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1. Introduction

In type-II superconductors (Fetter & Hohenberg, 1969), magnetic fields penetrate into
superconductors as quantized flux lines with flux quanta φ0 = hc/2e, where h is Planck
constant, c velocity of light, e electron’s charge. Around a flux line, pair potential ∆(r) of
Cooper pair has a vortex structure, where ∆(r) has phase winding 2π reflecting screening
super-current around a flux line. At the vortex core, amplitude |∆(r)| is suppressed, and low
energy excitations appear within the superconducting gap of the electronic states.
Vortex physics makes important roles in the study of unconventional superconductors,
because unconventional characters hidden in the uniform superconducting state at a zero field
appear around vortices. For example, in superconductors with anisotropic superconducting
gap on Fermi surface in momentum space, electronic states around a vortex show real-space
anisotropy in the local density of states (LDOS) N(E, r) around vortex core. The vortex core
image is observed by scanning tunneling microscopy (STM) (Hess et al., 1990; Nishimori et al.,
2004). Around vortex cores, local zero-energy electronic states at Fermi level are seen as star
shape with tails extending toward node or weak-gap directions (Hayashi et al., 1996; 1997;
Ichioka et al., 1996; Schopohl & Maki, 1995). From the spatial average of the zero-energy
states, we can estimate the zero-energy density of states (DOS) N(E = 0), which determines
low temperature (T) behaviors of physical quantities. Due to the differences of electronic
states around the vortex core, N(E = 0) shows different magnetic field (H) dependences.
These H-dependences are studied to identify the pairing symmetry in the experiments for
vortex states, such as, electronic specific heat (Moler et al., 1994; Nohara et al., 1999), electronic
thermal conductivity, and paramagnetic susceptibility (Zheng et al., 2002). For example, the
H-dependence of low temperature specific heat C(H) is often used to distinguish the presence
of nodes in the pairing potential. As for Sommerfeld coefficient γ(H) ≡ limT→0 C(H)/T,

γ(H) ∝ H in s-wave pairing with full gap, and γ(H) ∝
√

H by the Volovik effect in d-wave
pairing with line nodes (Ichioka et al., 1999a;b; Miranović et al., 2003; Nakai et al., 2004;
Volovik, 1993). The curves of γ(H) are expected to smoothly recover to the normal state
value towards the upper critical field Hc2. However, in some heavy fermion superconductors,
C(H) deviates from these curves. In CeCoIn5, C(H) shows convex curves, i.e., C(H) ∝ Hα

(α > 1) at higher fields(Ikeda et al., 2001). This behavior is not understood only by effects
of the pairing symmetry. A similar C(H) behavior is observed also in UBe13 (Ramirez et al.,
1999). The experimental data of magnetization curve Mtotal(H) in CeCoIn5 show a convex
curve at higher fields, instead of a conventional concave curve (Tayama et al., 2002). As an
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unconventional behavior of CeCoIn5, the small angle neutron scattering (SANS) experiment
reported anomalous H-dependence of flux line lattice (FLL) form factor determined from the
Bragg intensity (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al., 2010). While
the form factor shows exponential decay as a function of H in many superconductors, it
increases until near Hc2 for H � c in CeCoIn5. In some heavy fermion superconductors, the
paramagnetic effects due to Zeeman shift are important to understand the properties of the
vortex states, because the superconductivity survives until under high magnetic fields due to
the effective mass enhancement. A heavy fermion compound CeCoIn5 is a prime candidate of
a superconductor with strong Pauli-paramagnetic effect (Matsuda & Shimahara, 2007). There
at higher fields Hc2 changes to the first order phase transition (Bianchi et al., 2002; Izawa et al.,
2001; Tayama et al., 2002) and new phase, considered as Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state, appears (Bianchi, Movshovich, Capan, Pagliuso & Sarrao, 2003; Radovan
et al., 2003). As for properties of CeCoIn5, the contribution of antiferromagnetic fluctuation
and quantum critical point (QCP) is also proposed in addition to the strong paramagnetic
effect (Bianchi, Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003). Therefore,
it is expected to study whether properties of vortex states in CeCoIn5 are theoretically
explained only by the paramagnetic effect. Theoretical studies of the H-dependences also
help us to estimate strength of the paramagnetic effect, in addition to pairing symmetry, from
experimental data of the H-dependences in various superconductors.
In this chapter, we concentrate to discuss the paramagnetic effect in the vortex states, to see
how the paramagnetic effect changes structures and properties of vortex states. The BCS
Hamiltonian in magnetic field is given by

H− µ0N = ∑
σ=↑,↓

�

d3r ψ†
σ(r)Kσ(r)ψσ(r)

−
�

d3r1

�

d3r2

�

∆(r1, r2)ψ
†
↑(r1)ψ

†
↓(r2) +∆∗(r1, r2)ψ↓(r2)ψ↑(r1)

�

(1)

for superconductors of spin-singlet pairing, with

Kσ(r) =
h̄2

2m

�∇
i
+

π

φ0
A

�2

+ σµBB(r)− µ0, (2)

σ = ±1 for up/down spin electrons. Suppression of superconductivity by magnetic field
occurs by two contributions. One is diamagnetic pair-breaking from vector potential A in
Hamiltonian inducing screening current of vortex structure. And the other is paramagnetic
pair-breaking from Zeeman term, which induces splitting of up-spin and down-spin Fermi
surfaces as schematically presented in Fig. 1. Due to the Zeeman shift, in normal states,
numbers of occupied electron states are imbalance between up-spin and down-spin electrons.
The imbalance induces paramagnetic moment. In superconducting state with spin-singlet
pairing, formations of Cooper pair between up-spin and down-spin electrons reduce the
imbalance, and suppress the paramagnetic moment. However, the paramagnetic moment
may appear at place where superconductivity is locally suppressed, such as around vortex
core. Therefore, it is important to quantitatively estimate the spatial structure of paramagnetic
moment and the contributions to properties of superconductors in vortex states.
One of other paramagnetic effect is paramagnetic pair breaking. When the Zeeman effect is
negligible, as in Fig. 1(a), for Cooper pair of up-spin and down-spin electrons at Fermi level,
total momentum Q of the pair is zero, i.e., Q = k + (−k) = 0. However, in the presence of
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H − µ N ∑
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�

ψσ σ ψσ

−
� �

�

∆ ψ↑ ψ↓ ∆∗ ψ↓ ψ↑
�

σ

�∇ π

φ

�

σµ − µ

σ ±

−
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(a) (b)

Fig. 1. Paramagnetic effect by Zeeman shift of energy dispersion is schematically presented.
Bold lines indicate occupied states. (a) The case when Zeeman shift is negligible. For Cooper
pairs at Fermi level, total momentum Q = k + (−k) = 0. (b) When Zeeman shift is
significant, the energy dispersions of up-spin and down-spin electrons are separated. When
Q = 0, the electrons of Cooper pair are not at Fermi level. In FFLO states, Q �= 0 so that
electrons of Cooper pair are located at Fermi level.

