
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

0

Real-time Hardware Feature Extraction with

Embedded Signal Enhancement for

Automatic Speech Recognition

Vinh Vu Ngoc, James Whittington and John Devlin
La Trobe University

Australia

1. Introduction

The concept of using speech for communicating with computers and other machines has
been the vision of humans for decades. User input via speech promises overwhelming
advantages compared with standard input/output peripherals, such as, mouse, keyboard,
and buttons. To make this vision a reality, considerable effort and investment into automatic
speech recognition (ASR) research has been conducted for over six decades. While current
speech recognition systems perform very well in benign environments, their performance is
rather limited in many real-world settings. One of the main degrading factors in these systems
is background noise collected along with the wanted speech.
There are a wide range of possible uncorrelated noise sources. They are generally short
lived and non-stationary. For example in the automotive environments, noise sources can
be road noise, engine noise, or passing vehicles that compete with the speech. Noise can
also be continuous, such as, wind noise, particularly from an open window, or noise from a
ventilation or air conditioning unit.
To make speech recognition systems more robust, there are a number of methods being
investigated. These include the use of robust feature extraction and recognition algorithms
as well as speech enhancement. Enhancement techniques aim to remove (or at least reduce)
the levels of noise present in the speech signals, allowing clean speech models to be utilised
in the recognition stage. This is a popular approach as little-or-no prior knowledge of the
operating environment is required for improvements in recognition accuracy.
While many ASR and enhancement algorithms or models have been proposed, an issue of
how to implement them efficiently still remains. Many software implementations of the
algorithms exist, but they are limited in application as they require relatively powerful general
purpose processors. To achieve a real-time design with both low-cost and high performance,
a dedicated hardware implementation is necessary.
This chapter presents the design of a Real-time Hardware Feature Extraction System
with Embedded Signal Enhancement for Automatic Speech Recognition appropriate for
implementation in low-cost Field Programmable Gate Array (FPGA) hardware. While
suitable for many other applications, the design inspiration was for automotive applications,
requiring real-time, low-cost hardware without sacrificing performance. Main components of
this design are: an efficient implementation of the Discrete Fourier Transform (DFT), speech
enhancement, and Mel-Frequency Cepstrum Coefficients (MFCC) feature extraction.

2

www.intechopen.com

2 Will-be-set-by-IN-TECH

2. Speech enhancement

The automotive environment is one of the most challenging environments for real-world
speech processing applications. It contains a wide variety of interfering noise, such as engine
noise and wind noise, which are inevitable and may change suddenly and continually. These
noise signals make the process of acquiring high quality speech in such environments very
difficult. Consequently, hands-free telephones or devices using speech-recognition-based
controls, operate less reliably in the automotive environment than in other environments,
such as in an office. Hence, the use speech enhancement for improving the intelligibility and
quality of degraded speech signals in such environments has received increasing interest over
the past few decades (Benesty et al., 2005; Ortega-Garcia & Gonzalez-Rodriguez, 1996).
The rationale behind speech enhancement algorithms is to reduce the noise level present in
speech signals (Benesty et al., 2005). Noise-reduced signals are then utilized to train clean
speech models, and as a result, effective and robust recognition models may be produced
for speech recognizers. Approaches of this sort are common in speech processing since they
require little-to-no prior knowledge of the operating environment to improve the recognition
performance of the speech recognizers.
Based on the number of microphone signals used, speech enhancement techniques can be
categorized into two classes, single-channel (Berouti et al., 1979; Boll, 1979; Lockwood &
Boudy, 1992) and multi-channel (Lin et al., 1994; Widrow & Stearns, 1985). Single channel
techniques utilize signals from a single microphone. Most techniques on noise reduction
belong to this category, including spectral subtraction (Berouti et al., 1979; Boll, 1979) which is
one of the traditional methods.
Alternatively, multi-channel speech enhancement techniques combine acoustic signals from
two or more microphones to perform spatial filtering. The use of multiple microphones
provides the ability to adjust or steer the beam to focus the acquisition on the location
of a specific signal source. Multi-channel techniques can also enhance signals with low
signal to noise ratio due to the inclusion of multiple independent transducers (Johnson &
Dudgeon, 1992). Recently, dual microphone speech enhancement has been applied to many
cost sensitive applications as it has similar benefits to schemes using many microphones, while
still being cost-effective to implement (Aarabi & Shi, 2004; Ahn & Ko, 2005; Beh et al., 2006).
With the focus on the incorporation of a real-time low-cost but effective speech enhancement
system for automotive speech recognition, two speech enhancement algorithms are discussed
in this chapter. These are Linear Spectral Subtraction (LSS) and Delay-and-Sum Beamforming
(DASB). The selection was made based on the simplicity and effectiveness of the algorithms
for automotive applications. The LSS works well for speech signals contaminated with
stationary noise such as engine and road noise, while the DASB can perform effectively when
the location of signal sources (speakers) are specified, for example, the driver. Each algorithm
can work in standalone mode or cascaded.
Before discussing these speech enhancement algorithms in detail, common speech
preprocessing is first described.

2.1 Speech preprocessing and the Discrete Fourier Transform

2.1.1 Speech preprocessing

Most speech processing algorithms perform their operations in the frequency domain. In
these cases, speech preprocessing is required. Speech preprocessing uses the DFT to transform
speech from a time domain into a frequency domain. A general approach for processing
speech signals in the frequency domain is presented in Figure 1.

30 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 3

Fig. 1. Block diagram of basic speech processing in the frequency domain

Speech signals, acquired via a microphone, are passed through a pre-emphasis filter, which is
normally a first-order linear filter. This filter ensures a flatter signal spectrum by boosting the
amplitude of high frequency components of the original signals.
Each boosted signal from the pre-emphasis filter is then decomposed into a series of frames
using square sliding windows with frame advances typically being 50% of the frame length.
The length of a frame is normally 32ms which has 512 samples at 16Khz sampled rate. To
attenuate discontinuities at frame edges, a cosine window is then applied to each overlapping
frame. A common window used in speech recognition is the Hamming window.
The framing operation is followed by the application of the DFT, in which time-domain
acoustic waveforms of the frames are transformed into discrete frequency representations.
The frequency-domain representation of each frame in turn is then used as inputs of
the Frequency Domain Processing (FDP) block, where signals are improved by speech
enhancement techniques and a speech parametric representation is extracted by the speech
recognition front-end.

2.1.2 DFT algorithm

The discrete transform for the real input sequence x {x(0), x(1), · · · , x(N − 1)}T is defined as:

X(k)
N−1

∑
n=0

x(n)e
−j2πkn

N , k = 0, 1, . . . , N − 1. (1)

In practice, the above DFT formula is composed of sine and cosine elements:

XRe(k) =
N−1

∑
n=0

x(n) cos(
2πkn

N
), (2)

XIm(k) =
N−1

∑
n=0

x(n) sin(
2πkn

N
), (3)

where Re and Im represent the real and imaginary parts of DFT coefficients.
The two formulas (2) and (3) can be implemented directly in FPGA hardware using two MAC
(Multiplier and Accumulator) blocks which are embedded in many low-cost FPGA devices.
Figure 2 shows the structure of this implementation for either a real or imaginary component.
As shown in the figure, the multiplier and the accumulator are elements of one MAC hardware
primitive. Therefore, the direct implementation of the DFT formula on FPGA hardware results
in a simple design requiring only modest hardware resources. However, it does result in a
considerably long latency (2N2 multiplications and 2N2 additions).

31Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

4 Will-be-set-by-IN-TECH

"

FHV"
Eqghh"qwv"

Equkpg"
NVW"

Kprwv"
Dwhhgt"

Zp""

OCE""

-
Fig. 2. Hardware structure of direct DFT implementation

"

Fig. 3. Overlapped frames

2.1.3 Utilizing overlapping frames property in DFT to reduce latency

Figure 3 shows an example of two overlapped frames: F1 and F2. F2 overlaps N − m samples
with the previous frame (F1). It is expected that computations for those N − m samples from
the previous frame (F1) can be reused for the current frame (F2). In this way, significant
computation, and thus latency, can be saved.
Based on frame F1 and F2 mentioned above (Figure 3), the algorithm can be described simply
as follows.
In order to utilize the 50% overlapping frames feature, the DFT of Frame F1 is

X1(k) =

N
2 −1

∑
n=0

x(n)e
−j2πkn

N +
N−1

∑
n= N

2

x(n)e
−j2πkn

N . (4)

Similarly, the DFT of Frame F2 is

X2(k) =

N
2 −1

∑
n=0

x(n +
N

2
)e

−j2πkn
N +

N−1

∑
n= N

2

x(n +
N

2
)e

−j2πkn
N . (5)

In short, formulas (4) and (5) can be respectively inferred as:

X1(k) = A + B, (6)

and
X2(k) = C + D. (7)

If n in term C is substituted by n = i − N
2 , then:

C =
N−1

∑
i= N

2

x(i)e
−j2πk(i−N

2)

N = ejπk
N−1

∑
i= N

2

x(i)e
−j2πki

N . (8)

32 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 5

By observation, C now clearly has a similar formula to B except for ejπk factor. Also, all the
samples used in B will be elements of C, as frame F1 and frame F2 are 50% overlapped. So the
DFT of Frame F2 is:

X2(k) = ejπkB + D. (9)

If we generally call term B and D as Xhal f _old(k) and Xhal f _new(k) respectively, the DFT of each
frame can be presented as:

X(k) = ejπkXhal f _old(k) + Xhal f _new(k), (10)

where the calculation of Xhal f _old(k) is performed on the N
2 overlapped samples that already

appear in the previous frame, while that of Xhal f _new(k) is performed on the N
2 new samples

in the current frame. Recursively, Xhal f _new(k) will become Xhal f _old(k) in the next frame. The

expressions Xhal f _new(k) are computed by the term D formula, with the index running from
0:

Xhal f _new(k) =

N
2

∑
i=0

x(i)e
−j2πk(i+N

2)

N . (11)

In practice, term ejπk only takes a value of either +1 or −1, thus, the computation of N
2

overlapped samples can be directly reused. So, only Xhal f _new(k) needs to be computed, and
thus, the DFT computation requirement is reduced by 50%.
Resulting from this saving in computation, a novel simple hardware structure has been
developed and compares well to the simpleness of the direct DFT implementation.

2.1.4 Efficient DFT hardware implementation

This section presents an efficient hardware implementation of the previous described
overlapping DFT (OvlDFT) algorithm. This algorithm and implementation are subjected to
patent (Vu, 2010).
Firstly, assuming that the input samples, x(i), are real, the output of the DFT is symmetric,

then as a result, only values k from 0 to N
2 − 1 are required. Also, as described in the previous

section, only Xhal f _new is required to be computed. To simplify the formula, the real (XRe) and
imaginary (XIm) parts of Xhal f _new are computed individually, as presented in equation (12)

and (13). By doing this, the term ejπk in (10) only takes values of either 1 or −1 depending on
k.

XRe(k) =

N
2 −1

∑
i=0

x(i) cos(
2πk(i + N

2)

N
), (12)

XIm(k) =

N
2 −1

∑
i=0

x(i) sin(
2πk(i + N

2)

N
). (13)

The structure of the proposed hardware DFT algorithm is shown in Figure 4. In order to
achieve the 50% computational saving, additional memory (the RAM block) is required to
buffer appropriate results from the computation of the previous frame.
The heart of this hardware structure lies in the novel implementation of this RAM buffer
memory. By using RAM blocks which are commonly embedded in low-cost FPGA devices
and configured as dual port memory in our proposed hardware structure, the content of

33Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

6 Will-be-set-by-IN-TECH

"

Cff1Uwd"

Tgcn"FHV"
Eqghh"qwv"

Equ"

Koci"FHV"
Eqghh"qwv"

Ukp"Equkpg"
NVW"

TCO"

Kprwv"
Dwhhgt"

Zp""

OCE"("TCO"

OCE""

ł

Fig. 4. OvlDFT hardware structure-Components within dashed box belong to one FPGA
MAC primitive

the buffer memory slot can be read and written to simultaneously via two different ports
as illustrated by the RAM blocks in Figure 4.
As shown in Figure 4, each frame sample in the input buffer is firstly multiplied (MUL block)
with a cosine or sine element and then the multiplication results are accumulated (ADD

block). After every N
2 samples, the current value in the accumulator (Xhal f _new(k) of current

frame) is stored in the RAM at address k (k is the DFT bin index) in order to be used as
Xhal f _old(k) for the upcoming frame.

Simultaneously, the previously stored value in RAM (Xhal f _old(k), at the same address k) is
read via the second port of the dual port RAM and added to (or subtracted from) the current
Xhal f _new(k) in the accumulator by the same ADD block before being replaced by the current

value Xhal f _new(k). The decision between addition or subtraction is dependent on value k, due

to the term ejπk, previously mentioned. The result produced by the ADD element at this time
is latched as a DFT coefficient at bin k as follows from Equation (10).
When the next frame arrives, half of the computation of DFT for this new frame is already
available from the DFT computation of the previous frame stored in the RAM buffer, hence
reducing the calculation latency by half. The process is repeated until the last DFT bin is
reached.
The MUL (multiplier) block is a dedicated hardware block common on current FPGA devices.
Moreover, the MUL, MUX, and ADD blocks are elements of one primitive MAC block
embedded in many low-cost FPGAs. Thus, the proposed hardware architecture can be
implemented with simple interconnection and minimum resources on such devices.

The above hardware implementation requires N
2 clock cycles to compute each DFT bin. Thus

all N
2 required frequency bins require only N2

4 clock cycles. If a 50% overlapped frame has
512 samples, with a typical FPGA clock frequency of 100MHz, this represents a latency of
0.16384ms. This is well within the new frame generation rate of 16ms for a 16KHz sample
rate. Therefore, the OvlDFT is easily fast enough for speech preprocessing tasks.

2.1.5 Windowing and frame energy computation

In order to reduce spectral leakage, a window on the time-domain input signal is usually
applied. However, windowing in the time-domain would compromise the symmetry
properties utilized by the proposed algorithm and the saved calculation from the previous
frame would no longer be valid.
The alternative to applying a window in the time domain is to use convolution to perform
the windowing function in the frequency domain (Harris, 1978). Although, as convolution
is typically a very time consuming operation, windowing in the frequency domain is

34 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 7

Fig. 5. Modification of the imaginary part of Fig. 4 for energy computation.

only generally used when the window function produces a short sequence of convolution
coefficients. Fortunately, this desired property is present in some commonly used window
functions such as Hamming and Hann windows. The Hann window produces three values
(−0.25, 0.5, and −0.25) which can be easily implemented in the convolution processing by
shift registers instead of the more expensive multipliers.
Furthermore, the frame energy power required by the MFCC block (discussed later) can be
computed with almost no cost by modifying the first DFT bin calculation phase in the OvlDFT
design. In contrast, the energy value must be calculated separately if a normal time-domain
window is applied, hence, the OvlDFT algorithm will result in further resource savings when
used in a MFCC hardware design.
The frame energy is computed follows. In the DFT computation, the imaginary part of
the first frequency component is always zero. This can be exploited to compute the frame
energy with a modest amount of additional hardware. The imaginary part of the proposed
DFT implementation is modified to embed the frame energy computation by adding two
multiplexers and a latch, as shown in Fig. 5.
When the first frequency component of a frame is computed, the input frame sample is fed
to the imaginary MAC instead of the sine value (sin). Thus, the input sample will be squared
and accumulated in the MAC. Consequently, the final output of this imaginary MAC, when
calculating the first component, is the energy of the frame while the actual imaginary part of
the first frequency component is tied to zero. For other components, the normal procedure
described in Section 2.1.4 is performed.
This method of frame energy computation can only be used in conjunction with
frequency-domain windowing. If windowing is performed in the time domain, the frame
will be altered, and thus, the frame energy will not be computed correctly.

