large and vector potential profiles are time
dependent. The magnetization loops have a strong frequency dependence, as well as the
susceptibility, and the AC susceptibility has only fundamental component independent on
the AC field amplitude (Gömöry, 1997).
ii) Flux creep behavior for 1 ≪ U0/kBT < ∞. The magnetization loops have a weak frequency
dependence, as well as the AC susceptibility which has higher harmonics and is dependent
on the AC field amplitude.
iii) Hard superconductors with strong pinning for U0/kBT → ∞. In this case the flux
dynamics is quasistatic, described by a Bean model of the critical state with D = 0 for |j| < jc
and D → ∞ for |j| = jc. The magnetization loops are frequency independent, as well as the AC
susceptibility which has higher harmonics and strongly depends on the AC field amplitude.
A general solution of Eq. 13 represents time dependent vector potential profiles which
dynamics covers a viscous flow, diffusion (creep), and quasistatic (sand pile like) behavior.
The resistivity generated by the flux creep is Ohmic in the low-driving force limit.

3.5 Analytically solvable models

3.5.1 Normal state with ohmic conductivity and flux flow state

In normal state with an ohmic conductivity σ = ne2τ/m the diffusion constant is D =
1/µ0σ = ωδ2, where ω is the angular frequency of the applied AC field and δ = (2µ0ωσ)−1/2
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is the normal skin depth. In this case the analytical solutions to Eq. 13 are known for an
infinitely long cylinder and slab in a parallel field, cylinder in a perpendicular field, and sphere
(Brandt, 1998; Khoder & Couach, 1991; Lifshitz et al., 1984).
With an increasing ratio δ/R or δ/d, where and R is the radius of the cylinder or sphere and 2d

id the slab thickness, a sample changes from a diamagnetic (but lossy) at δ ≪ R, to absorptive
at δ ≈ R, and to transparent for applied field at δ ≫ R. The magnetization loops M(H)
are ellipses which major axis lies on H axis of H − M diagram for transparent medium and
gradually turns to −π/4 direction for diamagnetic medium. The susceptibility as a function
of (δ/R)2 is shown in Fig. 2.
In a limit of low frequencies when the skin depth δ ≫ R, d and the sample is transparent for
AC field the first terms in series expansion of the susceptibility are (up to a shape dependent
multiplication factor)

Reχ ≈ −
(

R2µωσ
)2

(18)

Imχ ≈
(

R2µωσ
)

, (19)

and Reχ ≪ Imχ. A measurement of χ yields contactless estimation of the electrical
conductivity σ.
In a linear or thermally activated flux flow state as the applied field approaches the upper
critical field Hc2, the flux density in the superconductor B → µ0Hc2 and the flux flow
resistivity ρ f smoothly transforms to ρn = 1/σ

ρ f

ρn
≈

B

µ0Hc2
(20)

as the phase transition between a mixed state and normal state is of second order (Bardeen
Stephen model) (Bardeen, 1965). Flux flow resistivity may be estimated using Eq. 19.

3.5.2 Meissner state

At initial magnetization the superconductor is in Meissner state in field lower that Hc1. In
this case the diffusivity is pure imaginary D = iωλ2, where the flux penetration length is
λ = (µ0nse2/m)−1/2. The susceptibility of an infinitely long cylinder and slab in a parallel
field, cylinder in a perpendicular field, and sphere is obtained like for normal state but
replacing (1 + i)/δ with i/λ (Brandt, 1998; Khoder & Couach, 1991; Lifshitz et al., 1984). The
susceptibility as a function of (λ/R)2 is shown in Fig. 2.
In a weak field, low temperature part of the susceptibility (T/Tc < 0.5) is proportional to the
flux penetration length

Reχ(T) = −1 + aλ(T)/R. (21)

A measurement of temperature dependence λ(T) allows us to distinguish different
pairing symmetries. While in conventional superconductors with an isotropic gap
the quasiparticle excitations rise with increasing temperature as exp(−∆/kBT), in
nonconventional superconductors, for example HTS, a temperature dependence is power-law.
As far as we know, it fails to fit experimental χ(T) at T → Tc even for well known λ(T), at
low temperatures.
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Fig. 2. The dependence of the complex AC susceptibility of a sphere and slab in a normal
(ohmic) state in a parallel field on (δ/R)2 ∝ ρn and of the sphere, slab and cylinder in
Meissner state on (λ/R)2 ∝ 1/ns. In an ohmic state an absorption peak appears on Imχ, the
height of which is characteristic of sample shape.