Zeeman splitting, in order to keep Q = 0, Cooper pair is formed between electrons far from
Fermi level, as shown in Fig. 1(b). Since the energy gain by this pairing is smaller than that
of negligible paramagnetic case, the Zeeman splitting induces paramagnetic pair-breaking
of superconductivity. In addition to Hc2 suppressed by the paramagnetic pair-breaking, it
is important to quantitatively estimate the contribution of paramagnetic pair-breaking on
properties of vortex states at H < Hc2.
When paramagnetic effect by Zeeman shift is further significant, transition to FFLO state
occurs at high magnetic fields near Hc2. In FFLO state, as shown in Fig. 1(b), electrons at Fermi
level form Cooper pair with non-zero total momentum (Q �= 0), which indicates periodic
modulation of pair potential (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965; Machida &
Nakanishi, 1984). When FFLO state appears in vortex state, we have to estimate properties
of the FFLO state, considering both of vortex and FFLO modulation (Adachi & Ikeda, 2003;
Houzet & Buzdin, 2001; Ichioka et al., 2007; Ikeda & Adachi, 2004; Mizushima et al., 2005a;b;
Tachiki et al., 1996). Another system for significant paramagnetic effect is superfluidity of
neutral 6Li atom gases under the population imbalance of two species for pairing (Machida
et al., 2006; Partridge et al., 2006; Takahashi et al., 2006; Zwierlein et al., 2006). There, we can
study vortex state by rotating fermion superfluids, under control of paramagnetic effect by
loaded population imbalance.
For theoretical studies of vortex states including electronic structure, we have to use
formulation of microscopic theory, such as Bogoliubov-de Gennes (BdG) theory (Mizushima
et al., 2005a;b; Takahashi et al., 2006) or quasi-classical Eilenberger theory (Eilenberger,
1968; Klein, 1987). In this chapter, based on the selfconsistent Eilenberger theory (Ichioka
et al., 1999a;b; 1997; Miranović et al., 2003), we discuss interesting phenomena of vortex
states in superconductors with strong paramagnetic effect, i.e., (i) anomalous magnetic
field dependence of physical quantities, and (ii) FFLO vortex states. We study the spatial
structure of the vortex states with and without FFLO modulation, in the presence of the
paramagnetic effect due to Zeeman-shift (Hiragi et al., 2010; Ichioka et al., 2007; Ichioka &
Machida, 2007; Watanabe et al., 2005). Since we calculate the vortex structure in vortex lattice
states, self-consistently with local electronic states, we can quantitatively estimate the field
dependence of some physical quantities. We will clarify the paramagnetic effect on the vortex
core structure, calculating the pair potential, paramagnetic moment, internal magnetic field,
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and local electronic states. We also study the paramagnetic effect by quantitatively estimating
the H-dependence of low temperature specific heat, Knight shift, magnetization and FLL
form factors. For quantitative estimate, it is important to appropriately determine vortex core
structure by selfconsistent calculation in vortex lattice states. These theoretical studies of the
magnetic field dependences help us to evaluate the strength of the paramagnetic effect from
the experimental data of the H-dependences in various superconductors.
After giving our formulation of selfconsistent Eilenberger theory in Sec. 2, we study the
paramagnetic effect in vortex states without FFLO modulation in Sec. 3, where we discuss the
H-dependence of paramagnetic susceptibility, low temperature specific heat, magnetization
curve, FLL form factor, and their comparison with experimental data in CeCoIn5. We also
show the paramagnetic contributions on the vortex core structure, and the local electronic
state in the presence of Zeeman shift. Section 4 is for the study of FFLO vortex state, in order
to theoretically estimate properties of the FFLO vortex states, and to show how the properties
appear in experimental data. We study the spatial structure of pair potential, paramagnetic
moment, internal field, and local electronic state, including estimate of magnetic field range
for stable FFLO vortex state. As possible methods to directly observe the FFLO vortex state,
we discuss the NMR spectrum and FLL form factors, reflecting FFLO vortex structure. Last
section is devoted to summary and discussions.

2. Quasiclassical theory including paramagnetic effect

One of the methods to study properties of superconductors by microscopic theory is a
formulation of Green’s functions. With field operators ψ↑, ψ↓, Green’s functions are defined
as

G(r, τ; r�, τ�) = −�Tτ [ψ↑(r, τ)ψ†
↑(r

�, τ�)]�,
F(r, τ; r�, τ�) = −�Tτ [ψ↑(r, τ)ψ↓(r

�, τ�)]�, F†(r, τ; r�, τ�) = −�Tτ [ψ
†
↓(r, τ)ψ†

↑(r
�, τ�)]� (3)

in imaginary time formulation, where Tτ indicates time-ordering operator of τ, and �· · · � is
statistical ensemble average. The Green’s functions obey Gor’kov equation derived from the
BCS Hamiltonian of Eq. (1). Behaviors of Green’s functions include rapid oscillation of atomic
short scale at the Fermi energy. Thus, in order to solve Gor’kov equation or BdG equation
for vortex structure, we need heavy calculation treating all atomic sites within a unit cell of
vortex lattice. To reduce the task of the calculation, we adopt quasiclassical approximation to
integrate out the rapid oscillation of the atomic scale ∼ 1/kF (kF is Fermi wave number), and
consider only the spatial variation in the length scale of the superconducting coherence length
ξ0. This is appropriate when ξ0 � 1/kF, which is satisfied in most of superconductors in solid
state physics. The quasiclassical Green’s functions are defined as

g(ωn, kF, r) =
�

dξ

iπ
G(ωn, k, r),

f (ωn, kF, r) =
�

dξ

π
F(ωn, k, r), f †(ωn, kF, r) =

�

dξ

π
F†(ωn, k, r), (4)

where we consider the Fourier transformation of the Green’s functions; from τ − τ to
Matsubara frequency ωn, and from r − r� to relative momentum k, and integral about
ξ ≡ k2/2m − µ0, i.e., momentum directions perpendicular to the Fermi surface. Thus, the
quasiclassical Green’s functions depends on the momentum kF on the Fermi surface, and the
center-of-mass coordinate (r + r�)/2 → r.
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�

ξ

π
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ω
�

ξ

π
ω ω

�

ξ

π
ω

τ − τ
ω − �

ξ ≡ − µ

� →
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From the Gor’kov equation, Eilenberger equations for quasiclassical Green’s functions are
derived as

{ωn + iµB + v · (∇+ iA)} f = ∆(r, kF)g,

{ωn + iµB − v · (∇− iA)} f † = ∆∗(r, kF)g, (5)

with v · ∇g = ∆∗(r, kF) f − ∆(r, kF) f †, g = (1 − f f †)1/2, Reg > 0, ∆(r, kF) = ∆(r)φ(kF),
and µ = µBB0/πkBTc. In this chapter, length, temperature, Fermi velocity, magnetic field and
vector potential are, respectively, in units of R0, Tc, v̄F, B0 and B0R0. Here, R0 = h̄v̄F/2πkBTc

is in the order of coherence length, B0 = h̄c/2|e|R2
0, and v̄F = �v2

F�1/2
kF

is an averaged Fermi

velocity on the Fermi surface. �· · · �kF
indicates the Fermi surface average. Energy E, pair

potential ∆ and Matsubara frequency ωn are in unit of πkBTc. We set the pairing function

φ(kF) = 1 in the s-wave pairing, and φ(kF) =
√

2(k2
a − k2

b)/(k
2
a + k2

b) in the d-wave pairing.

The vector potential is given by A = 1
2 B̄ × r + a in the symmetric gauge, with an average flux

density B̄ = (0, 0, B̄). The internal field is obtained as B(r) = B̄ +∇× a.
The pair potential is selfconsistently calculated by

∆(r) = g0 N0T ∑
0≤ωn≤ωcut

�

φ∗(kF)
�

f + f †∗
��

kF

(6)

with (g0 N0)
−1 = ln T + 2T ∑0≤ωn≤ωcut

ω−1
n . We set high-energy cutoff of the pairing

interaction as ωcut = 20kBTc. The vector potential is selfconsistently determined by the
paramagnetic moment Mpara = (0, 0, Mpara) and the supercurrent js as

∇×∇× a(r) = js(r) +∇× Mpara(r) ≡ j(r), (7)

with

js(r) = − 2T

κ2 ∑
0≤ωn

�vFIm{g}�kF
, (8)

Mpara(r) = M0

�

B(r)

B̄
− 2T

µB̄ ∑
0≤ωn

�Im {g}�kF

�

. (9)