2.2 Linear spectra subtraction

2.2.1 Algorithm

In an environment with additive background noise r(n), the corrupted version of the speech
signal s(n) can be expressed as:

y(n) = s(n) + r(n). (14)

Following the preprocessing procedure, the captured signal is framed and transformed to the
frequency domain by performing the discrete Fourier transform (DFT) on the framed signal
y(n):

Y(i, ω) = S(i, ω) + R(i, ω), (15)

where i is the frame index.
Before the spectral subtraction is performed, a scaled estimate of the amplitude spectrum of
the noise

∣

∣R̂(i, ω)
∣

∣ must be obtained in a silent (i.e. no speech) period. An estimate of the
amplitude spectrum of the clean speech signal can be calculated by subtracting the spectrum

35Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

8 Will-be-set-by-IN-TECH

of the noisy signal with the estimated noise spectrum:

∣

∣Ŝ(i, ω)
∣

∣

γ
= |Y(i, ω)|γ − α(i, ω)

∣

∣R̂(i, ω)
∣

∣

γ
, (16)

where γ is the exponent applied to the spectra, with γ = 1 for amplitude spectral subtraction
and γ = 2 for power spectral subtraction. The frequency-dependent factor, α(i, ω), is included
to compensate for under-estimating or over-estimating of the instantaneous noise spectrum.
Should the subtraction in Equation (16) give negative values (i.e. the scaled noise estimate
is greater than the instantaneous signal), a flooring factor is introduced. This leads to the
following formulation of spectral subtraction:

∣

∣Ŝt(i, ω)
∣

∣

γ
= |Y(i, ω)|γ − α(i, ω)

∣

∣R̂(i, ω)
∣

∣

γ
,

and
∣

∣Ŝ(i, ω)
∣

∣

γ
=

{ ∣

∣Ŝt(i, ω)
∣

∣

γ ∣

∣Ŝt(i, ω)
∣

∣

γ
> β |Z(i, ω)|γ ,

β |Z(i, ω)|γ otherwise,
(17)

where |Z(i, ω)| is either the instantaneous noisy speech signal amplitude or the noise
amplitude estimate, β is the noise floor factor (0 < β ≪ 1). Common values for the floor
factor range between 0.005 and 0.1 (Berouti et al., 1979).
The enhanced amplitude spectrum

∣

∣Ŝ(i, ω)
∣

∣ is recombined with the unaltered noisy speech
phase spectrum to form the enhanced speech in the frequency domain and ready to be fed to
the further speech processing blocks.

2.2.2 Linear spectral subtraction implementation

A generalized hardware implementation of the spectral subtraction derived directly from the
previous description is shown in Figure 6.

Fig. 6. The block diagram of the generalized implementation of spectral subtraction.

The estimated noise is calculated from the first N frames and stored in an internal buffer by
the Mean of |DFT|γ block. The essence of the spectral subtraction technique occurs through
subtracting the stored estimated noise from the subsequent magnitude spectrum for each
frame as stated in Equation (17). The result of this subtraction is then compared with a scaled
version of the average noise magnitude (known as the noise floor), with the larger of the two
chosen as the output, denoted by |X|.
To recover the normal magnitude level, |X| is raised to the power of 1/γ. The output of this
block, out, is ready to be used as the magnitude part of the enhanced signal to be fed into the
speech recognition engine.

36 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 9

Fig. 7. Noise calculation block

Fig. 8. Noise subtraction block

Algorithm refinement for in-car speech enhancement

For cost-effective automotive speech enhancement, we make the assumption that the noise
characteristics

∣

∣R̂(i, ω)
∣

∣ can be accurately estimated during a silent period before the speech,

for example 8 frames; and
∣

∣R̂(i, ω)
∣

∣ remains unchanged during the entire speech. Therefore,
we can set α(i, ω) = 1 for all the values of i and ω. We also use the noise estimate for the
calculation of the noise floor, that is |Z(i, ω)| =

∣

∣R̂(ω)
∣

∣.
Typically, the parameters γ and β are set to optimize the signal-to-noise ratio (SNR).
However, for the best speech recognition performance optimization, we may choose these two
parameters differently from their common values (Kleinschmidt, 2010; Kleinschmidt et al.,
2007).
It has been shown that magnitude spectral subtraction provides better speech recognition
accuracy than power spectral subtraction (Whittington et al., 2008). Therefore, γ = 1
is selected for our implementation. One important benefit of this selection is that the
resource requirement of the implementation is significantly reduced because the need for
resource-intensive square and square root operations is avoided.
With γ = 1, experiments using floating-point software (Whittington et al., 2009) have been
used to determine the optimal value of β on part of the AVICAR database (Lee et al., 2004).
It has been shown that maximum recognition accuracy can be obtained by setting β = 0.55
and that the performance is only marginally worse (approximately 0.1%) if we set β = 0.5.
Therefore, β = 0.5 was selected for the implementation because of its simplicity.

Efficient noise estimation and subtraction

An inefficient design covering the steps to estimate the noise and apply noise subtraction
can result in significant additional hardware resources due to the requirement of a complex
control flow and data buffering. To achieve low hardware resource usage, a pipeline design
is proposed. The design requires no control mechanism as the data is processed in an orderly
fashion due to the simple pipeline structure.

37Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

10 Will-be-set-by-IN-TECH

Fig. 9. The block diagram for the FPGA design

The first 8 frames of the input signal are used to compute the estimated noise magnitude
spectrum by the structure shown in Figure 7. From frame 9, the noise subtraction is applied
by a cascaded structure, as shown in Figure 8.
The magnitude valid pulse, Bin_mag_valid, drives an 8-bit counter as the memory location in
RAM for the current sample. Concurrently, to perform the noise calculation, the magnitude
value is accumulated and stored to the same memory location as long as the signal rdy is not
set. If rdy is set, the same counter will function as the read address to access the estimated
noise in the RAM buffer, thus eliminating the need for the complex feedback control from the
subsequent block, the Noise Subt block.
Similarly, the New frame pulse, indicating a new frame, drives a frame counter during noise
estimation. When the frame counter reaches 8, the rdy signal will be set, indicating the end of
the noise estimation process. Signal rdy is also used to disable the frame counter and the RAM
writing function.
The noise subtraction is applied by a structure shown in Figure 8 and the cascaded wiring in
Figure 9. The subtraction result is compared with the associated estimated noise scaled by
β = 0.5. To perform this, the MAX block simply re-interprets the estimated noise signal by
moving the fraction point of the value one bit to the left, eliminating a shift register.

The proposed structure of the overall system.

