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1. Introduction

In the last decades, a great deal of research has been devoted to extending our capacity
of verbal communication with computers through automatic speech recognition (ASR).
Although optimum performance can be reached when the speech signal is captured close
to the speaker’s mouth, there are still obstacles to overcome in making reliable distant speech
recognition (DSR) systems. The two major sources of degradation in DSR are distortions,
such as additive noise and reverberation. This implies that speech enhancement techniques
are typically required to achieve best possible signal quality. Different methodologies have
been proposed in literature for environment robustness in speech recognition over the past
two decades (Gong (1995); Hussain, Chetouani, Squartini, Bastari & Piazza (2007)). Two main
classes can be identified (Li et al. (2009)).

The first class encompasses the so called model-based techniques, which operate on the
acoustic model to adapt or adjust its parameters so that the system fits better the distorted
environment. The most popular of such techniques are multi-style training (Lippmann et al.
(2003)), parallel model combination (PMC) (Gales & Young (2002)) and the vector Taylor series
(VTS) model adaptation (Moreno (1996)). Although model-based techniques obtain excellent
results, they require heavy modifications to the decoding stage and, in most cases, a greater
computational burden.

Conversely, the second class directly enhances the speech signal before it is presented to the
recognizer, and show some significant advantages with respect to the previous class:

* independence on the choice of the ASR engine: there is no need of intervening into the
(HMM) of the ASR since all modifications are accomplished at the feature level, which has
a significant practical mean;

* ease of implementation: the algorithm parameterization is extremely simpler than in the
model-based case study and no adaptation is requested to find the optimal one;

* Jower computational burden, surely relevant in real-time applications.

The wide variety of algorithms in this class can be further divided based on the number of
channels used in the enhancing stage.

Single-channel approaches encompass classical techniques operating in the frequency domain
such as Wiener filtering, spectral subtraction (Boll (1979)) and Ephraim & Malah (logMMSE
STSA) (Ephraim & Malah (1985)), as well as techniques operating in the feature domain such
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4 Speech Technologies

as the MFCC-MMSE (Yu, Deng, Droppo, Wu, Gong & Acero (2008)) and its optimizations
(Principi, Cifani, Rotili, Squartini & Piazza (2010); Yu, Deng, Wu, Gong & Acero (2008)) and
VTS speech enhancement (Stouten (2006)). Other algorithms belonging to the single-channel
class are feature normalization approaches as cepstral mean normalization (CMN) (Atal
(1974)), cepstral variance normalization (CVN) (Molau et al. (2003)), higher order cepstral
moment normalization (HOCMN), histogram equalization (HEQ) (De La Torre et al. (2005))
and parametric feature equalization (Garcia et al. (2006)).

Multi-channel approaches use the benefits of the additional informations carried out by the
presence of multiple speech observations. In most cases the speech and noise sources are in
different spatial locations, thus a multi-microphone system is theoretically able to obtain a
significant gain over single-channel approaches, since it may exploit the spatial diversity.
This chapter will be devoted to illustrate and analyze multi-channel approaches for robust
ASR in both the frequency and feature domain. Three different subsets will be addressed
highlighting advantages and drawbacks of each one: beamforming techniques, bayesian
estimators (operating at different level of the feature extraction pipeline) and histogram
equalization.

In ASR scenario, beamforming techniques are employed as pre-processing stage. In (Omologo
et al. (1997)) the delay and sum beamformer (DSB) has been successfully used coupled with a
talker localization algorithm but its performance are poor when the number of microphones
is small (less than 8) or when it operates in a reverberant environment. This motivated
the scientific community to develop more robust beamforming techniques e.g. generalized
sidelobe canceler (GSC) and transfer function GSC (TF-GSC). Among the beamforming
techniques, likelihood maximizing beamforming (LIMABEAM) is an hybrid approach that
uses informations from the decoding stage to optimize a filter and sum beamformer (Seltzer
(2003)).

Multi-channel bayesian estimators in frequency domain has been proposed in (Lotter et al.
(2003)) where both minimum mean square error (MMSE) and maximum a posteriori (MAP)
criteria were developed. The feature domain counterpart of the previous algorithms has been
presented in (Principi, Rotili, Cifani, Marinelli, Squartini & Piazza (2010)). The simulations
conducted on the Aurora 2 database showed performance similar to the frequency domain
ones with the advantage of a reduced computational burden.

The last subset that will be addressed, is the multi-channel variant of histogram equalization
(Squartini et al. (2010)). Here the presence of multiple audio channels is exploited to better
estimate the histograms of the input signal and so making the equalization processing more
effective.

The outline of this chapter is as follows: section 2 describe the feature extraction pipeline
and the adopted mathematical model. Section 3 gives a brief review of the beamforming
concept mentioning some of most popular beamformer. Section 4 is devoted to illustrate
the multi-channel MMSE and MAP estimators both in frequency and feature domain while
section 5 proposes various algorithmic architectures for multi-channel HEQ. Section 6 presents
and discuss recognition results in a comparative fashion. Finally, section 7 draws conclusions
and proposes future developments.

2. ASR front-end and mathematical background

In the feature-enhancement approach, the features are enhanced before the ASR decoding
stage, with the aim of making them as close as possible to the clean-speech environment
condition. This means that some extra-cleaning steps are performed into or after the
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Multi-channel Feature Enhancement for Robust Speech Recognition 5

feature extraction module. As shown in figure 1, the feature extraction pipeline has
four possible insertion points, each one being related to different classes of enhancement
algorithms. Traditional speech enhancement in the discrete-time Fourier transform (DFT)
domain (Ephraim & Malah (1984); Wolfe & Godsill (2003)), is performed at point 1,
mel-frequency domain algorithms (Yu, Deng, Droppo, Wu, Gong & Acero (2008); Rotili
et al. (2009)), operate at point 2 and log-mel or MFCC (mel frequency cepstral coefficients)
domain algorithms (Indrebo et al. (2008); Deng et al. (2004)), are performed at point 3 and 4
respectively. Since the focus of traditional speech enhancement is on the perceptual quality
of the enhanced signal, the performance of the former class is typically lower than the other
classes. Moreover, the DFT domain has a much higher dimensionality than mel or MFCC
domains, which leads to an higher computational cost of the enhancement process. Let us

—» Pre-Emphasis 3 Windowing F—7Pp DFT j
1

Mel-filter bank

4 3

2
<4 AJAA 4—1— DCT 4—1— Log 4—;

Fig. 1. Feature extraction pipeline.

consider M noisy signals y;(t), M clean speech signals x;(t) and M uncorrelated noise signals
ni(t),i € {1,..., M}, where t is a discrete-time index. The i-th microphone signal is given by:

yi(t) = x;(t) +n;(t). 1)

In general, the signal x;(t) is the convolution between the speech source and the i-th room
impulse response. In our case study the far-field model (Lotter et al. (2003)) that assumes equal
amplitude and angle-dependent TDOAs (Time Difference Of Arrival) has been considered:

xi(t) = x(t=7(Bx)), T =dsin(Bx/c) (2)

where T; is the i-th delay, d is the distance between the source and the microphone array, 0y is
the angle of arrival and c is the speed of sound.