Here, the normal state paramagnetic moment M0 = (µ/κ)2 B̄, κ = B0/πkBTc
√

8πN0, N0 is
DOS at the Fermi energy in the normal state.
The unit cell of the vortex lattice is given by r = w1(u1 − u2) + w2u2 + w3u3 with −0.5 ≤
wi ≤ 0.5 (i=1, 2, 3), u1 = (a, 0, 0), u2 = (ζa, ay, 0) with ζ = 1/2, and u3 = (0, 0, L). For

triangular vortex lattice ay/a =
√

3/2, and ay/a = 1/2 for square vortex lattice. For the
FFLO modulation, we assume ∆(x, y, z) = ∆(x, y, z + L) and ∆(x, y, z) = −∆(x, y,−z). Then,
∆(r) = 0 at the FFLO nodal planes z = 0, and ±0.5L. These configurations of the FFLO vortex
structure are schematically shown in Fig. 2, which show the unit cell in the xz plane including
vortex lines, and in the xy plane. We divide wi to Ni-mesh points in our numerical studies,
and calculate the quasiclassical Green’s functions, ∆(r), Mpara(r) and j(r) at each mesh point
in the three dimensional (3D) space. Typically we set N1 = N2 = N3 = 31 for the calculation
of vortex states with FFLO modulation. For the vortex states without FFLO modulation, we
assume uniform structure along the magnetic field direction, and set N1 = N2 = 41.
We solve Eq. (5) for g, f , f †, and Eqs. (6)-(9) for ∆(r), Mpara(r), A(r), alternately, and obtain
selfconsistent solutions, by fixing a unit cell of the vortex lattice and a period L of the FFLO
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(a) (b)

Fig. 2. Configurations of the vortex lines and the FFLO nodal planes are schematically
presented in the xz plane including vortex lines (a) and in the xy plane (b). The inter-vortex
distance is a in the x direction, and the distance between the FFLO nodal planes is L/2. The
hatched region indicates the unit cell. In (a), along the trajectories presented by “0 −→ π”,
the pair potential changes the sign (+ → −) across the vortex line or across the FFLO nodal
plane, due to the π-phase shift of the pair potential. Along the trajectory presented by
“0 −→ 2π”, the sign of the the pair potential does not change (+ → +) across the
intersection point of the vortex line and the FFLO nodal plane, since the phase shift is 2π. In
(b), • indicates the vortex center. u1 − u2 and u2 are unit vectors of the vortex lattice.

modulation. When we solve Eq. (5), we estimate ∆(r) and A(r) at arbitrary positions by the
interpolation from their values at the mesh points, and by the periodic boundary condition of
the unit cell including the phase factor due to the magnetic field. The boundary condition is
given by

∆(r + R) = ∆(r)eiχ(r,R) (10)

χ(r, R) = 2π{1

2
((m + nζ)

y

ay
− n

x

ax
) +

mn

2
+ (m + nζ)

y0

ay
− n

x0

ax
} (11)

for R = mu1 + nu2 (m, n : integer), when the vortex center is located at (x0, y0)− 1
2 (u1 + u2).

In the selfconsistent calculation of a, we solve Eq. (7) in the Fourier space qm1,m2,m3 , taking
account of the current conservation ∇ · j(r) = 0, so that the average flux density per unit cell
of the vortex lattice is kept constant. The wave number q is discretized as

qm1,m2,m3 = m1q1 + m2q2 + m3q3 (12)

with integers mi (i = 1, 2, 3), where q1 = (2π/a,−π/ay, 0), q2 = (2π/a, π/ay, 0), and
q3 = (0, 0, 2π/L). The lattice momentum is defined as G(qm1,m2,m3 ) = (Gx, Gy, Gz)
with Gx = [N1 sin(2πm1/N1) + N2 sin(2πm2/N2)]/a, Gy = [−N1 sin(2πm1/N1) +
N2 sin(2πm2/N2)]/2ay, and Gz = N3 sin(2πm3/N3)/L. We obtain the Fourier component

of a(r) as a(q) = j�(q)/|G|2, where j�(q) = j(q)− G (G · j(q)) /|G|2 ensuring the current
conservation ∇ · j�(r) = 0, and j(q) is the Fourier component of j(r) in Eq. (7) (Klein, 1987).
The final selfconsistent solution satisfies ∇ · j(r) = 0.
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Using selfconsistent solutions, we calculate free energy, external field, and LDOS. In
Eilenberger theory, free energy is given by

F =
�

unitcell
dr

�

κ2|B(r)− H|2 − µ2|B(r)|2

+|∆(r)|2(ln T + 2T ∑
0<ωn<ωcut

ω−1
n )− T ∑

|ωn|<ωcut

�I(r, k, ωn)�kF

�

(13)

with

I(r, k, ωn) = ∆φ f † + ∆∗φ∗ f

+(g − ωn

|ωn|
)
� 1

f
(ωn + iµB + v · (∇+ iA)) f +

1

f †
(ωn + iµB + v · (∇− iA)) f †

�

. (14)

Using Eqs. (5) and (6), we obtain

F =
�

unitcell
dr

�

κ2 |B(r)− H|2 − µ2|B(r)|2 + T ∑
|ωn|<ωcut

Re

�

g − 1

g + 1
(∆φ f † + ∆∗φ∗ f )

�

kF

�

. (15)

Using Doria-Gubernatis-Rainer scaling (Doria et al., 1990; Watanabe et al., 2005), we obtain
the relation of B̄ and the external field H as

H =

�

1 − µ2

κ2

�

�

B̄ +
�

(B(r)− B̄)
2
�

r
/B̄

�

+
T

κ2B̄

�

∑
0<ωn

�

µB(r)Im {g}+ 1

2
Re

�

( f †∆ + f ∆∗)g

g + 1

�

+ ωnRe{g − 1}
�

kF

�

r

, (16)

where �· · · �r indicates the spatial average. We consider the case when κ = 89 and low
temperature T/Tc = 0.1. For two-dimensional (2D) Fermi surface, κ = (7ζ(3)/8)1/2κGL ∼
κGL (Miranović & Machida, 2003). Therefore we consider the case of typical type-II
superconductors with large Ginzburg-Landau (GL) parameter. In these parameters, |B̄− H| <
10−4B0.
When we calculate the electronic states, we solve Eq. (5) with iωn → E + iη. The LDOS is
given by N(r, E) = N↑(r, E) + N↓(r, E), where

Nσ(r, E) = N0�Re{g(ωn + iσµB, kF, r)|iωn→E+iη}�kF
(17)

with σ = 1 (−1) for up (down) spin component. We typically use η = 0.01, which is small
smearing effect of energy by scatterings. The DOS is obtained by the spatial average of the
LDOS as N(E) = N↑(E) + N↓(E) = �N(r, E)�r.

3. Vortex states in superconductors with strong paramagnetic effect

In this section, we study the paramagnetic effect in vortex state without FFLO modulation.
For simplicity, we consider fundamental case of isotropic Fermi surface, that is, 2D cylindrical
Fermi surface with kF = kF(cos θ, sin θ) and Fermi velocity vF = vF0(cos θ, sin θ). Magnetic
field is applied along the z direction. Even before the FFLO transition, the strong paramagnetic
effect induces anomalous field dependence of some physical quantities by paramagnetic
vortex core and paramagnetic pair-breaking. There are some theoretical approaches to
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the study of paramagnetic effect, such as by BdG theory (Takahashi et al., 2006), or by
Landau level expansion in Eilenberger theory(Adachi et al., 2005). Here, we report results of
quantitative estimate by selfconsistent Eilenberger theory given in previous section (Ichioka
& Machida, 2007).