The structure of the proposed FPGA implementation of spectral subtraction is shown in
Figure 9, with the detail is described below.
The input signal first passes through the speech preprocessing block. In addition to the DFT
real and imaginary components, a pulse output signal, new frame, is generated to indicate that
a frame has been processed. The DFT coefficients are then fed to the Cordic block (a core
supplied by Xilinx (Xilinx, 2010) to produce the magnitude of each coefficient.
The essence of the spectral subtraction technique occurs through the Noise Calc and
the cascaded Noise Subt blocks which estimate the noise and perform noise subtraction
respectively, as detailed in Section 2.2.2.

2.3 Dual-channel array beam-forming

2.3.1 Algorithm

Beamforming is an effective method of spatial filtering that differentiates the desired signals
from noise and interference according to their locations. The direction where the microphone
array is steered is called the look direction.
One beamforming technique is the delay-and-sum beamformer which works by
compensating signal delay to each microphone appropriately before they are combined using
an additive operation. The outcome of this delayed signal summation is a reinforced version

38 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 11

of the desired signal and reduced noise due to destructive interference among noises from
different channels.

fp

ftgh

foke

z3*v+

zp*v+

{

z

¦ uqwteg

{*v+

Fig. 10. Dual-microphone delay-and-sum beamforming

As illustrated in Figure 10, consider a desired signal received by N omni-directional
microphones at time t, in which each microphone output is an attenuated and delayed version
of the original signal ans(t − τn) with added noise vn, is given by:

xn(t) = ans (t − τn) + vn (t) . (18)

In the frequency domain, the array signal model is defined as:

X (ω) = S (ω)d + V (ω) , (19)

where X = [X1(ω), X2(ω), · · · , XN(ω)]T, V = [V1(ω), V2(ω), · · · , VN(ω)]T. The vector
d represents the array steering vector which depends on the actual microphone and source
locations.
For a source located near the array, the wavefront of the signal impinging on the array should
be considered a spherical wave and the source signal is said to be located within the near-field
of the array instead of a planar wave commonly assumed for a source located far from the
array. In the near field, d is given by (Bitzer & Simmer, 2001):

d = [a1e−jωτ1 , a2e−jωτ2 , ..., aNe−jωτN]T, (20)

an =
dre f

dn
, τn =

dn − dre f

c
, (21)

where dn and dre f denote the Euclidean distance between the source and the microphone n,
or the reference microphone, respectively, and c is the speed of sound.
To recover the desired signal, each microphone output is weighted by frequency domain
coefficients wn(ω). The beamformer weights are designed to maintain the beam at the look
direction to be constant (e.g. wHd = 1). For a dual-microphone case, the beamformer output
is the sum of each weighted microphone:

Y(ω) =
2

∑
n=1

w∗
n(ω)Xn(ω). (22)

39Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

12 Will-be-set-by-IN-TECH

Rtg/
gorjcuku Htcokpi Ykpfqykpiej3

Fgnc{"
Hknvgt"3

qwv

FHV

Rtg/
gorjcuku Htcokpi Ykpfqykpi

Fgnc{"
Hknvgt"4

FHVej4

Fig. 11. General diagram of the DASB

The beamformer output Y(ω) is enhanced speech in the frequency domain and is ready to be
fed to the following speech processing blocks. In digital form, the whole process of DASB can
be summarized in Figure 11 where the delay filters are defined by the weighting coefficients
wn(ω).
For fixed microphone positions, the array steering vector d and therefore the weighting
coefficients wn(ω) will be fixed. Hence, wn(ω) can be pre-computed and stored in read-only
memory (ROM) to save real-time computation.

2.3.2 Dual-channel array beam-forming implementation

In this section, the duplicated processing sections of the general DASB structure shown in
Figure 11 are identified and some efficient sharing mechanisms are proposed.

Sharing between two input channels

The sharing of one hardware block for both input channels can be achieved with a novel
and simple modification to the OvlDFT structure presented previously (Vu, Ye, Whittington,
Devlin & Mason, 2010).
As all the intermediate computations between segments of OvlDFT are stored in RAM, the
computation of the second input channel can be added by simply doubling the memory space
of the Input Buffer as well as the RAM blocks to convert them to “ping-pong” buffers, as
illustrated in Figure 12. With the double size buffer, data for Channel 1 and Channel 2 can be
located on the lower and upper half of the memory respectively. When a segment of Channel 1
is finished, the Input Buffer’s address is increased, and the most significant bit of each memory
address will be automatically set so that the second half of the memory is examined. Thus,
Channel 2 will then be processed automatically.

Assuming the speech input is a sequence of N real samples, only N
2 frequency bins are needed.

The output of the system will be sequences of N
2 DFT coefficients of the first channel, followed

by an equivalent sequence of the second channel.

Delay filter sharing

In the frequency domain, the process of filtering is simply the multiplication of the DFT
coefficients of the input signal with the corresponding delay filter coefficients. Delay filter
coefficients are pre-computed and stored in read only memory (ROM).
As discussed previously, the overlapping DFT produces DFT coefficients of the two channels
alternatively in one stream. Thus, to make the structure simple and easy to implement, the
coefficients of the two delay filters are stored in one block of ROM; one filter is located in the
lower half of address space while the other is located in the upper half. These filter coefficients

40 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 13

"

Tgcn"FHV"
Eqghh"qwv"

OWN"Equ"

OWN" OWZ"
CFF"

TCO"
Eqpx"

Koci"FHV"
Eqghh"qwv"

Ukp"

TCO"OUD"cfftguu"dkv"

Equkpg"
NVW"

OWZ"
CFF"

TCO"

Kprwv"
Dwhhgt"Zp"4"

Zp"3"

Fig. 12. Dual channel overlapping DFT hardware structure

can be read independently by the most significant bit of the ROM address, which changes
automatically when the address is increased.

"

Eqorngz"
Ownvkrnkgt"

Fgnc{"hknvgt""

TQO" Ejcppgn"3"
Dwhhgt"

Cff"
FHV" Qwv"

Fig. 13. DASB Delay Filter Diagram

Figure 13 shows the diagram of the Delay filter used for both channels. The product of the
filter coefficient (from the lower half of the ROM) and the corresponding DFT coefficient (from
the sequence of channel 1) is buffered at the same address of the Channel 1 Buffer block
memory. When the DFT coefficients of Channel 2 are calculated and multiplied with filter
coefficients from the upper half of the ROM, the product will be added to the Channel 1 delay
filter product (already stored in the buffer) to produce the final DASB output.

FPGA implementation

The FPGA design consists of three main blocks as illustrated in Figure 14.

"

FCUD"qwv"
Ejcppgn"4"

Ejcppgn"3"
4ej"
QxnFHV"

Rtg/"
Gorjcuku"

Fgnc{"
Hknvgt"

Fig. 14. FPGA design diagram of DASB

The first block is the pre-emphasis filter. The common practice for setting this pre-emphasis
filter is given by y(i) = x(i)− 0.97x(i − 1), where x(i) and y(i) are the ith input and output
samples, respectively. Its implementation requires a delay block, a multiplier and an adder.
The second block is the dual-channel overlapping frame DFT as presented in Section 2.3.2 with
Hann windowing. The Input Buffer using dual-port BlockRAM is configured as a circular

41Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

14 Will-be-set-by-IN-TECH

buffer. Two input channels are multiplexed so that they are stored into the same circular
buffer at the lower and upper memory location, respectively.
The third block is the delay filter as presented in Section 2.3.2 and shown in Figure 13. As
there is a large time gap between any two DFT coefficients, only one MAC primitive is used
to perform the complex multiplication through 4 clock cycles. This provides further saving of
hardware resources.
The FPGA design of the DASB can easily process dual 16 bit inputs at 16 KHz sample rate in
real-time with the master clock as low as 8.2 MHz.