According to figure 1, each input signal y;(t) is firstly pre-emphasized and windowed with
a Hamming window. Then, the fast Fourier transform (FFT) of the signal is computed and
the square of the magnitude is filtered with a bank of triangular filters equally spaced in
the mel-scale. After that, the energy of each band is computed and transformed with a
logarithm operation. Finally, the discrete cosine transform (DCT) stage yields the static MFCC
coefficients, and the A/AA stage compute the first and second derivatives.

Given the additive noise assumption, in the DFT domain we have

Y:(k, 1) = X;(k,1) + N;(k, 1) 3)

where X(k,1), Y(k,1) and N(k,1) denote the short-time Fourier transforms (STFT) of x(t),
y(t) and n(t) respectively, where k is the frequency bin index and ! is the time frame index.
Equation (3) can be rewritten as follows:

Y; = Rie? = A/ +N;,  1<i<M 4)
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6 Speech Technologies

where R;, ¢;, A; and «; are the amplitude and phase terms of Y; and X; respectively. For
simplicity of notation, the frequency bin and time frame indexes have been omitted.
The mel-frequency filter-bank’s output power for noisy speech is

my, (b, 1) Zwb )Y (k1) )

where wy (k) is the b-th mel-frequency filter’s weight for the frequency bin k. A similar
relationship holds for the clean speech and the noise. The j-th dimension of MFCC is
calculated as

cy; (. 1) Za, plogmy, (b,1) (6)

where a;;, = cos((7tb/B)(j — 0.5)) are the DCT coefficients. The output of equation (3)
denotes the input of the enhancement algorithms belonging to class 1 (DFT domain) and that
of equation (5) the input of class 2 (mel-frequency domain). The logarithm of the output of
equation (5) is the input for the class 3 algorithms (log-mel domain) while that of equation (6)
the input of class 4 (MFCC domain) algorithms.

3. Beamforming

Beamforming is a method by which signals from several sensors can be combined to
emphasize a desired source and to suppress all other noise and interference. Beamforming
begins with the assumption that the positions of all sensors are known, and that the positions
of the desired sources are known or can be estimated as well.

The simplest of beamforming algorithms, the delay and sum beamformer, uses only this
geometrical knowledge to combine the signals from several sensors. The theory of DSB
originates from narrowband antenna array processing, where the plane waves at different
sensors are delayed appropriately to be added exactly in phase. In this way, the array can be
electronically steered towards a specific direction. This principle is also valid for broadband
signals, although the directivity will then be frequency dependent.

A DSB aligns the microphone signals to the direction of the speech source by delaying and
summing the microphone signals.

Let us define the steering vector of the desired source as

v(ky,w) = [exp {jwtyo} exp {jwty}, - - exp {jwtim_1}]", (7)

where k; is the wave number and 7,1 € {1,,..., M} is the delay relative to the i-th channels.
The sensor weights w ¢ (w) are chosen as the complex conjugate steering vector v* (ky, w), with
the amplitude normalized by the number of sensors M:

wy(w) = 22v* (g, ). ®)

The absolute value of all sensor weights is than equal to 1/M (uniform weighting) and the
phase is equalized for signals with the steering vector v(k;, w) (beamsteering).
The beampattern B(w; 0, ¢) of the DSB with uniform sensor spacing d is obtained as

-1
B(w;0,¢) = %vH(kd, vk, w) i Z exp {]w (% - m> g (cosby — cosG)}. )

www.intechopen.com



Multi-channel Feature Enhancement for Robust Speech Recognition 7

This truncated geometric series may be simplified to a closed form as

_ 1 sin(wMm,/2)

T, = g(COSGd — cos0). (11)

This kind of beamformer is proved to perform well when the number of microphones is
relatively high, and when the noise sources are spatially white. On the contrary, performance
degrade since noise reduction is strongly dependent on the direction of arrival of the noise
signal. As a consequence, DSB performance on reverberant environments is poor.

In order to increase the performance, more sophisticated solution can be adopted. In
particular, adaptive beamformers can ideally attain high interference reduction performance
with a small number of microphones arranged in a small space. GSC (Griffiths & Jim (1982))
attempt to minimize the total output power of an array of sensor under the constraint that the
desired source must be unattenuated.

The main drawback of such beamformer is the target signal cancellation that occurs in the
presence of steering vector errors. They are caused by errors in microphone positions,
microphone gains, reverberation, and target direction. Therefore, errors in the steering vector
are inevitable with actual microphone arrays, and target signal cancellation is a serious
problem. Many signal processing techniques have been proposed to avoid signal cancellation.
In (Hoshuyama et al. (1999)), a robust GSC (RGSC) able to avoid these difficulties, has
been proposed, which uses an adaptive blocking matrix consisting of coefficient-constrained
adaptive filters. Such filters exploit the reference signal from the fixed beamformer to
adapt themselves and adaptively cancel the undesirable influence caused by steering vector
errors. The interference canceller uses norm-constrained adaptive filters (Cox et al. (1987)) to
prevent target-signal cancellation when the adaptation of the coefficient-constrained filters
is incomplete. In (Herbordt & Kellermann (2001); Herbordt et al. (2007)) a frequency
domain implementation of the RGSC has been proposed in conjunction with acoustic echo
cancellation.