3.1 Field dependence of paramagnetic susceptibility and zero-energy DOS

First, we discuss the field dependence of zero-energy DOS γ(H) = N(E = 0)/N0

and paramagnetic susceptibility χ(H) = �Mpara(r)�r/M0, which are normalized by the
normal state values. From low temperature specific heats C, we obtain γ(H) ∝ C/T
experimentally. And χ(H) is observed by the Knight shift in NMR experiments, which
measure the paramagnetic component via the hyperfine coupling between a nuclear spin
and conduction electrons. As shown in Fig. 3, γ (dashed lines) and χ (solid lines) show
almost the same behavior at low temperatures. First, we see the case of d-wave pairing

with line nodes in Fig. 3(a). There γ(H) and χ(H) describe
√

H-like recovery smoothly
to the normal state value (γ = χ = 1 at Hc2) in the case of negligible paramagnetic effect
(µ = 0.02). With increasing the paramagnetic parameter µ, Hc2 is suppressed and the Volovik

curve γ(H) ∝
√

H gradually changes into curves with a convex curvature. For large µ, Hc2

changes to first order phase transition. We note that at lower fields all curves exhibit a
√

H
behavior because the paramagnetic effect (∝ H) is not effective. Further increasing H, γ(H)
behaves quite differently. There we find a turning point field which separates a concave curve
at lower H and a convex curve at higher H. H/Hc2 at the inflection point increases as µ
decreases. From these behaviors, we can estimate the strength of the paramagnetic effect, µ.

(a)
0 0.2 0.4H

0

0.5

1

γ

χ

µ= 0.020.861.72.6

(b)
0 0.2 0.4H

0

0.5

1

γ

χ

µ= 0.020.861.72.6

Fig. 3. The magnetic field dependence of paramagnetic susceptibility χ(H) (solid lines) and
zero-energy DOS γ(H) (dashed lines) at T = 0.1Tc for various paramagnetic parameters
µ = 0.02, 0.86, 1.7, and 2.6 in the d-wave (a) and s-wave (b) pairing cases.

To examine effects of the pairing symmetry, we show γ(H) and χ(H) also for s-wave
pairing in Fig. 3(b). In the H-dependence of γ(H) and χ(H), differences by the vortex
lattice configuration of triangular or square are negligibly small. The difference in the
H-dependences of Figs. 3(a) and 3(b) at low fields comes from the gap structure of the pairing
function. In the full gap case of s-wave pairing, γ(H) and χ(H) show H-linear-like behavior at
low fields. With increasing the paramagnetic effect, H-linear behaviors gradually change into
curves with a convex curvature. As seen in Figs. 3(a) and 3(b), paramagnetic effects appear
similarly at high fields both for s-wave and d-wave pairings.
The H-dependence of γ(H) for H � c and H � ab was used to identify the pairing symmetry
and paramagnetic effect in URu2Si2 (Yano et al., 2008).
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3.2 Field dependence of magnetization

We discuss the paramagnetic effect on the magnetization curves. The magnetization Mtotal =
B̄ − H includes both the diamagnetic and the paramagnetic contributions. In Fig. 4,
magnetization curves are presented as a function of H for various µ at T = 0.1Tc for s-wave
and d-wave pairings. When the paramagnetic effect is negligible, we see typical magnetization
curve of type-II superconductors. There, |Mtotal| in s-wave pairing is larger, compared with
that in d-wave pairing. Dashed lines in Fig. 4 indicate the magnetization in normal states,
which shows linear increase of paramagnetic moments as a function of magnetic fields.
When paramagnetic effect is strong for large µ, Mtotal(H) exhibits a sharp rise near Hc2 by
the paramagnetic pair breaking effect, and that Mtotal(H) has convex curvature at higher
fields, instead of a conventional concave curvature. These behaviors are qualitatively seen
in experimental data of CeCoIn5 (Tayama et al., 2002).
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Fig. 4. Magnetization curve Mtotal as a function of H at T/Tc = 0.1 for µ = 0.02, 0.86, 1.7 and
2.6 in s-wave (a) and d-wave (b) pairings. Dashed lines are normal state magnetization.

In Fig. 5(a), magnetization curves are presented as a function of H for various T at µ = 1.7.
With increasing T, the rapid increase of Mtotal(H) near Hc2 is smeared. In Fig. 5(b), Mtotal

is plotted as a function of T2 for various B̄. We fit these curves as Mtotal(T, H) = M0 +
1
2 β(H)T2 + O(T3) at low T. The slope β(H) = limT→0 ∂2Mtotal/∂T2 decreases on raising H
at lower fields. However, at higher fields approaching Hc2, the slope β(H) sharply increases.
Thus, as shown in Fig. 5(c), β(H) as a function of H exhibits a minimum at intermediate H
and rapid increase near Hc2 by the paramagnetic effect when µ = 1.7. This is contrasted with
the case of negligible paramagnetic effect (µ = 0.02), where β(H) is a decreasing function of H
until Hc2. The behavior of β(H) is consistent with that of γ(H), since there is a relation β(H) ∝

∂γ(H)/∂H obtained from a thermodynamic Maxwell’s relation ∂2Mtotal/∂T2 = ∂(C/T)/∂B
and B ∼ H (Adachi et al., 2005). In Fig. 3, we see that for µ = 1.7 the slope of γ(H) is
decreasing function of H at low H, but changes to increasing function near Hc2. This behavior
correctly reflects the H-dependence of β(H).

3.3 Paramagnetic contribution on vortex core structure

In order to understand contributions of the paramagnetic effect on the vortex structure, we
illustrate the local structures of the pair potential |∆(r)|, paramagnetic moment Mpara(r),
and internal magnetic field B(r) within a unit cell of the vortex lattice in Fig. 6. Since we
assume d-wave pairing with the line node gap here, the vortex core structure is deformed
to fourfold symmetric shape around a vortex core (Ichioka et al., 1999a;b; 1996). It is noted
that the paramagnetic moment is enhanced exclusively around the vortex core, as shown in
Fig. 6(b). Since the contribution of the paramagnetic vortex core is enhanced with increasing
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left panels show |∆(r)|, Mpara(r), and B(r) within a unit cell of the square vortex lattice at
µ = 1.7. The right panels show the profiles along the trajectory r from the vortex center to a
midpoint between nearest neighbor vortices. µ = 0.02, 0.86, 1.7, and 2.6.
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µ, internal field B(r) consisting of diamagnetic and paramagnetic contributions is further
enhanced around the vortex core by the paramagnetic effect, as shown in Fig. 6(c). When
µ is large, the pair potential |∆(r)| is slightly suppressed around the paramagnetic vortex
core, and the vortex core radius is enlarged, as shown in Fig. 6(a).
The enhancement of Mpara(r) around vortex core is related to spatial structure of the LDOS
Nσ(r, E). As shown in Fig. 7(a), the LDOS spectrum shows zero-energy peak at the vortex center,
but the spectrum is shifted to E = ±µH due to Zeeman shift. There is a relation between the
LDOS spectrum and local paramagnetic moment, as

Mpara(r) = −µB

� 0

−∞
{N↑(E, r)− N↓(E, r)}dE. (18)

In Fig. 7(a), the peak states at E > 0 is empty for N↑(E, r), and the peak at E < 0 is occupied
for N↓(E, r). Therefore, because of Zeeman shift of the zero-energy peak at the vortex core,
large Mpara(r) appears due to the local imbalance of up- and down-spin occupation around
the vortex core. As shown in Figs. 7(b) and 7(c), moving from the vortex center to outside,
the peak of the spectrum is split into two peaks, which are shifted to higher and lower
energies, respectively. When one of split peaks crosses E = 0, the imbalance of up- and
down-spin occupation is decreased. Thus, Mpara(r) is suppressed outside of vortex cores.
This corresponds to the behavior of Knight shift, i.e., the paramagnetic moment is suppressed
in uniform states of spin-singlet pairing superconductors by the formation of Cooper pair
between spin-up and spin-down electrons.
In Figs. 7(d) and 7(e), we present the spectrum of spatially-averaged DOS. In the DOS
spectrum, peaks of the LDOS are smeared by the spatial average. Because of the flat spectrum
at low energies, paramagnetic susceptibility χ(H) shows almost the same H-behavior as the
zero-energy DOS γ(H) ∼ N(E = 0) even for large µ, as shown in Fig. 3, while χ(H) counts
the DOS contribution in the energy range |E| < µH, i.e., from Eq. (18),