3. Speech recognition feature extraction front-end

The speech recognition front-end transforms a speech waveform from input devices, such as
a microphone, to a parametric representation which can be recognized by a speech decoder.
Thus, the front-end process, known as feature extraction, plays a key role in any speech
recognition system. In many systems, the feature extraction front-end is implemented using a
high-end floating-point processor, however, this type of implementation is expensive both in
terms of computer resources and cost.
This section discusses a new small footprint Mel-Frequency Cepstrum Coefficients front-end
design for FPGA implementation that is suitable for low-cost speech recognition systems.
By exploiting the overlapping nature of the input frames and by adopting a simple pipeline
structure, the implemented design only utilizes approximately 10% of the total resources of
a low-cost and modest-size FPGA device. This design not only has a relatively low resource
usage, but also maintains a reasonably high level of performance.

3.1 Mel-frequency cepstrum coefficients

Following the speech preprocessing and enhancement, the signal spectrum is calculated and
filtered by F band-pass triangular filters equally spaced on the Mel-frequency scale, where F is
a number of filters. Specifically, the mapping from the linear frequency to the Mel-frequency
is according to the following formula:

Mel(f) = 1127 ln(1 +
f

700
). (23)

The cepstral parameters are then calculated from the logarithm of the filter banks amplitude,
mi, using the discrete cosine transform (DCT) (Young et al., 2006):

ck =

√

2

F

F

∑
i=1

mi cos

[

πk

F
(i − 0.5)

]

. (24)

where index k runs from 0 to K − 1 (K is the number of cepstral coefficients).
The higher order cepstral coefficients are usually quite small so that there is a large variation of
cepstral coefficients between the low-order and high-order coefficients. Therefore, it is handy
to re-scale the cepstral coefficients to achieve similar magnitudes. This is done by using a lifter
scheme as follows (Young et al., 2006):

c′k = (1 +
L

2
sin

πk

L
)ck, (25)

where c′k is the rescaled coefficient for the ck value.

42 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 15

Fig. 15. Block diagram of the overall FPGA design

An energy term is normally appended with the cepstra. The energy (E) is computed as the
logarithm of the signal energy, that is, for speech frame {y(n), n = 0, 1, · · · , N − 1}.

E = log
N−1

∑
n=0

y2(n). (26)

Optionally, time derivatives, Delta and Acceleration Coefficients, can be added to the basic
static parameters which can greatly enhance the performance of a speech recognition system.
The delta coefficients are computed using the following regression formula

dt =
∑

Θ
θ=1 θ(ct+θ − ct−θ)

2 ∑
Θ
θ=1 θ2

, (27)

where dt is a delta coefficient at time t computed in terms of the corresponding static
coefficients ct−Θ to ct+Θ, and the value of Θ is the window size. Acceleration coefficients
are obtained by applying the same formula to the delta coefficients.

3.2 MFCC front-end implementation

In many applications, such as an in-car voice control interface, low power consumption is
important, but low cost is vital. Therefore, the design will first attempt to save resources and
then reduce latency for low-power consumption (Vu, Whittington, Ye & Devlin, 2010).

3.2.1 Top-level MFCC front-end design

The new front-end design consists of 5 basic blocks as illustrated in Fig. 15, which has 24
Mel-frequency filter banks and produces 39 observation features: 12 cepstra coefficient and
one frame energy value, plus their delta and accelerator time derivatives.
The core MFCC blocks include: Filter-bank, Logarithm, DCT block (combining DCT and the
lifter steps), and Append-Deltafy (computing Delta and Accelerator time derivatives) blocks
are described in later sections.

3.2.2 A note on efficient windowing by convolution

As noted previously, the speech preprocessing with OvlDFT performs windowing by
convolution with an embedded frame energy computation. Although the circular convolution
is simple, significant hardware resources are specifically required to compute the first and the
last frequency bins.
Each of the other output frequency bins depend on three input components: the previous bin,
itself and the following bin. However, the first frequency bin requires the last frequency bin to
compute the circular convolution and via versa. This incurs an additional hardware resource
cost for buffering and control.

43Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

16 Will-be-set-by-IN-TECH

Fig. 16. Triangular Mel frequency filter bank

Fig. 17. Block diagram for Mel frequency bank calculation

These hardware resource costs can be saved if band-limiting is applied. Very low and very
high frequencies might belong to regions in which there is no useful speech signal energy.
As a result, a few frequency bins at the beginning and the end of the frequency range can
be rejected without a significant loss of performance. Thus hardware used for the additional
buffering and control can be saved.
In related work, Han et al. proposed an MFCC calculation method involving half-frames (Han
et al., 2006). However, in their method, the windowing is performed in the time domain and
the Hamming window is applied to the half-frames instead of the full-frames in the original
calculation. As the method presented here applies the window function on the full-frames,
in theory, the output of this method should have a smaller error from the original calculation
than the method of Han et al.

3.2.3 Mel filter-bank implementation

The signal spectrum is calculated and filtered by 24 band-pass triangular filters, equally
spaced on the Mel-frequency scale. Dividing the 24 filters into 12 odd filters and 12 even
filters as shown in Figure 16 leads to a simplification in the required hardware structure.
As the maximum magnitude of each filter is unity and aligned with the beginning of the next
filter (due to the equal separation in the Mel-frequency scale), the points of the even filter
banks can be generated by subtracting each of the odd filter bank samples from 1. Thus, only
the odd-numbered filters need to be calculated and stored, leading to the saving of significant
memory space.
More specifically, if the weighted odd power spectrum, Eodd, is calculated first then the
weighted even power spectrum, Eeven, can be easily computed as:

Eeven = Xk(1 − Wk
odd) = Xk − Eodd, (28)

where Xk is the power of the frequency bin k; and Wk
odd is the associated weight values from

the stored odd filter.

44 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 17

Fig. 18. Sharing scheme for logarithm calculation

The above observation leads to efficient implementation of the filter bank algorithm shown
in Figure 17. The data from speech preprocessing is processed in a pipelined fashion through
the Multiplier blocks. The Multiplier block multiplies each data sample with the odd filter
value at the corresponding sample location (according to the frequency bin address, bin_addr)
producing Eodd, while Eeven is an output of the Subtractor block. These products are then
added to the value in the odd and even accumulators (oAccumulator and eAccumulator blocks)
successively. The resulting either odd or even filter-bank data values are then merged into the
out stream by the multiplexer (MUX).
The ROM stores the frequency bin address where the accumulators need to be reset in order
to start a fresh calculation. The same process is repeated until 24 filterbank values have been
calculated.
Equation (28) was also investigated by Wang et al. (Wang et al., 2002), although, without the
distinction of the odd and the even filter, where a complex Finite State Machine (FSM) for
control is required as described in (Wang et al., 2002). This complex FSM normally generates
a long latency as well as requiring significant hardware resources.
In contrast, the work presented here results in a much simpler pipeline implementation (with
only 1 multiplier, 1 ROM and 3 adders/subtractors) and thus saves more hardware resources.
Furthermore, this implementation runs in a pipeline fashion with a much smaller latency; it
requires only N + 4 (where N is the number of frequency bins) clock cycles to compute any
number of filters.

3.2.4 Logarithm calculation

Two different data points in the MFCC design, triangle filter banks and frame energy output,
are required to perform the logarithm. Figure 18 shows a structure of sharing one logarithm
block to compute both data streams alternatively.
A multiplexer is needed to select if either the incoming energy data or filter bank data are to
be processed by the log block which is implemented by using CORDIC logic core provided by
Xilinx (Xilinx, 2010).
From this block, the logarithmic operation is applied to the input data so long as valid signals
are active high. Log_valid is activated if either E0_valid or FB_valid signals are high. If
the logarithmic value is available at the output, then the log_out _valid signal will go high.
Energy_valid indicates when the logarithmic value of the E0 energy is available at the output.
This signal will only be high when both log_out_valid and E0_valid are true. Similarly,

45Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

18 Will-be-set-by-IN-TECH

Fig. 19. Block diagram for cepstra and lifter calculation

FBLog_valid indicates if the logarithmic value of the filter bank coefficient is available at the
output.