Most of the GSC based beamformers rely on the assumption that the received signals are
simple delayed versions of the source signal. The good interference suppression attained
under this assumption is severely impaired in complicated acoustic environments, where
arbitrary transfer functions (TFs) may be encountered. In (Gannot et al. (2001)), a GSC solution
which is adapted to the general TF case (TF-GSC) has been proposed. The TFs are estimated
by exploiting the nonstationarity characteristics of the desired signal, as reported in (Shalvi
& Weinstein (1996); Cohen (2004)), and then used to calculate the fixed beamformer and the
blocking matrix coefficients.

However, in case of incoherent or diffuse noise fields, beamforming alone does not provide
sufficient noise reduction, and postfiltering is normally required. Postfiltering includes signal
detection, noise estimation, and spectral enhancement.

Recently, a multi-channel postfilter was incorporated into the TF-GSC beamformer (Cohen
et al. (2003); Gannot & Cohen (2004)). The use of both the beamformer primary output and
the reference noise signals (resulting from the blocking branch of the GSC) for distinguish
between desired speech transient and interfering transient, enables the algorithm to work in
nonstationary noise environments. The multi-channel postfilter, combined with the TF-GSC,
proved the best for handling abrupt noise spectral variations. Moreover, in this algorithm,
the decisions made by the postfilter, distinguishing between speech, stationary noise, and
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transient noise, might be fed back to the beamformer to enable the use of the method
in real-time applications. Exploiting this information will also enable the tracking of the
acoustical transfer functions, caused by the talker movements.

A perceptually based variant of the previous architecture have been presented in (Hussain,
Cifani, Squartini, Piazza & Durrani (2007); Cifani et al. (2008)) where a perceptually-based
multi-channel signal detection algorithm and a perceptually-optimal spectral amplitude
(PO-SA) estimator presented in (Wolfe & Godsill (2000)) have been combined to form a
perceptually-based postfilter to be incorporated into the TF-GSC beamformer

Basically, all the presented beamforming techniques outperform the DSB. Recalling the
assumption of far-field model (equation (2)) where no reverberation is considered and the
observed signals are a simple delayed version of the speech source, the DSB is well suited for
our purpose and it is not required to take into account more sophisticated beamformers.

4. Multi-channel bayesian estimators

The estimation of a clean speech signal x given its noisy observation y is often performed
under the Bayesian framework. Because of the generality of this framework, x and y
may represent DFT coefficients, mel-frequency filter-bank outputs or MFCCs. Applying the
standard assumption that clean speech and noise are statistically independent across time
and frequency as well as from each other, leads to estimators that are independent of time and
frequency.

Let € = x — £ denote the error of the estimate and let C(¢) £ C(x, £) denote a non-negative
function of €. The average cost, i.e. E[C(x, £)], is known as Bayes risk R (Trees (2001)), and it
is given by

R 2 E[C(x,%)] = / / Clx, #)p(x, y)dxdy (12)

= / p(y)dy / Cx, 2)p(x[y)dx, (13)

in which Bayes rule has been used to separate the role of the observation y and the a priori
knowledge.

Minimizing R with respect to £ for a given cost function results in a variety of estimators. The
traditional mean square error (MSE) cost function,

CMSE(x, %) = |x — £[2, (14)
gives the following expression:
RMSE — [ p(y)dy [ |x — 22p(xly)dx. (15)

RMSE can be minimized by minimizing the inner integral, yielding the MMSE estimate:

RMMSE — [xp(xly)dx = E[xly]. (16)
The log-MMSE estimator can be obtained by means of the cost function

Clos=MSE(x 2) = (log x — log #)? (17)
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Multi-channel Feature Enhancement for Robust Speech Recognition 9

thus yielding to:
£l08=MMSE _ oxp {E[Inx|y]} . (18)
By using the uniform cost function,
MAP,. o _ J O, |x—=2%<A/2
CH (% 2) = {1, Ix— %] >A/2 (19)

we get the maximum a posteriori (MAP) estimate:

MAP — argmax p(x|y). (20)
X

In the following several multi-channel bayesian estimators are addressed. First the
multi-channel MMSE and MAP estimators in frequency domain, presented in (Lotter et al.
(2003)), are briefly reviewed. Afterwards, the feature domain counterpart of the MMSE and
MAP estimators respectively is proposed. It is important to remark that feature domain
algorithms are able to exploit the peculiarities of the feature space and produce more effective
and computationally more efficient solutions.

4.1 Speech feature statistical analysis

The statistical modeling of the process under consideration is a fundamental aspect of
the Bayesian framework. Considering DFT domain estimators, huge efforts have been
spent in order to find adequate signal models. Earlier works (Ephraim & Malah (1984);
McAulay & Malpass (1980)), assumed a Gaussian model from a theoretical point of view,
by invoking the central limit theorem, stating that the distribution of the DFT coefficients
will converge towards a Gaussian probability density function (PDF) regardless of the PDF
of the time samples, if successive samples are statistically independent or the correlation is
short compared to the analysis frame size. Although this assumption holds for many relevant
acoustic noises, it may fail for speech where the span of correlation is comparable to the typical
frame sizes (10-30 ms). Spurred by this issue, several researchers investigated the speech
probability distribution in the DFT domain (Gazor & Zhang (2003); Jensen et al. (2005)), and
proposed new estimators leaning on different models, i.e., Laplacian, Gamma and Chi (Lotter
& Vary (2005); Hendriks & Martin (2007); Chen & Loizou (2007)).

In this section the study of the speech probability distribution in the mel-frequency and MFCC
domains is reported, so as to open the way to the development of estimators leaning on
different models in these domains as well.

The analysis has been performed either on the TiDigits (Leonard (1984)) and on the Wall
Street Journal (Garofalo et al. (1993)) database using one hour clean speech segments built
by concatenation of random utterances. DFT coefficients have been extracted using a 32 ms
Hamming window with 50% overlap. The aforementioned Gaussian assumption models the
real and imaginary part of the clean speech DFT coefficient by means of a Gaussian PDF.
However, the relative importance of short-time spectral amplitude (STSA) rather than phase
has led researchers to re-cast the spectral estimation problem in terms of the former quantity.
Moreover, amplitude and phase are statistically less dependent than real and imaginary parts,
resulting in a more tractable problem. Furthermore, it can be shown that phase is well
modeled by means of a uniform distribution p(a) = 1/27 for « € [—7, 7). This has lead
the authors to investigate the probability distribution of the STSA coefficients.