3.5.3 Bean critical state

The Bean model of the critical state is the case of a strong pinning when the flux density
variation is quasi-static (frequency independent) in a slowly varying applied magnetic field
and the flux density profile changes only when induced shielding current density reaches the
critical depinning current density j = ±jc. An electric field is induced when the flux density
changes. In a slab the flux density profile is linear |∂Bz(x)/∂x| = µ0 jc in flux penetrated
regions and |B| = 0 in untouched regions. The model assumes lower critical field Hc1 → 0,
surface barrier Hbarrier → 0, and field independent critical depinning current density jc, i.e.
jc(B) is constant (Bean, 1964).
Analytical solutions for magnetization loops are known for an infinitely long slab or cylinder
in a parallel field (Goldfarb, 1991) and thin disk (Clem & Sanchez, 1994; Mikheenko &
Kuzovlev, 1993) or strip (Brandt, 1993) in a perpendicular field. In these cases the 3D partial
differential equation (PDE) Eq. 13 reduces to a time independent 2D PDE due to sample shape
symmetry.
The model to the disks was work out by Clem and Sanches who improved and corrected
former model worked out by Mikheenko and Kuzovlev (Clem & Sanchez, 1994). The model
is restricted to slow, quasistatic flux changes for which the magnitude of the electric field E

induced by the moving magnetic flux is small in comparison with ρ f jc, where ρ f is the flux
flow resistivity. Under these conditions, the magnitude of the induced current density is close
to the critical depinning current density. The validity of the model is restricted for d ≪ R,
d ≥ λ or if d < λ, that Λ = 2λ2/d ≪ R, where λ is the flux penetration length and Λ is the
2D screening length.
In the case of the infinitely long (or sufficiently long) sample (slab or cylinder) in parallel
applied field the shielding current density is at a surface parallel with applied field,

µ0 jφ = −∂Bz/∂r (22)

while in case of the sufficiently thin sample (disk or strip) in perpendicular applied field
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µ0 jφ = ∂Br/∂z, (23)

the shielding current appears simultaneously everywhere over the sample cross-section upon
application of the field, and decreases everywhere simultaneously after a decrease of the
field (Beek et al., 1996). The complete magnetic hysteresis loop can be obtained from the
first magnetization curve, which is almost the same for the above cases. The hysteresis loop
develops from the thin lens-shaped to parallelogram as the Hac is increased or jc decreases.
The lens shape corresponds to partial penetration of the magnetic flux while the parallelogram
occurs when the magnetization is saturated.
The component of the magnetization parallel to the applied periodically time varying field
H(ϕ) = Hac sin ϕ is

M∓ = ∓χ0HacS
(

Hac

Hd

)

± χ0 (Hac ∓ H) S
(

Hac ∓ H

2Hd

)

, (24)

where M− and M+ are for decreasing and increasing applied field, respectively (Clem &
Sanchez, 1994). A characteristic field Hd = djc/2, where d is the disk thickness and jc is
the critical depinning current density (temperature dependent). The function S(x) is defined
as

S (x) =
1

2x

[

arccos
(

1
cosh x

)

+
sinh |x|

cosh2 x

]

. (25)