3.2.5 Cepstra and lifter computation

The Mel-Frequency Cepstral Coefficients (MFCCs) are calculated from the log filter bank’s
amplitude m using the DCT defined in Equation (24). The cosine values are multiplied with

the constant
√

2
F (F is 24 in this example) and are stored in a ROM, prior to the summation

operation. This yields the following equation:

ck =
24

∑
i=1

mi ri, (29)

where ri =
√

2
F cos

[

π k
F (i − 0.5)

]

.

Due to the symmetry of the cosine values, the summation can be reduced to a count from 1 to
12 according to the following formula:

ck =
12

∑
i=1

[

miri + (−1)i−1m25−iri

]

=
12

∑
i=1

ri

[

mi + (−1)i−1m25−i

]

. (30)

As discussed previously, it is advantageous to re-scale the cepstral coefficients to have similar
magnitudes by using the lifter in Equation (25). A separate calculation of this lifter formula is
essential, although it requires time and resources. However, by combining the lifter formula
with the pre-computed DCT matrix, ri, the lifter can be calculated without any extra time or
hardware cost. Thus, ri now becomes:

ri =

√

2

F
cos

[

πk

F
(i − 0.5)

]

(1 +
L

2
sin

πk

L
). (31)

The block diagram of cepstra and lifter computation is presented in Fig. 19. A dual-port
RAM is first filled with the 24 log filter bank amplitudes. Then, two symmetrical locations
are read from the RAM via two independent ports. The RAM data outputs are added to,

46 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 19

Fig. 20. Deltafy block diagram

or subtracted from, each other respectively. The computation results and the constant values
from the ROM are then processed by a MAC which performs a multiplication and accumulates
the resulting values. The accumulator of the MAC is reset by Ck_rst at the beginning of every
new c′k computation.

3.2.6 Deltafy block

In this work, both delta and accelerator coefficients have a window size of 2, so they can
share the same formula (Equation 27) and the same hardware structure. With the window
size having a value of 2 (Θ = 2 in Equation 27), the derivative dt of element ct is calculated by
the following formula

dt =
(ct+1 − ct−1) + 2 × (ct+2 + ct−2)

10
. (32)

Figure 20 shows the corresponding hardware structure of both delta and accelerator
computation. The thirteen elements of MFCC data (12 DCT coefficient appended by one frame
energy value) are shifted from register Reg0 to Reg4. When all four registers have one valid
element, the signal del_in_valid enables the derivative calculation for the element in Reg2
only, performing the computation shown in Equation 32.
The del_out_valid signal then enables the MFCC data and its derivative to be available at the
output. Then, the MFCC elements in each register are shifted forward by one register and the
above process is repeated.
The accelerator coefficients are computed by cascading the same hardware after the delta
computation hardware.

47Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

20 Will-be-set-by-IN-TECH

4. Performance evaluation

Having constructed the new OvlDFT hardware design and integrated it into a speech
recognition feature extraction front-end with two embedded speech enhancement techniques,
it is necessary to validate their performance. For this work there are four aspects of interest:
(i) is the OvlDFT is an effective DFT processing block; (ii) how well does the fixed-point
hardware MFCC feature extraction front-end match a floating-point software equivalent; (iii)
do the embedded speech enhancement techniques improve speech recognition performance;
and (iv) how effective in terms of hardware resource usage and hardware processing are these
implementations.

4.1 Testing and resource usage of FPGA design

The small footprint fixed-point hardware MFCC feature extraction with embedded speech
enhancement design has been implemented on a Xilinx Spartan 3A-DSP 1800 development
board. As this is a low-cost and modest-size FPGA device the, the design’s resource utilization
can illustrate the advantages of this hardware implementation. The development of the
FPGA design was conducted block by block, based on equivalent floating-point MATLAB
implementation. Each block was tested after it was completed to ensure correct operation
before the next block was developed.
To verify key sections and the complete design, test data signals were fed into the system
with the output data passed to a computer for analysis. This output was then compared
with that from a floating-point model of the system. To determine relative quantization error
range, both the FPGA and the floating-point model outputs were converted back into the time
domain.

Testing of the OvlDFT design

To test the OvlDFT, the same speech files from the AVICAR database (Lee et al., 2004) were
fed to the OvlDFT and a floating-point Matlab DFT. The power spectrum of the both versions
was then compared side by side. The comparison result showed that the two output data
sets are identical to the fourth or fifth digit following the decimal point. This experiment was
repeated using other AVICAR speech files used in the later speech recognition experiments
with corresponding results.

Testing of the LSS design

Figure 21 shows an example of the input (speech from the AVICAR, AF2_35D_P0_C2_M4.wav
file), corresponding output, and quantization error of the hardware system compared to the
floating point model output. It can be seen that the enhanced output is much cleaner than
the inputs and that the quantization error is of the order of 10−4. This test was repeated with
similar AVICAR speech files used in the later speech recognition experiments and resulted in
a consistent quantization error.

Testing of the DASB design

Two speech files from microphone 2 and 6 of the AVICAR (AF2_35D_P0_C2 records) were
chosen for Channel 1 and Channel 2 respectively. Figure 22 shows the test inputs and output
of the fixed-point FPGA system and the difference between the FPGA output and that of the
floating-point model. Here it can be seen that the enhanced output is clean and the error is
within the range of ±10−4. This test was repeated with a range of AVICAR data sets used
later in the performance experiments with all cases exhibiting a consistent error of ±10−4.

48 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 21

0 2 4 6 x 10
4

−1

0

1

(a) Test input signal

0 2 4 6 x 10
4

−1

0

1

(b) FPGA output signal from the test signal

0 2 4 6 x 10
4

−2

0

2

x 10
−4

(c) Quantization error between outputs of FPGA
implementation and the floating point model

Fig. 21. An example of input and output signals of the LSS FPGA design

0 5 10

x 10
4

−0.4

−0.2

0

0.2

(a) Channel 1 input data

0 5 10

x 10
4

−0.2

0

0.2

0.4

(b) Channel 2 input data

0 5 10

x 10
4

−0.05

0

0.05

(c) FPGA DASB output

0 5 10

x 10
4

−1

0

1

x 10
−4

(d) Difference between FPGA and
floating-point MATLAB

Fig. 22. The input, output and FPGA quantization error of DASB on the test files

Testing of the MFCC design

To test the quantization error of the MFCC design, a comparison of the fixed-point FPGA
output was made with the output from the equivalent floating-point Hidden Markov Model
Toolkit (HTK) (Young et al., 2006). The configurations of both HTK and the FPGA design are:
512 samples per 50% overlapped frame, 50Hz-7950Hz cut-off frequency, 24-filter filter bank,
12 cepstra coefficients and lifted by a parameter L = 22. Using the same speech input, the
quantization error is 10−3 which is still consistent over the AVICAR test set.