For each DFT channel, the histogram of the corresponding spectral amplitude was computed
and then fitted by means of a nonlinear least-squares (NLLS) technique to six different PDFs:
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Rayleigh: p = % exp (‘2—52)
N | [x—al
Laplace: p = % exp ( )
Gamma: p = ekr |x|k 1 exp %
Chi: p= FT7) k/z x[FTe ( >
Approximated Laplace: p = w1y v+1 x|V exp ( = >, p=25andv=1

1+1

Approximated Gamma: p = F(v ) x|V

exp( —lx ‘),yzl.Sandv:0.0l

The goodness-of-fit has been evaluated by means of the Kullback-Leibler (KL) divergence,
which is a measure that quantifies how close a probability distribution is to a model (or
candidate) distribution. Choosing p as the N bins histogram and g as the analytic function
that approximates the real PDF, the KL divergence is given by:

Dit = 3 (p(n) = g(n)) log 22 e
k=L 08

Dk is non-negative (> 0), not symmetric in p and g, zero if the distributions match exactly
and can potentially equal infinity. Table 1 shows the KL divergence between measured
data and model functions. The divergences have been normalized to that of the Rayleigh
PDEF, that is, the Gaussian model. The curves in figure 2 represent the fitting results, while

STSA Model |TiDigits|WS]

Laplace | 0.15 ]0.17

Gamma | 0.04 [0.04

Chi | 0.23 {0.02

Approximated Laplace | 0.34 |0.24
Approximated Gamma | 0.31 [0.20

Table 1. Kullback-Leibler divergence between STSA coefficients and model functions.

the gray area represents the STSA histogram averaged over the DFT channels. As the KL
divergence highlights, the Gamma PDF provides the best model, being capable of adequately
fit the histogram tail as well. The modeling of mel-frequency coefficients has been carried out
using the same technique employed in the DFT domain. The coefficients have been extracted
by applying a 23-channel mel-frequency filter-bank to the squared STSA coefficients. The
divergences, normalized to that of the Rayleigh PDF, have been reported in table 2. Again,

Mel-frequency Model |TiDigits WS]
Laplace | 0.21 ]0.29

Gamma | 0.08 |0.07

Chi | 0.16 [0.16

Approximated Laplace | 0.21 |0.22
Approximated Gamma | 0.12 ]0.12

Table 2. Kullback-Leibler divergence between mel-frequency coefficients and model
functions.

figure 3 represents the fitting results and the mel-frequency coefficient histogram averaged
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Fig. 2. Averaged Histogram and NLLS fits of STSA coefficients for the TiDigits (left) and WSJ
database (right).
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Fig. 3. Averaged Histogram and NLLS fits of mel-Frequency coefficients for the TiDigits (left)
and WSJ database (right).

over the filter-bank channels. The Gamma PDF still provides the best model, even if the
difference with other PDFs are more modest.

The modeling of log-mel coefficients and MFCCs cannot be performed using the same
technique employed above. In fact, the histograms of these coefficients, depicted in figure
4 and 5, reveal that their distributions are multimodal and cannot be modeled by means of
unimodal distributions. Therefore, multimodal models, such as Gaussian mixture models
(GMM) (Redner & Walker (1984)) are more appropriate in this task: finite mixture models
and their typical parameter estimation methods can approximate a wide variety of PDFs and
are thus attractive solutions for cases where single function forms fail. The GMM probability
density function can be designed as a weighted sum of Gaussians:

C C
p(x) = Z acN(x; e, Ze),  withae € [0,1], Z e =1 (22)
c=1 c=1
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where a. is the weight of the c-th component. The weight can be interpreted as a priori
probability that a value of the random variable is generated by the c-th source. Hence, a
GMM PDF is completely defined by a parameter list p = {aq, jt1,21,...,ac, e, Zc}-

A vital question with GMM PDF’s is how to estimate the model parameters p. In
literature exists two principal approaches: maximum-likelihood estimation and Bayesian
estimation. While the latter has strong theoretical basis, the former is simpler and widely
used in practice. Expectation-maximization (EM) algorithm is an iterative technique for
calculating maximumd-likelihood distribution parameter estimates from incomplete data. The
Figuredo-Jain (F]) algorithm (Figueiredo & Jain (2002)) represents an extension of the EM
which allows not to specify the number of components C and for this reason it has been
adopted in this work. GMM obtained after F] parameter estimation are shown in figure 4
and 5.

i

00 -

(]

oo

Fig. 4. Histogram (solid) and GMM fit (dashed) of the first channel of LogMel coefficients for
TiDigits (left) and WS]J database (right).
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Fig. 5. Histogram (solid) and GMM fit (dashed) of the second channel of MFCC coefficients
for TiDigits (left) and WS]J database (right).
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4.2 Frequency domain multi-channel estimators

Let us consider a model of equation (4). It is assumed that the real and imaginary parts of
both the speech and noise DFT coefficients have zero mean Gaussian distribution with equal
variance. This results in a Rayleigh distribution for speech amplitudes A;, and in Gaussian
and Ricians distributions for p(Y;|A;, ;) and p(R;|A;) respectively. Such single-channel
distributions are extended to the multi-channel ones by supposing that the correlation
between the noise signals of different microphones is zero. This leads to

M
PRy RaglAn) = [T p(RilA2) @)
M

i=1

Vn € {1,...,M}. The model assumes also that the time delay between the microphones is
small compared to the short-time stationarity of the speech. Thus, A; = c¢;A, and 032(1- =

E[|X;|?] = c;o% where ¢; is a constant channel dependent factor. In addition

2 . .
N¥ = UNI" ! :]’
E[N:N;] {0, iz

These assumptions give the following probability density functions:

A; A2
p(A; ;) = "‘T;ZL- exp (-U—){) , (25)
M i 12
1 Y; — (¢j/cn)Ajel%
P(le---/YM’Anrtxn) = H exp < 2 | ( i 211) i ’ ) (26)
i1 TR IN;
M R2 4 (¢./c 2A2 M oR. 2(c;/cn)AuR;
p(Rll---/RM‘An) = exp (_Z i ( 12 ”) HTZIO % . (27)
i=1 ON; i=1 N, ON;

where O’X and 0%, are the variance of the clean speech and noise signals in channel 7, and Iy
denotes the mod1f1ed Bessel function of the first kind and zero-th order. As i 1n (Ephraim &
Malah (1984)), the a priori SNR §; = O’Xi / O'Ni and a posteriori SNR v; = Rlz/ oy, are used in
the final estimators, and ¢; is estimated using the decision directed approach.