3.5.4 Mapping of model susceptibility to experimental susceptibility

The model AC susceptibility is calculated for magnetization loops Eq. 24 using Eq. 11, i.e.
in the same way as the experimental susceptibility (Youssef et al., 2009). To map the model
susceptibility χ(Hac/Hd) to the experimental temperature dependent susceptibility χ(T) we
use a proportionality of the characteristic field to the critical depinning current density, Hd =
djc/2, and a fact that experimentally observed temperature dependence, jc(T) = jc(0)(1 −
T/Tc)n, is power-law. Further, we need an inverse function for jc(T) and insert the amplitude
of the applied field. Let us take

jc(T)

jc(0)
=

Hd(T)

Hd(0)
=

(

1 −
(

T

Tc

)m)n

. (26)

Relation between temperature T and ratio Hd/Hac, i.e. experimental and model susceptibility,
is obtained using inverse function for Eq. 26 and multiplying both the numerator and
denominator, Hd/Hd(0), by Hac

(

T

Tc

)

model

=

(

1 −
(

Hac

Hd(0)
Hd

Hac

)1/n
)1/m

. (27)

We have four free parameters c ≡ Hac/Hd(0), n, m, and Tc to match the model and
experimental susceptibility

⎡

⎣

(

1 −
(

c
Hd

Hac

)
1
n

)

1
m

, χ

(

Hd

Hac

)

⎤

 ←→

[

T

Tc
, χ(T)

]

. (28)
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When we find c, n, m, and Tc, the zero temperature critical depinning current density is

jc(0) = 2Hac/cd (29)

and its temperature dependence is given by Eq. 26.
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Fig. 3. Differences in the harmonics of AC susceptibility for models of cylinders and disks.
The susceptibility is plotted versus "model temperature" given by Eq. 27 (Youssef et al.,
2009). Here Hp is the characteristic field for a cylinder, Hp = Rjc.

3.5.5 Interpretation of complex AC susceptibility

The real part of the fundamental AC susceptibility represents a magnetic energy of the
sample stored in the diamagnetic shielding current. The imaginary part of the fundamental
susceptibility is related to losses caused by resistive response (dissipation).
In normal state or in flux flow state the AC susceptibility is a function of applied
field frequency, conductivity (resistivity), and temperature but is independent of the field
amplitude. On the other hand, in a case of strong pinning the AC susceptibility is a function
of the applied field amplitude, critical depinning current density, and temperature but is
independent of frequency. Nonlinear dependence of the sample magnetization on applied
field amplitude generates harmonics of AC susceptibility. Their behavior is characteristic for
a given sample shape. Due to a symmetry of the magnetization loops, M(H) = −M(−H),
the coefficients of even harmonics of the AC susceptibility are zero.

4. Experimental results on critical state in type II superconductors

Recently developed second generation of the high temperature superconductor wires on the
basis of YBaCuO films and Nb films for superconductor electronics production represent
proper materials to study models to the critical state in hard superconductors.
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4.1 Materials

The Nb film of thickness of 250 nm was deposited by a dc magnetron sputtering in Ar gas
on 400 nm thick silicon-dioxide buffer layer which was grown by a thermal oxidation of a
silicon single crystal wafer (May, 1984). The film is polycrystalline with texture of a preferred
orientation in the (110) direction and is highly tensile. Grain size is about 100 nm. The square
samples of 5 × 5 mm2 in dimensions were cut out from the 3-inch wafer.
Second-generation high temperature superconductor wire (2G HTS wire) consists of a 50 µm
nonmagnetic nickel alloy substrate (Hastelloy), 0.2 µm of a textured MgO-based buffer stack
deposited by an assisting ion beam, 1 µm RE-Ba2Cu3Ox superconducting layer SmYBaCuO
deposited by metallo-organic chemical vapor deposition, and 2 µm of Ag, with 40 µm total
thickness of surround copper stabilizer (20 µm each side) .9 The sample is cut into 4 mm long
segment of 4 mm wide wire.