FPGA resource usage

Table 1 shows the resource usage of the MFCC front-end with embedded DASB and then LSS
speech enhancement. With the LSS applied first, the hardware is slightly larger due to the
application on both channels. However, due to the low working clock rate, the hardware

49Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

22 Will-be-set-by-IN-TECH

Resources Available Enhanced MFCC resources Usage
Slices 16640 3401 20.44%
BRAMs 84 28 33.33%
Multiplier 84 12 14.28%

Table 1. Resource usage on Spartan-3A DSP 1800 device of the MFCC feature extraction
design with embedded speech enhancement

resource can be share between the two channels, thus, the additional hardware is mainly
input/output buffer generated using BRAM blocks.
The FPGA resource utilisation for the design at present is only around 14% to 33%, thus only
a modest portion of the target FPGA resources have been utilised, giving significant space for
other future designs, such as, the implementation of a speech recognition decoder.
The MFCC implementation with speech enhancement processes data in pipeline. This
pipeline requires only a 4.1Mhz clock, which is the required clock of the slowest component
(the OvlDFT), to process a 16KHz sample rate speech in real-time. Hence, if a significant
higher clock was used, say 100Mhz, the resulting spare processing capacity could be applied
to addition tasks, such as, enabling input from a large microphone array.

4.2 Recognition performance

Validation of speech enhancement performance in this context can only be measured through
statistical analysis of speech recognition rates for various enhancement scenarios, including
the no enhancement case, using data sets containing a variety of speakers. Experiments for
this work were conducted using the phone numbers task of the AVICAR database (Lee et al.,
2004).

AVICAR database

AVICAR is a multi-channel Audio-Visual In-CAR speech database collected by the University
of Illinois, USA. It is a large, publicly available speech corpus designed to enable low-SNR
speech recognition through combining multi-channel audio and visual speech recognition.
For this collection, an array of eight microphones was mounted on the sun visor in front of the
speaker who was positioned on the passenger’s side of the car. The location of the speaker’s
mouth was estimated to be 50 cm behind, 30 cm below and horizontally aligned with the
fourth microphone of the array (i.e. 58.3cm in a direct line). The microphones in the array
are spaced 2.5 cm apart. Utterances for each speaker were recorded under five different noise
conditions which are outlined in Table 2 (Lee et al., 2004)

Condition Description

IDL Engine running, car stopped, windows up
35U Car travelling at 35 mph, windows up

35D Car travelling at 35 mph, windows down

55U Car travelling at 55 mph, windows up
55D Car travelling at 55 mph, windows down

Table 2. AVICAR noise conditions

The speech recognition experiments involved passing sets of the AVICAR speech waveforms
through the hardware feature extraction unit (incorporating the OvlDFT and embedded
speech enhancement) followed by the HTK speech decoder. This was repeated for each of
the various enhancement scenarios in turn, as well as the no enhancement case to provide a

50 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 23

baseline reference. All speech recognition results quoted below are word correction (in %),
calculated as:

WordCorrection =
N − D

N
.100% (33)

Where:

• N represents the total number of words in the experiment;

• D the number of correct words omitted in the recogniser output;

Performance experiments

To evaluate the designs, A baseline speech recognition is first set up for comparison. For this
work, the HTK software is used as a recognition engine for both of the baseline and the FPGA
system.
In these experiments, the baseline used HCopy supplied by HTK as the speech recognition
front-end, while the the FPGA design produces the MFCC features which are then fed directly
to the HTK recognition engine. In both cases, the HTK recognition engine uses an acoustic
model trained by HTK tools from a Wall Street Journal corpus with 16 Gaussians per state. To
simplify the evaluation steps, the continuous speech phone numbers task (i.e. digit sequences)
has been used with the following grammar:

$digit = one | two | three | four | five |
six | seven | eight | nine | oh | zero;
(SENT-START <$digit> SENT-END)

There are about 60 sentences in the test set of each noise condition. Each sentence is a speech of
10 digit phone number, thus, there are around 600 digits in total to be recognised for each noise
condition. For the speech recognition experiments of the LSS enhancement alone, speech file
from microphone 4 (central to the speaker) were used. While for evaluation of other scenarios
which all include DASB, speech files from microphone 2 and 6 (equal distant on either side of
the speaker) were used.
This experiment was designed to provide an indicative measure of the speech recognition
performance of the hardware design. What is important here is to show that there is
an improvement in speech recognition performance using hardware speech enhancement
techniques, not the absolute value of the speech recognition performance. To conduct such
a test, a huge speech database and complex language model would be required with test
conducted across a wide range of scenarios, this is beyond the scope of this work.

IDL 35U 35D 55U 55D Average

Baseline 88.0 67.8 56.1 58.8 29.0 59.9

FPGA LSS 90.8 70.7 58.6 64.4 47.0 66.3

Table 3. Word correction of FPGA LSS-MFCC design

The Linear Spectral Subtraction scenario demonstrates clear improvement over the no
enhancement baseline case under all noise conditions. Although the improvement is a rather
modest 2-3% for the lower noise conditions, becoming a more substantial 18% for the noisiest
condition, 55MPH, windows down (Table 3).
The Delay-Sum Beamforming scenario provides a substantial improvement over the baseline
of between 17-20% for all but the lowest noise (idle) condition where the improvement is
still over 5% (Table 4). The DASB also provides greater recognition improvement than the
Linear Spectral Subtraction alone for all cases apart from the noisiest condition, where the
improvement is basically the same for both techniques.

51Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

24 Will-be-set-by-IN-TECH

IDL 35U 35D 55U 55D Average
Baseline 88.0 67.8 56.1 58.8 29.0 59.9

FPGA DASB 93.6 86.1 74.0 78.1 46.5 75.6

Table 4. Word correction of FPGA DASB-MFCC design

IDL 35U 35D 55U 55D Average

Baseline 88.0 67.8 56.1 58.8 29.0 59.9
FPGA DASB-LSS 94.2 87.8 77.5 81.4 62.3 80.6

Table 5. Word correction of FPGA DASB-LSS-MFCC design

IDL 35U 35D 55U 55D Average

Baseline 88.0 67.8 56.1 58.8 29.0 59.9

FPGA LSS-DASB 94.6 88.4 78.3 82.7 62.3 81.2

Table 6. Word correction of FPGA LSS-DASB-MFCC design

Cascading the two enhancement techniques results in even greater performance improvement
than either scenario operating alone. As shown in Table 5 and 6, the improvement is over
20% in all but the lowest noise case which has an improvement of more than 6%. While
the recognition rate for highest noise case, 55MPH windows down, has more than doubled.
The order in which the hardware enhancement blocks cascaded doesn’t seem to exhibit any
significant difference for this test. While the recognition performance of the Linear Spectral
Subtraction followed by Delay-Sum Beamforming is between 0 and 1.3% higher than the
reverse case this difference is likely to be within the limitation of the test.

5. Discussion and conclusions

In this chapter, a small footprint FPGA hardware implementation of a MFCC feature
extraction front-end with embedded speech enhancement has been presented. The two speech
enhancement techniques were chosen because of their simpleness and effectiveness for the
example in-car application.
By exploiting the overlapping nature of the input frames and other redundancy in data and
control processes, the design has achieved a modest hardware resource usage on a low-cost
FPGA. The patented OvlDFT is a key to this small hardware utilization, and along with other
optimization has resulted in only about 20% utilisation of a Spartan 3A DSP 1800 device.
In addition, the design is able to work in real time with a clock of only 4.1 Mhz which is
very much slower than a typical FPGA clock of 100 Mhz. These two factors illustrate how
little of the FPGA’s speech processing potential is actually used, leaving significant room
for addition designs, such as, a hardware speech decoder. Furthermore, with the sharing
of speech preprocessing hardware between the MFCC feature extraction and the two speech
enhancement designs, the embedded speech enhancement feature is provided almost for free.
Speech recognition experiments using noisy files from the AVICAR database indicates the
speech enhancement provides clear improvement in recognition performance, particularly
for cases where the speech enhancement techniques are combined.
However, it should be noted that this speech recognition test is rather limited in scope. In that,
it only uses the AVICAR phone numbers task and microphones in limited positions. To gain a
more accurate measurement of speech recognition performance, comprehensive experiments
would be required using many speech databases and vocabularies. To do this requires
considerable time and processing power which was beyond the range of this work where the

52 Speech Technologies

www.intechopen.com

Real-time Hardware Feature Extraction with Embedded Signal Enhancement for

Automatic Speech Recognition 25

focus was on the hardware design. Also, tests using different microphone positions relative
to the speaker should be conducted as microphone position may impact on performance.
In conclusion, the real-time hardware feature extraction with embedded signal enhancement
for automatic speech recognition design has been demonstrated to be effective and equivalent
in performance to a comparable software system. Furthermore, it exhibits characteristic
suitable for application in low-cost automotive applications, although it may also be used
in other noisy environments.