4.2.1 Frequency domain multi-channel MMSE estimator (F-M-MMSE)
The multi-channel MMSE estimate of the speech spectral amplitude is obtained by evaluating

the expression:
AIZE[AZ|Y1,,YM] VZE{l,,M} (28)

By mean of Bayes rule, and supposing that a; = « Vi, it can be shown (Lotter et al. (2003)) that
the gain factor for channel i is given by:

& M, we:ref¢r|2>
G; =T(15 F | —0.5,1, , 29
( )\/%(Hz%lér) 1( 1+YM ¢ )

where F; denotes the confluent hypergeometric series, and I' is the Gamma function.
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4.2.2 Frequency domain multi-channel MAP estimator (F-M-MAP)

In (Lotter et al. (2003)), in order to remove the dependency from the direction of arrival (DOA)
and obtain a closed-form solution, MAP estimator has been used. The assumption «; = «
Vi € {1,..., M} is in fact only valid if fx = 0°, or after perfect DOA correction. Supposing
that the time delay of the desired signal is small respect to the short-time stationarity of speech,
the noisy amplitudes R; are independent from fy.

MAP estimate was obtained extending the approach described in (Wolfe & Godsill (2003)).
The estimate A; of the spectral amplitude of the clean speech signal is given by

A; = argmax p(A;|Ry,...,Ry) (30)

1

The gain factor for channel i is given by (Lotter et al. (2003)):

. . M M 2 M
G, = Vbilri mRe[Z %Cr++\l<2\/%€r> +(2-M) <1+ Z‘fr) - (D)
i=r r=1

B 2+2yM & r—1

4.3 Feature domain multi-channel bayesian estimators

In this section the MMSE and the MAP estimators in the feature domain, recently proposed
in (Principi, Rotili, Cifani, Marinelli, Squartini & Piazza (2010)), are presented. They extend
the frequency domain multi-channel algorithms in (Lotter et al. (2003)) and the single-channel
feature domain algorithm in (Yu, Deng, Droppo, Wu, Gong & Acero (2008)). Let assume again
the model of section 2. As in (Yu, Deng, Droppo, Wu, Gong & Acero (2008)), for each channel
i it is useful to define three artificial complex variables My,, My, and M, that have the same
modulus of my,, my, and my, and phases 0y,, 0, and 60,,;. Assuming that the artificial phases
are uniformly distributed random variables leads to consider My, and M, — My, as random
variables following zero mean complex Gaussian distribution. High correlation between 1y,
of each channel is also supposed in analogy with the frequency domain model (Lotter et al.
(2003)). This, again, results in my, = A;my, with A; a constant channel dependent factor.
These statistical assumptions result in probability distributions similar to the frequency
domain ones (Lotter et al. (2003)):

L My 2 /.2
p (mxilgxi) T 7_[02% exp [_ (mxi) /O‘x,} 7 (32)
1 2/ 2
p (Myr mxilex[) T mfi exp [_HI’ /Ud,} , (33)

where O-J%i =E “Mxilz]’ 0'[% =E UM]/r - ]\/Ixr|2]"F = M]/r - Arimxiejexi and Ari - (AV/AZ')Z'
In order to simplify the notation, the following vectors can be defined:

c(p) = [Cyl(P)r---rCym(P)]
my (b) = [my, (b),...,my,(b)], (34)
My (b) = [My, (D), ..., My, (b)] -

Each vector contains respectively the MFCCs, mel-frequency filter-bank outputs and artificial
complex variables of all channels of the noisy signal y(t). Similar relationships hold for the
speech and noise signals.
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4.3.1 Feature domain multi-channel MMSE estimator (C-M-MMSE)

The multi-channel MMSE estimator can be found by evaluating the conditioned expectation
éx, = E [cx|cy]. As in the single-channel case, this is equivalent to (Yu, Deng, Droppo, Wu,
Gong & Acero (2008)):

iy, = exp {E [logmy,|m, |} = exp {E [logm,,[My]}. (35)
Equation (35) can be solved using the moment generating function (MGF) for channel i:

- d
i, = oxp (00 _,). (36)

where ®@;() = E [(my,) |M,] is the MGF for channel i. After applying Bayes rule, ®;(u)
becomes:

q)'(V) - f0+oo 02” (mxi)ﬂ P (My‘mxw 9x) p (mxf‘gx) dedWIxi
i O+oo O27‘[ p (My‘mxi,ex) dexdmxi

Supposing the conditional independence of each component of the My, vector, we can write

(37)

p (My‘mxi,9x> = IM[lp (My, mxi,ex) , (38)
=

where it was supposed that 6, = 6y, i.e. perfect DOA correction. The final expression of the
MGEF can be found by inserting (32), (33) and (38) in (37).

The integral over 6, has been solved applying equation (3.338.4) in (Gradshteyn & Ryzhik
(2007)), while the integral over my, has been solved using (6.631.1). Applying (36), the final
gain function G;(¢;,v;) = G;, for channel 7 is obtained:

ZAi g Y ejeyr . +oo ,—t
Gi:‘ SR QeXpG/ e_dt), (39)
1+ 21,21 Cr Yi 2. [ t

2

where
=M, Vel
0; =
1+YM ¢

and ¢; = 0’%1_ / 0’7211_ is the a priori SNR and 7; = mﬁi / (7,211, is the a posteriori SNR of channel i.
The gain expression is a generalization of the single-channel cepstral domain approach shown
in (Yu, Deng, Droppo, Wu, Gong & Acero (2008)). In fact, setting M = 1 yields the
single-channel gain function. In addition, equation (39) depends on the fictitious phase terms
introduced to obtain the estimator. Uniformly distributed random values will be used during
computer simulations.