4.2 Estimation of the critical depinning current density and its temperature dependence

Since the model susceptibility is not given analytically the standard fitting procedures cannot
be applied here. A convenient way to map the model susceptibility to the experimental
one is to plot the experimental susceptibility as a function of reduced temperature T/Tc

and superimpose the model susceptibility by fitting parameters c, n, and m in Eq. 27 and
Tc interactively (manually), see Fig. 4. The critical depinning current density estimated
using Eq. 29 is jc(0) = 3 × 1011 A/m2 in the Nb film with temperature dependence
jc(T) = jc(0)[1 − (T/Tc)]3/2. The critical depinning current density found in the YBCO wire
is jc(0) = 1012 A/m2 with steeper temperature dependence, jc(T) = jc(0)[1 − (T/Tc)]2. This
result well agrees with jc estimated using a four point probe contact measurements (Youssef
et al., 2009; 2010).

5. Conclusion

The thin film type II superconductors with a strong pinning allowed us to verify the complete
analytical model of a response of a thin disk in the Bean critical state to an applied time varying
magnetic field. On the other hand, the application of this model gives a contactless estimation
of the critical depinning current density and its temperature dependence.
To observe the characteristic critical state response from an YBCO sample as is shown in
Fig. 4 at lower temperatures the applied time varying field has to be of the order of 0.1
T at 77 K and of the order of 1 T at 4.2 K. Such fields may rather be generated using a
normal (nonsuperconducting) solenoid that avoids a residual field of flux lines trapped in the
superconducting solenoid winding and guaranties a linear H(I) relation. However, dissipated
power will be large. Also, since the induced magnetic moment will be large, there is no need
for a sensitive superconducting detection system, but a detector with high linearity and flat
frequency and phase response is necessary as the maximum amplitude of 3rd harmonic is
only 6% and 5th harmonic of only 1% of the real part of the fundamental susceptibility.
The fit to the model reveals an excess of few % of the real part of the susceptibility as
temperature decreases to zero. This diamagnetic contribution is due to the temperature

9 Wire type SCS4050 SuperPower, Inc., Schenectady, NY 12304 USA. The critical current of the wire as
estimated using four probe method and 1 µV/cm criterion is from 80 to 110 A at 77 K (97 A for our
piece of wire).

275Critical State Analysis Using Continuous Reading SQUID Magnetometer

www.intechopen.com



16 Will-be-set-by-IN-TECH

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.980 0.985 0.990 0.995 1.000

Reduced temperature (T /T c)

F
u

n
d

a
m

e
n

ta
l 

a
c

 s
u

s
c

e
p

ti
b

il
it

y

ReX(1) YBCO

ImX(1) YBCO

ReX(1) Model YBCO

ImX(1) Model YBCO

ReX(1) Nb

ImX(1) Nb

ReX(1) Model Nb

ImX(1) Model Nb

(a) The fundamental AC susceptibility.

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.990 0.992 0.994 0.996 0.998 1.000 1.002

Reduced temperature (T /T c)

3
rd

 h
a

rm
o

n
ic

 o
f 

a
c

 s
u

s
c

e
p

ti
b

il
it

y

ReX(3) YBCO

ImX(3) YBCO

ReX(3) Model YBCO

ImX(3) Model YBCO

ReX(3) Nb

ImX(3) Nb

ReX(3) Model Nb

ImX(3) Model Nb

(b) The third harmonic of the AC susceptibility.

Fig. 4. Temperature dependence of the AC susceptibility of Nb and YBCO films in
perpendicular field µ0Hac = 10 µT and f = 1.5625 Hz (Youssef et al., 2010).

dependent flux penetration length λ(T) which depends exponentially on temperature in
conventional superconductors (Nb) and obeys a power-law in unconventional ones (YBCO).
As was shown by Brandt, the normalized magnetization curves for hard (Bean)
superconductors obtained by a numerical treatment differ very little for similar geometries
(Brandt, 1996): between strips and circular disks the relative difference is < 0.011, between
thin circular and quadratic disks the difference is < 0.002. This makes an application of fully
analytical models for contactless estimation of the critical depinning current density and its
temperature dependence favorable.
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