6. Acknowledgment

The authors gratefully acknowledge the Cooperative Research Centre for Advance
Automotive Technologies (AutoCRC) for their partial support of this work.

7. References

Aarabi, P. & Shi, G. (2004). Phase-based dual-microphone robust speech enhancement, IEEE
Transactions on Systems, Man, and Cybernetics, Part B 34(4): 1763–1773.

Ahn, S. & Ko, H. (2005). Background noise reduction via dual-channel scheme for speech
recognition in vehicular environment, IEEE Transaction on Consumer Electronics
51(1): 22–27.

Beh, J., Baran, R. H. & Ko, H. (2006). Dual channel based speech enhancement using novelty
filter for robust speech recognition in automobile environment, IEEE Transaction on
Consumer Electronics 52(2): 583–589.

Benesty, J., Makino, S. & Chen, J. (2005). Speech Enhancement, Springer.
Berouti, M., Schwartz, R. & Makhoul, J. (1979). Enhancement of speech corrupted by acoustic

noise, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 208–211.
Bitzer, J. & Simmer, K. U. (2001). Superdirective microphone arrays, in M. S. Brandstein &

D. B. Ward (eds), Microphone Arrays, Springer, chapter 2, pp. 19–38.
Boll, S. (1979). Suppression of acoustic noise in speech using spectral subtraction, Acoustics,

Speech and Signal Processing, IEEE Transactions on 27(2): 113 – 120.
Han, W., Chan, C.-F., Choy, C.-S. & Pun, K.-P. (2006). An efficient mfcc extraction method

in speech recognition, Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pp. 4 pp.–.

Harris, F. (1978). On the use of windows for harmonic analysis with the discrete fourier
transform, Proceedings of the IEEE 66(1): 51–83.

Johnson, D. H. & Dudgeon, D. E. (1992). Array Signal Processing: Concepts and Techniques,
Simon & Schuster.

Kleinschmidt, T. (2010). Robust Speech Recognition using Speech Enhancement, PhD thesis,
Queenslan University of Technology. http://eprints.qut.edu.au/31895/1/

Tristan_Kleinschmidt_Thesis.pdf.
Kleinschmidt, T., Dean, D., Sridharan, S. & Mason, M. (2007). A continuous speech recognition

evaluation protocol for the avicar database, 1st International Conference on Signal
Processing and Communication Systems, Gold Coast, Australia, pp. 339–344.

Lee, B., Hasegawa-johnson, M., Goudeseune, C., Kamdar, S., Borys, S., Liu, M. & Huang, T.
(2004). Avicar: Audio-visual speech corpus in a car environment, in Proc. Conf. Spoken
Language, Jeju, Korea, pp. 2489–2492.

Lin, Q., Jan, E.-E. & Flanagan, J. (1994). Microphone arrays and speaker identification, Speech
and Audio Processing, IEEE Transactions on 2(4): 622 –629.

53Real-time Hardware Feature Extraction with
Embedded Signal Enhancement for Automatic Speech Recognition

www.intechopen.com

26 Will-be-set-by-IN-TECH

Lockwood, P. & Boudy, J. (1992). Experiments with a nonlinear spectral subtractor (nss),
hidden markov models and the projection, for robust speech recognition in cars,
Speech Commun. 11(2-3): 215–228.

Ortega-Garcia, J. & Gonzalez-Rodriguez, J. (1996). Overview of speech enhancement
techniques for automatic speaker recognition, Spoken Language, 1996. ICSLP 96.
Proceedings., Fourth International Conference on, Vol. 2, pp. 929 –932.

Vu, N., Whittington, J., Ye, H. & Devlin, J. (2010). Implementation of the mfcc front-end for
low-cost speech recognition systems, Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, pp. 2334 –2337.

Vu, N., Ye, H., Whittington, J., Devlin, J. & Mason, M. (2010). Small footprint implementation
of dual-microphone delay-and-sum beamforming for in-car speech enhancement,
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on,
pp. 1482 –1485.

Vu, N. (2010). Method and device for computing matrices for discrete Fourier transform (DFT)
coefficients, Patent No. WO/2010/028440.

Wang, J.-C., Wang, J.-F. & Weng, Y.-S. (2002). Chip design of mfcc extraction for speech
recognition, Integr. VLSI J. 32(1-3): 111–131.

Whittington, J., Deo, K., Kleinschmidt, T. & Mason, M. (2008). Fpga implementation of spectral
subtraction for in-car speech enhancement and recognition, Signal Processing and
Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on, pp. 1–8.

Whittington, J., Deo, K., Kleinschmidt, T. & Mason, M. (2009). Fpga implementation of spectral
subtraction for automotive speech recognition, Computational Intelligence in Vehicles
and Vehicular Systems, 2009. CIVVS ’09. IEEE Workshop on, pp. 72–79.

Widrow, B. & Stearns, S. D. (1985). Adaptive Signal Processing, Prentice-Hall.
Xilinx (2010). Cordic v4.0 product specification.

URL: http://www.xilinx.com/support/documentation/ip_documentation/cordic_ds249.pdf
Young, S. J., Evermann, G., Gales, M. J. F., Hain, T., Kershaw, D., Moore, G., Odell, J., Ollason,

D., Povey, D., Valtchev, V. & Woodland, P. C. (2006). The HTK Book, version 3.4,
Cambridge University Engineering Department, Cambridge, UK.

54 Speech Technologies

www.intechopen.com

Speech Technologies

Edited by Prof. Ivo Ipsic

ISBN 978-953-307-996-7

Hard cover, 432 pages

Publisher InTech

Published online 23, June, 2011

Published in print edition June, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book addresses different aspects of the research field and a wide range of topics in speech signal

processing, speech recognition and language processing. The chapters are divided in three different sections:

Speech Signal Modeling, Speech Recognition and Applications. The chapters in the first section cover some

essential topics in speech signal processing used for building speech recognition as well as for speech

synthesis systems: speech feature enhancement, speech feature vector dimensionality reduction,

segmentation of speech frames into phonetic segments. The chapters of the second part cover speech

recognition methods and techniques used to read speech from various speech databases and broadcast news

recognition for English and non-English languages. The third section of the book presents various speech

technology applications used for body conducted speech recognition, hearing impairment, multimodal

interfaces and facial expression recognition.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vinh Vu Ngoc, James Whittington and John Devlin (2011). Real-time Hardware Feature Extraction with

Embedded Signal Enhancement for Automatic Speech Recognition, Speech Technologies, Prof. Ivo Ipsic

(Ed.), ISBN: 978-953-307-996-7, InTech, Available from: http://www.intechopen.com/books/speech-

technologies/real-time-hardware-feature-extraction-with-embedded-signal-enhancement-for-automatic-

speech-recognit

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