, (40)

4.3.2 Feature domain multi-channel MAP estimator (C-M-MAP)

In this section, a feature domain multi-channel MAP estimator is derived. The followed
approach is similar to (Lotter et al. (2003)) in extending the frequency MAP estimator to the
multi-channel scenario. The use of the MAP estimator is useful because the computational
complexity can be reduced respect to the MMSE estimator and DOA independence can be
achieved.
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A MAP estimate of the MFCC coefficients of channel i can be found by solving the following
expression:
Cx; = argmax p(cy;|cy). (41)
Cx;
As in Section 4.3.1, MAP estimate on MFCC coefficients is equivalent to an estimate on
mel-frequency filter-bank’s output power. By means of Bayes rule, the estimate problem
becomes
My, = arg max p(my |y, ) p(my,). (42)

My,

Maximization can be performed using (32) and knowing that

M , 2 2y M ,
p<my|mxi>:exp{—zmy’m’/?” () }H[z"?" A (2“’/ A;i’”y"m’“)], 3)

i=1 Ui i=1 n; n;

where conditional independence of 1, was supposed.
A closed form solution can be found if the modified Bessel function Ij is approximated as
Ip(x) = (1/v/2mx)e*. The final gain expression is:

242y Mig r=1

JE T M M 2 M
G; i -Re Z VGt <Z V gr')’r) +(2-M) (1 + 2 §r> . (44)
r=1 r=1

5. Multi-channel histogram equalization

As shown in the previous sections, feature enhancement approaches improve the test signals
quality to produce features closer to the clean training ones. Another important class of feature
enhancement algorithms is represented by statistical matching methods, according to which
feature are normalized through suitable transformations with the objective of making the
noisy speech statistics as much close as possible to the clean speech one. The first attempt in
this sense has been made with CMN and cepstral mean and variance nomalization (CMVN)
(Viikki et al. (2002)). They employ linear transformations that modify the first two moments
of noisy observations statistics. Since noise induces a nonlinear distortion on signal feature
representation, other approaches oriented to normalize higher-order statistical moments have
been proposed (Hsu & Lee (2009); Peinado & Segura (2006)).

In this section the focus is on those methods based on histogram equalization (Garcia et al.
(2009); Molau et al. (2003); Peinado & Segura (2006)): it consists in applying a nonlinear
transformation based on the clean speech cumulative density function (CDF) to the noisy
statistics. As recognition results confirm, the approach is extremely effective but suffers of
some drawbacks, which motivated the proposal of some different variants in the literature.
One important issue to consider is that the estimation of noisy speech statistics cannot usually
rely on sufficient amount of data.

Up to the author’s knowledge, no efforts have been put to employ the availability
of multichannel acoustic information, coming from a microphone array acquisition, to
augment the amount of useful data for statistics modeling and therefore improve the
HEQ performances. Such a lack motivated the present work, where original solutions to
combine multichannel audio processing and HEQ at a feature-domain level are advanced
and experimentally tested.
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5.1 Histogram equalization

Histogram equalization is the natural extension of CMN and CVN. Instead of normalizing
only a few moments of the MFCCs probability distributions, histogram equalization
normalizes all the moments to the ones of a chosen reference distribution. A popular choice
for the reference distribution is the normal distribution.

The problem of finding a transformation that maps a given distribution in a reference one is
difficult to handle and it does not have a unique solution in the multidimensional scenario.
For the mono-dimensional case an unique solution exists and it is obtained by coupling the
original and transformed CDFs of the reference and observed feature vectors.

Let y be a random variable with probability distribution p, (y). Let also x be a random variable
with probability distribution py(x) such that x = Ty (y), where T, (-) is a given transformation.
If T, (-) is invertible, it can be shown that the CDFs C;(y) and Cy(x) of y and x respectively
coincide:

) = [ pwav= [T pwypo = i), )

— —00

From equation (45), it is easy to obtain the expression of x = T (y) from the CDFs of observed
and transformed data:

Cy(y) = Ce(x) = Ca(Ty(y)), (46)

x = T,(y) = G5 1(Cy (). @7)
Finally, the relationship between the probability distributions can be obtained from equation
47):

(48)

Since Cy(y) and Cy(x) are both non-decreasing monotonic functions, the resulting
transformation will be a non-linear monotonic increasing function (Segura et al. (2004)).

The CDF Cy(x) can be obtained from the histograms of the observed data. The histogram of
every MFCC coefficient is created partitioning the interval [y — 40, y + 40/ into 100 uniformly
distributed bins B;, i = 1,2,...,100, where u and ¢ are respectively the mean and standard
deviation of the MFCC coefficient to equalize (Segura et al. (2004)). Denoting with Q the
number of observations, the PDF can be approximated by its histogram as:

py(y € B;) = 4 (49)

and the CDF as:
(50)

where g; is the number of observations in the bin B; and & = 20 /25 is the bin width. The
center y; of every bin is then transformed using the inverse of the reference CDF function,
ie. x = Cy!(y;). The set of values (y;, x;) defines a piecewise linear approximation of the
desired transformation. Transformed values are finally obtained by linear interpolation of
such tabulated values.

www.intechopen.com



18 Speech Technologies

5.2 Multi-channel histogram equalization

One of the well-known problems in histogram equalization is represented by the fact that
there is a minimum amount of data per sentence necessary to correctly calculate the needed
cumulative densities. Such a problem exists both for reference and noisy CDFs and it is
obviously related to the available amount of speech to process. In the former case, we can
use the dataset for acoustic model training: several results in literature (De La Torre et al.
(2005); Peinado & Segura (2006)) have shown that Gaussian distribution represents a good
compromise, specially if the dataset does not provide enough data to suitably represent the
speech statistics (as it occurs for Aurora 2 database employed in our simulations). In the
latter, the limitation resides in the possibility of using only the utterance to be recognized (like
in command recognition task), thus introducing relevant biases in the estimation process. In
conversational speech scenarios, is possible to consider a longer observation period, but this
inevitably would have a significant impact not only from the perspective of computational
burden but also and specially in terms of processing latency, not always acceptable in real-time
applications. Of course, the amount of noise presence makes the estimation problem more
critical, likely reducing the recognition performances.

The presence of multiple audio channels can be used to alleviate the problem: indeed
occurrence of different MFCC sequences, extrapolated by the ASR front-end pipelines fed
by the microphone signals, can be exploited to improve the HEQ estimation capabilities. Two
different ideas have been investigated on purpose:

¢ MFCC averaging over all channels;
¢ alternative CDF computation based on multi-channel audio.