χ(H) ∼
� µH

0
N↑(E)dE/µH. (19)

3.4 Field dependence of flux line lattice form factor

One of the best ways to directly see the accumulation of the paramagnetic moment around the
vortex core is to observe the Bragg scattering intensity of the FLL in SANS experiment. The
intensity of the (h, k)-diffraction peak is given by Ih,k = |Fh,k|2/|qh,k| with the wave vector
qh,k = hq1 + kq2, q1 = (2π/a,−π/ay, 0) and q2 = (2π/a, π/ay, 0). The Fourier component
Fh,k is given by B(r) = ∑h,k Fh,k exp(iqh,k · r). In the SANS for FLL observation, the intensity
of the main peak at (h, k) = (1, 0) probes the magnetic field contrast between the vortex cores
and the surrounding.
The field dependence of |F1,0|2 in our calculations is shown in Fig. 8(a). In the case of
negligible paramagnetic effect (µ = 0.02), |F1,0|2 decreases exponentially as a function of H.
This exponential decay is typical behavior of conventional superconductors. With increasing
paramagnetic effect, however, the decreasing slope of |F1,0|2 becomes gradual, and changes to
increasing functions of H at lower fields in strong paramagnetic case (µ = 2.6).
The reason of anomalous enhancement of |F1,0| at high fields is because |F1,0| reflects
the enhanced internal field around the vortex core, shown in Fig. 6(c), by the induced
paramagnetic moment at the core. We present H-dependence of |F1,0| with the paramagnetic
contribution |M1,0| in Fig. 8(b). Fourier component M1,0 is calculated from paramagnetic
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moment Mpara(r). From Fig. 8(b), we see that the increasing behavior of |F1,0| is due to the
paramagnetic contribution M1,0 proportional to µH. In Fig. 9, we present how profiles of
Mpara(r) and B(r) change, depending on magnetic fields. The form factors |F1,0| and |M1,0|
reflect the contrast of the variable range in the figures. Increasing magnetic field at low fields
(H = 0.02, 0.06), Mpara(r) is enhanced at vortex core. Reflecting this, B(r) is also enhanced at
the core, and the form factor |F1,0| increases as a function of a magnetic field. At higher fields
(H = 0.10, 0.12, 0.14), inter-vortex distance becomes short. Because of overlap of the regions
around vortex core with those of neighbor vortices, the contrasts of enhanced Mpara(r) and
B(r) around vortex core are smeared. Therefore, form factors |F1,0| and |M1,0| decrease at high
fields near Hc2 in Fig. 8(b).
The SANS experiment in CeCoIn5 for H � c reported that |F1,0|2 increases until near Hc2

instead of exponential decay (Bianchi et al., 2008; DeBeer-Schmitt et al., 2006; White et al.,
2010). The anomalous increasing H-dependence of the SANS intensity in CeCoIn5 can
be explained qualitatively by the strong paramagnetic effect, as shown by our calculation.
The detailed comparison with the experimental data will be discussed later. Anomalous

224 Superconductivity    – Theory and Applications

www.intechopen.com



↑ ↓ µ

↑ ↓

(a)

×

×

×

µ=

(b)

×

µ
| |

| | | | µ

| |
µ

| | | |

| |

| | | |

� | |

FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect 13

(a)
0 3 6r

0

0.0001

M B=0.14

0.12
0.10

0.06
0.02

(b)
0 3 6r

0

0.0001

0.0002

B-B

B=0.02

0.06

0.10

0.12

0.14

Fig. 9. Profile of paramagnetic moment Mpara(r) (a) and internal field B(r)− B̄ (b) as a
function of radius r until a midpoint between vortices along nearest neighbor vortex
directions. µ = 2.6 and H = 0.02, 0.06, 0.10, 0.12 and 0.14.

enhancement of FLL form factor was also observed in TmNi2B2C, and explained by effective
strong paramagnetic effect (DeBeer-Schmitt et al., 2007).

3.5 Comparison with experimental data in CeCoIn5

Here, we discuss anomalous field dependence of low T specific heat, magnetization curve,
and FFL form factor in CeCoIn5, based on the comparison with theoretical estimates of
strong paramagnetic effect by Eilenberger theory. In Fig. 10(a), we present H-dependence of
zero-energy DOS N(E = 0) and low-T specific heat (Ikeda et al., 2001). Both H-dependences
show rapid increase at higher H. However, we see quantitative differences between theory
(line A) and experimental data (circles). Compared to the theoretical estimates, C/T by
experiments is smaller at low H and increase more rapidly at higher H. In order to
quantitatively reproduce the H-dependence of C/T, we phenomenologically introduce factor
N0(H) coming from the H-dependence of normal state DOS. So far, N0 was assumed to be a
constant in theoretical calculation. Thus, in calculation of Fermi surface average, we modify
�· · · �kF

→ �· · · �kF
N0(H)/N0(Hc2). As shown in Fig. 10(a), the H-dependence of C/T can be

reproduced, if we set N0(H)/N0(Hc2) = 1 − 0.53{tanh 4(1 − H/Hc2)}3. This expression of
N0(H) is phenomenological one to reproduce the experimental behavior, without microscopic
theoretical consideration. This H-dependence of N0(H) indicates that normal states DOS is
enhanced near Hc2, and may be related to the effective mass enhancement near QCP (Bianchi,
Movshovich, Vekhter, Pagliuso & Sarrao, 2003; Paglione et al., 2003), which is suggested to
exist at Hc2(T = 0) in CeCoIn5.
Theoretical and experimental (Tayama et al., 2002) magnetization curve is presented in Fig.
10(b). There we see rapid increase at high fields and jump at Hc2 by strong paramagnetic
effects. The differences between experimental data (average of magnetization curves for
increasing and decreasing H) and theoretical estimate with constant N0 (line A) are improved
by considering the H-dependence of N0(H) (line B). There, by N0(H), slope of Mtotal(H)
becomes similar to that of experimental curve.
The H-dependence of FLL form factors using N0(H) is presented in Fig. 11. There, |F1,0|2
shows further increases until higher H. This sharp peak at high fields resembles to the
anomalous increasing behavior observed by SANS experiment in CeCoIn5 (Bianchi et al.,
2008; DeBeer-Schmitt et al., 2006). For higher T, the peak is smeared and the peak position is
shifted to lower fields. This T-dependence is consistent to those in experimental observation
in CeCoIn5 (White et al., 2010).
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The above phenomenological discussion by N0(H) indicates that anomalous H-dependences
observed in CeCoIn5 is qualitatively reproduced by theoretical estimate considering strong
paramagnetic effect, but they still show systematic quantitative deviations from theoretical
estimate. These indicate that we need to consider additional effect, such as effective mass
enhancement near QCP, in addition to strong paramagnetic effect, in order to understand
anomalous H-dependence in CeCoIn5.

4. Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) vortex state

The FFLO state (Fulde & Ferrell, 1964; Larkin & Ovchinnikov, 1965) is an exotic
superconducting state expected to appear at low temperatures and high fields, when the
paramagnetic effect due to the Zeeman shift is significant. In the FFLO state, since the Fermi
surfaces for up-spin and down-spin electron bands are split by the Zeeman shift, Cooper pairs
of up- and down-spins acquire non-zero momentum for the center of mass coordinate of the
Cooper pair, inducing the spatial modulation of the pair potential. The possible FFLO state
is widely discussed in various research fields, ranging from superconductors in condensed

226 Superconductivity    – Theory and Applications

www.intechopen.com



(a) (b)

− { − }

×

| |
µ

FFLO and Vortex States in Superconductors With Strong Paramagnetic Effect 15

matters, neutral Fermion superfluids in an atomic cloud (Machida et al., 2006; Partridge et al.,
2006; Zwierlein et al., 2006), to color superconductivity in high energy physics (Casalbuoni &
Nardulli, 2004).
Experimentally, the FFLO state is suggested in a high field phase of a quasi-two dimensional
(Q2D) heavy Fermion superconductor CeCoIn5 for H � ab and H � c (Bianchi, Movshovich,
Capan, Pagliuso & Sarrao, 2003; Radovan et al., 2003), as reviewed by Matsuda & Shimahara
(2007). There, it is supposed that nodal planes of the pair potential run perpendicular to
the vortex lines. For H � ab, since spin density wave (SDW) appears in the high-field
phase (Kenzelmann et al., 2010; 2008; Koutroulakis et al., 2010; Young et al., 2007), we are
interested in the relation of FFLO and SDW.
In theoretical studies, many calculations for the FFLO states have been done by neglecting
vortex structure. However, we have to consider the vortex structure in addition to the FFLO
modulation, because the FFLO state appears at high fields in the mixed states. Among the
FFLO states, there are two possible spatial modulation of the pair potential ∆. One is the
Fulde-Ferrell (FF) state (Fulde & Ferrell, 1964) with phase modulation such as ∆ ∝ eiqz, where
q is the modulation vector of the FFLO states. The other is the Larkin-Ovchinnikov (LO)
state (Larkin & Ovchinnikov, 1965) with the amplitude modulation such as ∆ ∝ sin qz, where
the pair potential shows periodic sign change, and ∆ = 0 at the nodal planes. We discuss the
case of the LO states in this section, since some experimental (Matsuda & Shimahara, 2007)
and theoretical (Houzet & Buzdin, 2001; Ikeda & Adachi, 2004) works support the LO state for
the FFLO states in CeCoIn5. In the FFLO vortex state, it is instructive to clarify the role of the
FFLO nodal plane in order to obtain clear evidence of the FFLO states among the experimental
data.
When we consider vortex structure in the LO state, there are two possible choices of the
configuration for the vortex lines and the FFLO modulation. That is, the modulation vector of
the FFLO state is parallel (Tachiki et al., 1996) or perpendicular (Klein et al., 2000; Shimahara,
1994) to the applied magnetic field. In our study, 3D structure of the former case is investigated
by the selfconsistent Eilenberger theory. We calculate the spatial structures of pair potentials,
paramagnetic moments, internal magnetic fields and electronic states in the vortex lattice
state with the FFLO modulation. In our study, fully 3D structures of the vortex and the
FFLO modulation are determined by the selfconsistent calculation with local electronic states.
Since we can consider the system of vortex lattice and periodic FFLO modulation by the
periodic boundary condition, we can discuss the overlaps between tails of the neighbor vortex
cores or FFLO nodal planes. These calculations for the periodic systems make us possible to
estimate the resonance line shapes in the NMR experiments and FLL form factors in SANS
experiments.
On the other hand, the vortex and FFLO nodal plane structures in the FFLO state were
calculated by the BdG theory for a single vortex in a superconductor under a cylindrical
symmetry situation (Mizushima et al., 2005b). This study clarifies that the topological
structure of the pair potential plays important roles to determine the electronic structures
in the FFLO vortex state. The pair potential has 2π-phase winding around the vortex line,
and π-phase shift at the nodal plane of the FFLO modulation. These topologies of the pair
potential structure affect the distribution of paramagnetic moment and low energy electronic
states inside the superconducting gap. For example, the paramagnetic moment is enhanced
at the vortex core and the FFLO nodal plane. These structures are related to the bound states
due to the π-phase shift of the pair potential.
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In this section, we report our study of FFLO vortex states for a fundamental case of s-wave
pairing and 3D spherical Fermi surface, where kF = kF(sin θ cos φ, sin θ sin φ, cos θ) and Fermi
velocity vF = vF0(sin θ cos φ, sin θ sin φ, cos θ). The calculations of FFLO vortex states for Q2D
Fermi surface with rippled cylinder-shape and H � ab both for s-wave and d-wave pairings
were reported elsewhere (Ichioka et al., 2007). Main characteristic properties of FFLO vortex
state do not seriously depend on the pairing symmetry.

4.1 Spatial structure of FFLO vortex states

In the left panels of Fig. 12, we show the spatial structure of the FFLO vortex state within a
unit cell in the slice of the xz plane, i.e., the hatched region shown in Fig. 2(a). Right panels
of Fig. 12 are for profiles of the spatial structure along the path UNCVU shown in Fig. 2(a).
The point C (x = y = z = 0) is the intersection point of a vortex and a nodal plane. The point
V (x = y = 0, z = L/4) is at the vortex center and far from the FFLO nodal plane. The point
N (x = a/2, y = z = 0) is at the FFLO nodal plane and outside of the vortex. The point U
(x = a/2, y = 0, z = L/4) is far from both the vortex and the FFLO nodal plane.
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Fig. 12. Spatial structure of the FFLO vortex state in the xz plane at B̄ = 0.17985B0 , T = 0.2Tc

and L = 100R0 for the s-wave pairing and spherical Fermi surface. (a) Amplitude of the pair
potential |∆(r)|. (b) Paramagnetic moment Mpara(r). (c) Internal magnetic field Bz(r). The
left panels show the spatial variation within a unit cell, i.e., hatched region in Fig. 2(a). The
right panels present the profiles along the path UNCVU shown in Fig. 2(a).

In the left panel of Fig. 12(a), we show the amplitude of the order parameter, |∆(r)|, which is
suppressed near the vortex center at x = y = 0 and the FFLO nodal plane at z = 0, ±0.5L. Far
from the FFLO nodal plane such as z = 0.25L [along path VU], |∆(r)| shows a typical profile
of the conventional vortex. When we cross the vortex line or the FFLO nodal plane, the sign
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of ∆(r) changes due to the π-phase shift of the pair potential as schematically shown in Fig.
2(a). In the profile of |∆(r)| presented in the right panels of Fig. 12(a), |∆(r)| = 0 along the
FFLO nodal plane NC and along the vortex line CV.
Correspondingly, paramagnetic moment Mpara(r)/M0 is presented in Fig. 12(b). The
paramagnetic moment is suppressed, as Knight shift, at uniform-∆ region in the spin-singlet
pairing superconductors. In the figures, we see that Mpara(r) is suppressed outside of vortex
core and far from the FFLO nodal plane, as expected. However, Mpara(r) is enhanced at the
vortex core or at the FFLO nodal plane. The reason for these structures of Mpara(r) is discussed
later in connection with the LDOS. At the FFLO nodal plane Mpara(r) ∼ M0 [path NC in Fig.
12(b)]. Along the vortex line, Mpara(r) is enhanced more than M0 far from the FFLO nodal
planes [position V in Fig. 12(b)].
Figure 12(c) presents the z-component of the internal field, Bz(r). Due to the contribution
of the enhanced Mpara(r), Bz(r) is enhanced at the FFLO nodal plane even outside of
the vortex. A part of the contributions by Mpara(r) is compensated by the diamagnetic
contribution, because the average flux density per unit cell of the vortex lattice in the xy plane
should conserve along the magnetic field direction. Therefore, due to the conservation, the
enhancement of Bz(r) at the FFLO nodal plane [path NC in Fig. 12(c)] is smaller, compared
with the enhancement of Mpara(r) at the FFLO nodal plane [path NC in Fig. 12(b)]. While
Bz(r) is largely enhanced than B̄ at the vortex core far from the FFLO nodal plane [position V
in Fig. 12(c)], Bz(r) is not largely enhanced at the vortex core in the FFLO nodal plane [position
C]. Therefore Bz(r) ∼ B̄ at the FFLO nodal plane [path NC].
To estimate magnetic field range where the FFLO vortex state is stable, and the FFLO wave
number q = 2π/L, we present the field dependence of the free energy F for some L in Fig.
13(a). At H < 0.9987Hc2 conventional Abrikosov vortex state with q = 0 is stable, but H >

0.9987Hc2 FFLO vortex state with finite q becomes stable. This is an estimate in the presence
of vortices in addition to FFLO modulation. At higher H, q increases for stable FFLO state,
as shown in Fig. 13(b), which indicates that the FFLO period L becomes shorter at higher
H. In Figs. 13(c) and 13(d), respectively, we present profiles of ∆(r) and Mpara(r) along the
z-direction at a midpoint between vortices, i.e., along a line thorough UN in Fig. 2(a). When L
is longer at lower H, the FFLO vortex states have wide region of constant |∆(r)| and Mpara(r).
They change only near the FFLO nodal plane, where ∆(r) has sign change and Mpara(r) locally
accumulates as in soliton structure. On the other hand, when L becomes shorter at higher H,
the region near FFLO nodal plane overlaps with that of neighbor nodal planes. Thus, both
|∆(r)| and Mpara(r) become spatial structure of sinusoidal wave along z-directions.
Due to the presence of FFLO vortex states at high fields, instead of conventional Abrikosov
vortex state, Hc2 to normal state [F = 0 in Fig. 13(a)] is enhanced. We note that the FFLO
vortex state is stable only in narrow H range near Hc2 at T = 0.2Tc2 and µ = 2 for spherical
Fermi surface. At lower T or for larger paramagnetic parameter µ, the FFLO vortex states
becomes stable in wider H-range.

4.2 Electronic structure in the FFLO vortex state

The LDOS spectrum for up- and down-spin electrons are presented at some positions in Fig.
14. In the quasiclassical theory, Nσ(E, r) are symmetric by E ↔ −E in the absence of the
paramagnetic effect (µ = 0). In the presence of the paramagnetic effect, the LDOS spectrum
for up- (down-) spin electrons is shifted to positive (negative) energy by µH due to the Zeeman
shift. In this case, we have a relation N↑(E, r) = N↓(−E, r) within the quasiclassical theory.
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Fig. 13. (a) Field dependence of free energy F for conventional Abrikosov vortex state (q = 0)
and FFLO vortex state for some q = 2π/L( �= 0). (b) Field dependence of FFLO wave number
q estimated from (a). (c) Profile of pair potential ∆(r) along z-direction at midpoints between
vortices for L =24, 50, 200. Normalized value ∆(r)/∆(z = −0.25L) is presented. (d) The
same as (c) but for Mpara(r). We present normalized value Mpara(r)/Mpara(z = 0). µ = 2
and T = 0.2Tc.
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Fig. 14. Spectrum of the LDOS for up-spin electrons N↑(E, r)/(0.5N0) (solid lines) and for
down-spin electrons N↓(E, r)/(0.5N0) (dashed lines) at positions U, V, N, and C, whose
locations are shown in Fig. 2(a). T = 0.2Tc, B̄ = 0.17985B0 , and L = 100R0 in the s-wave
pairing.

Far from the FFLO nodal plane and outside of vortex, as shown in the spectrum at position
U in Fig. 14, we see Zeeman shift of full-gap structure in s-wave superconductors. There,
small LDOS also appears at low energies inside the gap due to the low energy excitations
extending from the vortex cores and the FFLO nodal planes at finite magnetic fields. Since the
LDOS are occupied at E < 0, and empty at E > 0, there is a relation of Eq. (18) between the
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LDOS spectrum and local paramagnetic moment. Because of superconducting gap structure,
the LDOS within superconducting gap is suppressed. Thus, difference of occupation number
between up- and down-spin electrons is small, since the LDOS at E < 0 are occupied similarly
in N↑(E, r) and N↓(E, r), except for small LDOS within the gap. This is the reason why
Mpara(r) is suppressed at the position U. Small but finite Mpara(r) comes from the small LDOS
weight of low energy states inside the gap at U in FFLO vortex states.
In the LDOS spectra at the position V on the vortex center and at the position N on the FFLO
nodal plane presented in Fig. 14, N↑(E, r) and N↓(E, r), respectively, have a sharp peak at
E = µ+ and E = µ−, with µ± ≡ µ0 ± µH. These peaks are related to the topological structure
of the pair potential, as schematically shown in Fig. 2. Since a vortex has phase winding
2π, along the trajectory through the vortex center, ∆(r) changes the sign by the π-phase shift
across the vortex center. Also at the trajectory through the FFLO nodal plane, ∆(r) changes
the sign across the nodal plane. The bound states appear as zero-energy peak, when the pair
potential has the π-phase shift. This peak is shifted to E = µ+ or E = µ− due to the Zeeman
effect. Since the peak of the LDOS spectrum for up-spin electrons is an empty state (E > 0)
and the peak of the LDOS for down-spin electrons is an occupied state (E < 0), Mpara(r)
becomes large at these positions, from the relation in Eq. (18).
On the other hand, along the trajectory through the intersection point of a vortex and a nodal
plane, ∆(r) does not change the sign, because the phase shift is 2π by summing π due to
vortex and π due to the nodal plane, as schematically shown in Fig. 2. Thus, the sharp
peaks do not appear at E = µ± as seen from the LDOS spectrum at the position C in Fig. 14.
Instead, N↑(E, r) has two broad peaks at finite energies shifted upper or lower from µ+. In
this situation, Mpara(r) is still large at position C, as in positions V and N, since the LDOS in
both peaks are empty (E > 0) in N↑(E, r), and occupied (E < 0) in N↓(E, r).

4.3 NMR spectrum in FFLO vortex states

In the NMR experiment, resonance frequency spectrum of the nuclear spin resonance is
determined by the internal magnetic field and the hyperfine coupling to the spin of the
conduction electrons. Therefore, in a simple consideration, the effective field for the nuclear
spin is given by Beff(r) = Bz(r) + AhfMpara(r), where Ahf is a hyperfine coupling constant
depending on species of the nuclear spins. The resonance line shape of NMR is given by

P(ω) =
�

δ(ω − Beff(r))dr, (20)

i.e., the intensity at each resonance frequency ω comes from the volume satisfying ω = Beff(r)
in a unit cell. When the contribution of the hyperfine coupling is dominant, the NMR
signal selectively detects Mpara(r). This is the experiment observing the Knight shift in
superconductors. As the NMR spectrum of the Knight shift, we calculate the distribution
function P(M) =

�

δ(M− Mpara(r))dr from the spatial structure of the paramagnetic moment
Mpara(r) shown in Fig. 12(b). On the other hand, in the case of negligible hyperfine
coupling, the NMR signal is determined by the internal magnetic field distribution. This
resonance line shape is called Redfield pattern of the vortex lattice. The distribution function
P(B) =

�

δ(B − Bz(r))dr is calculated from the internal field Bz(r).
First we discuss the line shape of the distribution function P(M), shown in Fig. 15(a). The
spectrum of P(M) in the conventional vortex state without FFLO modulation is shown by the
lowest line in Fig. 15(a). There, the peak of P(M) comes from the signal from the outside of
the vortex core. Shift of the peak position from M0 gives Knight shift in superconductors. The
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spectrum of P(M) has a tail toward larger M by the vortex core contribution of large Mpara(r).
The vortex core contribution is a one-dimensional (1D) structure, their volume contribution is
small in the spectrum, compared with the peak intensity due to the large volume contribution
from outside of the vortex core. After the FFLO transition, the line shape P(M) becomes
double peak structure in the FFLO vortex states, as presented by upper lines in Fig. 15(a).
The height of the main peak decreases, and there appears a new peak coming from the FFLO
nodal plane near Mpara ∼ M0. The contribution from 2D structure of the FFLO nodal plane
appears in P(M) more clearly than that of the 1D structure of the vortex line. When the period
L becomes shorter at higher H, new peak at M0 is enhanced, because the relative volume ratio
of region near FFLO nodal plane becomes larger.
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Fig. 15. (a) Distribution function of the paramagnetic moment. We show P(M) as a function
of Mpara/M0. (b) Distribution function of the internal magnetic field. We show P(B) as a

function of Bz/B. T = 0.2Tc and µ = 2. Right-side axis pointed by arrows from each line
indicates applied field H/Hc2 for each NMR spectrum. Lowest line is for conventional
Abrikosov vortex state of q = 0. Other upper lines are for FFLO vortex states. The heights of
P(M) and P(B) are scaled so that

�

P(M)dM =
�

P(B)dB = 1.