Starting from the former, it is basically assumed that the noise captured by microphones is
highly incoherent and far-field model with DOA equal to 0° applied to speech signal (see
section 6); therefore it is reasonable to suppose of reducing its variance by simply averaging
over the channels.

Consider the noisy MFCC signal model (Moreno (1996)) for the i-th channel

y; = x+ Dlog(1 +exp(D ! (n; — x)), (51)

where D is the discrete cosine transform matrix and D~ its inverse: it can be easily shown
that the averaging operation reduces the noise variance w.r.t the speech one, thus resulting
in an SNR increment. This allows the subsequent HEQ processing, depicted in figure 6, to
improve its efficiency.

Coming now to the alternative options for CDF computation, the multi-channel audio
information availability cab be exploited as follows (figure 7):

1. histograms are obtained independently for each channel and then all results averaged
(CDF Mean);

2. histograms are calculated on the vector obtained concatenating the MFCC vectors of each
channel (CDF Conc).

Baseline M Average |

Front-end CDF Mean/Conc — HEQ —

Speech signals

Fig. 7. HEQ MFCCmean CDF mean/conc: HEQ based on averaged MFCCs and mean of
CDFs or concatenated signals.
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- ‘ CDF
Baseline Average ¢
Front-end JJ
Speech signals HEQ —»

Fig. 6. HEQ MFCCmean: HEQ based on averaged MFCCs.
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(a) HEQ single-channel (central microphone). (b) HEQ single-channel (signal average).
80 25 20 -5 -0 -5 0 5 8 25 20 -15 -10 -5 0 5
0.4/ 1 04 f
0.35 1 0.35¢
0.3 103
0.25¢ 1 0.25)
0.2- 102
0.15} 1 0.15¢
0.1 104
0.05r 1 0.05¢ NH M H
0 oo o oluinl] Wh Wr ‘ 0 Do ee 0t HHHHHHHH H HHHHHHMHEHH o
(c) CDF mean approach. (d) CDF conc approach.

Fig. 8. Histograms of cepstral coefficient c; related utterance FAK_5A corrupted with car
noise at SNR 0 dB. CDF mean and CDF con histograms are estimated using four channels.

The two approaches are equivalent if the bins used to build the histogram coincide.
However, in the CDF Mean approach, taking the average of the bin centers as well, gives
slightly smoother histograms which helps the equalization process. Whatever the estimation
algorithm, equalization has to be accomplished taking into account that the MFCC sequence
used as input in the HEQ transformation must fit the more accurate statistical estimation
performed, otherwise outliers occurrence due to noise contribution could degrade the
performance: this explains the usage of the aforementioned MFCC averaging.

Figure 8 shows histograms of single-channel and multi-channel approaches of the first cepstral
coefficient using four microphones in far-field model. Bins are calculated as described in
section 5.1. A short utterance of length 1.16 s has been chosen to emphasize the difference
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in histogram estimation in single and multi-channel approaches. Indeed, histograms of
multi-channel configurations depicted in figure 7 better represent the underlying distribution
(figure 8(c)-(d)) specially looking at the distribution tails, not properly rendered by the other
approaches. This is due to availability of multiple signals corrupted by incoherent noise,
which augments the observations available for the estimation of noisy feature distributions.
Such a behavior is particularly effective at low SNRs, as recognition results in section 6 will
demonstrate.

Note that operations described above are done independently for each cepstral coefficient:
such an assumption is widely accepted and used among scientist working with statistics
normalization for robust ASR.

6. Computer Simulations

In this section the computer simulations carried out to evaluate the performance of the
algorithms previously described are reported. The work done in (Lotter et al. (2003)) has
been taken as reference: simulations have been conducted considering the source signal in
far-field model (see equation (2)) with respect to an array of M = 4 microphones with distance
d = 12 cm. The source is located at 25 cm from the microphone array. The near-field and
reverberant case studies will be considered in future works.

Three values of 6, have been tested: 0°, 10° and 60°. Delayed signals have been obtained
by suitably filtering the clean utterances of tests A, B and C of the Aurora 2 database (Hirsch
& Pearce (2000)). Subsequently, noisy utterances in test A, B and C were obtained from the
delayed signals by adding the same noises of Aurora 2 test A, B and C respectively. For each
noise, signals with SNR in the range of 0-20 dB have been generated using tools (Hirsch &
Pearce (2000)) provided with Aurora 2.

Automatic speech recognition has been performed using the Hidden Markov Model Toolkit
(HTK) (Young et al. (1999)). Acoustic models structure and recognition parameters are the
same as in (Hirsch & Pearce (2000)). The feature vectors are composed of 13 MFCCs (with CO
and without energy) and their first and second derivatives. Acoustic model training has been
performed in a single-channel scenario and applying each algorithm in its insertion point of
the ASR front-end pipeline as described in section 2. “Clean” and “Multicondition” acoustic
models have been created using the provided training sets.

For the sake of comparison, in table 3 are reported the recognition results using the baseline
feature extraction pipeline and the DSB. In using DSB the exact knowledge of the DOAs
which leads to a perfect signal alignment is assumed. Recalling the model assumption made
in section 2, since the DSB performs the mean over all the channels it reduces the variance
of the noise providing higher performance than the baseline case. The obtained results can
be employed to better evaluate the improvement arising from the insertion of the feature
enhancement algorithms presented in this chapter.

Test A Test B Test C |A-B-C AVG

C M C M C M C M
baseline (B = 0°)|63.56|83.18(65.87(84.91/67.93|86.27(65.79| 84.78
DSB 76.50(93.12|79.86(94.13(81.47|94.96|79.27| 94.07

Table 3. Results for both baseline feature-extraction pipeline and DSB
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6.1 Multi-channel bayesian estimator

Tests have been conducted on algorithms described in Sections 4.2 and 4.3, as well as on their
single-channel counterpart. The results obtained with the log-MMSE estimator (LSA) and
its cepstral extension (C-LSA), and those obtained with frequency and feature domain MAP
single-channel estimators are also reported for comparison purpose.

Frequency domain results in table 4 show as expected that the multi-channel MMSE algorithm
gives the best performance when By = 0° while accuracy degrades as By increases.
Results in table 5 confirm the DOA independence of multi-channel MAP: averaging on By
and acoustic models, recognition accuracy is increased of 11.32% compared to the baseline
feature extraction pipeline. Good performance of multi-channel frequency domain algorithms
confirm the segmental SNR results in (Lotter et al. (2003)).