Second, we discuss the distribution function P(B) of the internal magnetic field, presented in
Fig. 15(b). There, in the absence of the FFLO modulation (the lowest line), the Redfield pattern
P(B) has sharp peak corresponding to saddle points of the internal field distribution. The tail
to higher B comes from the vortex core region of larger Bz(r). In the presence of the FFLO
modulation (other upper lines), the height of the original peak is decreased, and a new peak
appears at B ∼ B̄ as the contribution of the FFLO nodal plane. In the line shape of P(B), new
peak by FFLO nodal plane is located near original saddle-point peak, compared with the line
shape of P(M). When the period L becomes shorter at higher H, new peak at B is enhanced.
The experimental observation of the NMR resonance line shape is a method to identify the
FFLO vortex state in high-field phase of CeCoIn5 (Kakuyanagi et al., 2005; Kumagai et al.,
2006; 2011). For H � c, the NMR spectrum shows the double peak structure in the FFLO
phase, appearing new peak in addition to the main peak in the vortex state. For H � ab,
we see double peak structure in NMR spectrum, but it reflects magnetic moments of SDW
state (Koutroulakis et al., 2010; Young et al., 2007). The SDW structure in high field phase
was observed also by neutron scattering (Kenzelmann et al., 2010; 2008). However, in NMR
experiments at some species of nuclear spin, we can observe P(M) or P(B), excluding the
signal by SDW (Kumagai et al., 2011). Thus, we expect that the relation of the SDW and FFLO
for H � ab will be clarified in future studies.
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4.4 Small Angle Neutron Scattering (SANS) in FFLO vortex states

The modulation of the internal magnetic field Bz(r) may be observed by SANS experiment.
If the periodic modulation along the z-direction is observed, it can be direct evidence of the
FFLO modulation. Therefore, we discuss the neutron scattering in the FFLO vortex state.
The intensity of the (h, k, l)-diffraction peak is given by Ih,k,l = |Fh,k,l|2/|qh,k,l| with the wave
vector qh,k,l given in Eq. (12). Here we write (m1, m2, m3) = (h, k, l) following notations of the
neutron scattering. The Fourier component Fh,k,l is given by Bz(r) = ∑h,k,l Fh,k,l exp(iqh,k,l · r).
The spots at (h, k, l) = (1, 0, 0) and (0, 1, 0) are used to determine the configuration and the
orientation of the vortex lattice in SANS experiments (Bianchi et al., 2008; DeBeer-Schmitt
et al., 2006), and the higher component Fh,k,0 is used to estimate the detailed structure of the
internal magnetic field Bz(r) (Kealey et al., 2000; White et al., 2010). It is noted that F0,0,0 = B̄
and F0,0,l = 0 for l �= 0, because average flux density B̄ within the unit cell of the vortex lattice
is constant along the z-direction. Therefore, to detect the FFLO modulation, we have to use
the spot (1, 0, 2). The spot (1, 0, 2) is near the spot (1, 0, 0), which is used in the conventional
SANS experiment to observe the stable vortex lattice configuration.
Change of intensity |F1,0,0|2 in the FFLO vortex state is presented in Fig. 16(a). This shows
narrow H-range near Hc2 among the H-dependence of |F1,0|2 in Fig. 8. After the transition
from conventional Abrikosov vortex state (q=0) to FFLO vortex state (q �= 0), |F1,0,0|2 shows
rapid decrease. This is because Bz(r) of vortex core expands at FFLO nodal plane, and the
contrast of Bz(r) between vortex core and outside is smeared after the average along the
z-direction. When L becomes shorter at higher H, the relative volume ratio of the FFLO nodal
plane increases, and |F1,0,0|2 decreases. As presented in Fig. 16(b), intensity |F1,0,2|2 for the
signal of the FFLO vortex state appears at the FFLO transition. When L becomes shorter at
higher H, |F1,0,2|2 decreases, due to the overlap between neighbor FFLO nodal regions.
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Fig. 16. Magnetic field dependence of FLL form factor |F1,0,0|2 (a) and |F1,0,2|2 (b) in FFLO
vortex states. FFLO wave number q = 2π/L at each H is given in Fig. 13. T = 0.2Tc and
µ = 2. Lines are guide for the eye. Inset in (a) presents wider H-range.

5. Summary and discussion

We discussed interesting phenomena of vortex states in superconductors with strong
paramagnetic effect, based on quasi-classical Eilenberger theory. The paramagnetic effect
comes from splitting of up-spin and down-spin Fermi surfaces due to the Zeeman effect.
In our calculations, since spatial structures of the order parameter and the internal field
are calculated in vortex lattice states self-consistently with local electronic states, we
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can quantitatively estimate the field dependence of physical quantities from obtained
quasi-classical Green’s functions in Eilenberger theory. These theoretical calculations give
helpful information to evaluate contributions of pairing symmetries and paramagnetic effects
etc. in experimental data observing physical properties of vortex states in unconventional
superconductors.
First, we discussed anomalous field dependence of physical quantities by strong
paramagnetic effect in vortex states at lower fields than the FFLO transition. Calculating the
spatial structure of the vortex states and local electronic states, we clarified the paramagnetic
effects in the vortex core structure. There, the core radius is enlarged and the internal field
around the core is further enhanced, due to the enhanced paramagnetic moments at the vortex
core. This occurs as a result of Zeeman splitting of bound electronic states at the vortex core.
We estimated the magnetic field dependence of low temperature specific heat, Knight shift,
magnetization, and flux line lattice form factor. There we found anomalous field dependence
when the paramagnetic effect is strong. The specific heat, Knight shift, and magnetization
show rapid increase near Hc2, due to the paramagnetic pair breaking which is eminent at
higher fields. Anomalous enhancement of the FLL form factor as a function of magnetic
field observed in CeCoIn5 may reflect the paramagnetic vortex core structure by the strong
paramagnetic effect. We quantitatively compared the anomalous magnetic field dependence
of specific heat, magnetization curve, and the FLL form factor observed in CeCoIn5 with
results of our theoretical calculations. The paramagnetic effect can explain the anomalous field
dependences qualitatively. However we found systematic quantitative deviation between the
theory and the experimental data. Therefore, we showed that the deviation can be improved
by considering phenomenological field dependence of normal state density of states, which
reflects mass enhancement near quantum critical point at Hc2.
Next, we studied the FFLO states coexisting with vortices. When the paramagnetic effect
is very strong, at high magnetic fields we can expect a transition to the FFLO phase where
the order parameter has periodic oscillation originating from the Zeeman splitting of the
Fermi surface. To discuss the FFLO states suggested in high field phase of CeCoIn5, we
have to consider vortices in addition to the FFLO modulation. By Eilenberger theory, we
selfconsistently calculated fully 3D spatial structure of the pair potential, the internal magnetic
field, the paramagnetic moment, and local electronic states in the vortex lattice state with
FFLO nodal planes perpendicular to vortex lines. In the FFLO vortex states, topological
structures of the pair potential determine their qualitative properties. At the FFLO nodal
plane or at the vortex line, π-phase shift of the pair potential gives rise to sharp peaks in the
LDOS at Fermi level of electronic states, and the Zeeman shift of the peaks enhances the local
paramagnetic moment. Based on these spatial structures, we discussed NMR spectrum and
neutron scattering, to identify characteristic behaviours in the FFLO states. We estimated the
period of FFLO modulation and the phase diagram as a function of magnetic field H, and
discussed the field dependence of NMR spectrum and FLL form factors in the FFLO vortex
states. We hope that these features will be used to identify the FFLO vortex structure in the
high-field phase of CeCoIn5 for H � c and for H � ab. For the latter, the FLLO modulation
may coexist with SDW states.
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