On clean acoustic model, feature domain multi-channel MMSE algorithm gives a recognition
accuracy around 73% regardless of the value of By (table 6). Accuracy is below the
single-channel MMSE algorithm, and differently from its frequency domain counterpart it
is DOA independent. This behaviour is probably due to the presence of artificial phases in the
gain expression. The multi-channel MAP algorithm is, as expected, independent of the value
of By, and while it gives lower accuracies respect to F-M-MMSE and F-M-MAP algorithmes, it
outperforms both the frequency and feature domain single-channel approaches (table 7).

Test A Test B Test C |A-B-C AVG
C M C M C M C M

F-M-MMSE (B, = 0°) |84.23/93.89|83.73]92.19(87.10(94.71|85.02| 93.60
F-M-MMSE (B, = 10°)|80.91(92.61|81.10{91.19|84.78(93.78|82.26| 92.53
F-M-MMSE (B, = 60°)|70.83|88.29|71.84|86.50|76.68(91.67|73.12| 88.82

[LSA [76.83]87.02]77.06]85.24]78.97]88.48]77.62[ 86.91 |

Table 4. Results of frequency domain MMSE-based algorithms

Test A Test B Test C  |A-B-C AVG
C M C M C M C M

F-M-MAP (By = 0°) [82.52|89.62|82.13|88.29(86.11|91.30(83.59| 89.73
F-M-MAP (B = 10°)|82.20(89.46|81.93|88.00(85.84|90.39(83.32| 89.28
F-M-MAP (B = 60°)|82.39(89.36|82.07|88.05|86.13|90.3883.53| 89.26

[MAP [75.95]84.97]76.29]82.81]77.7585.72]76.66] 84.44 |

Table 5. Results of frequency domain MAP-based algorithms

Test A Test B Test C  |A-B-C AVG
C M C M C M C M

C-M-MMSE (B = 0°) |70.80(89.94|73.00(88.75|75.37|92.02|72.96| 90.23
C-M-MMSE (B = 10°)|70.40(89.68|72.88|88.72|75.21|91.89|72.83| 90.10
C-M-MMSE (B = 60°)|70.72(89.69|72.77|88.80|75.19|91.93|72.89| 90.14

[CLSA [75.68]87.8177.06]86.85]76.94]89.25]76.56] 87.97 |

Table 6. Results of feature domain MMSE-based algorithms
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Test A Test B Test C |A-B-C AVG
C M C M C M C M

C-M-MAP (Bx = 0°) |78.52]91.51|79.28/89.99|81.63|93.04|79.81|91.51
C-M-MAP (Bx = 10°)|78.13]91.22|79.04|89.94|81.5992.68|79.52| 91.28
C-M-MAP (Bx = 60°)|78.2391.22|79.04|90.07|81.38|92.68|79.55| 91.32

[C-MAP [74.62]88.44]76.84]87.67]75.61]89.58] 75.69] 88.56 |

Table 7. Results of feature domain MAP-based algorithms

To summarize, computer simulations conducted on a modified Aurora 2 speech database
showed the DOA independence of the C-M-MMSE algorithm, differently from its frequency
domain counterpart, and poor recognition accuracy probably due to the presence of random
phases in the gain expression. On the contrary, results of the C-M-MAP algorithm confirm, as
expected, its DOA independence and show that it outperforms single-channel algorithms in
both frequency and feature domain.

6.2 Multi-channel histogram equalization

Experimental results for all tested algorithmic configurations are reported in tables 8 and 9 in
terms of recognition accuracy. Table 10 shows results for different values of S and number of
channels for the MFCC CDF Mean algorithm: since the other configurations behave similarly,
results are not reported. Focusing on “clean” acoustic model results, the following conclusions
can be drawn:

¢ No significant variability with DOA is registered (table 8): this represents a remarkable
result, specially if compared with the MMSE approach in (Lotter et al. (2003)) where such
a dependence is much more evident. This means that no delay compensation procedure
have to be accomplished at ASR front-end input level. A similar behaviour can be observed
both in the multi-channel mel domain approach of (Principi, Rotili, Cifani, Marinelli,
Squartini & Piazza (2010)), and in the frequency domain MAP approach of (Lotter et al.
(2003)), where phase information is not exploited.

* Recognition rate improvements are concentrated at low SNRs (table 9): this can be
explained by observing that the MFCC averaging operation significantly reduces the
feature variability leading to computational problems in correspondence of CDF extrema
values when nonlinear transformation (47) is applied.

* As shown in table 10, the average of MFCCs over different channels is beneficial when
applied with HEQ: in this case we can also take advantage of the CDF averaging process
or of the CDF calculation based on MFCC channel vectors concatenation. Note that the
improvement is proportional to the number of audio channels employed (up to 10% of
accuracy improvement w.r.t. the HEQ single-channel approach).

In the “Multicondition” case study, the MFCCmean approach is the best performing and
improvements are less consistent than the “Clean” case but still significative (up to 3% of
accuracy improvement w.r.t. the HEQ single-channel approach). For the sake of completeness,
it must be said that similar simulations have been performed using the average on the mel
coefficients, so before the log operation (see figure 1): the same conclusions as above can be
drawn, even though performances are approximatively and on the average 2% less than those
obtained with MFCC based configurations.

In both “Clean” and “Multicondition” case the usage of the DSB as pre-processing stage for
the HEQ algorithm leads to a sensible performance improvement with regard to the only
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single-channel HEQ. The configuration with the DSB and the single channel HEQ have been
tested in order to compare the effect of averaging the channels in the time domain or in the
MFCC domain. As shown in table 8, the DSB + HEQ outperform the HEQ MFCCmean
CDFMean/CDFconc algorithms but it must be pointed out that in using the DSB a perfect
DOAs estimation is assumed. In this sense the obtained results can be seen as reference for
future implementations, where a DOA estimation algorithm is employed with the DSB.

(a) Clean acoustic model

ﬁx - OO ﬁx = 100 ﬁx — 600
HEQ MFCCmean 85.75 85.71 85.57

HEQ MFCCmean CDFMean| 90.68 90.43 90.47

HEQ MFCCmean CDFconc | 90.58 90.33 91.36

HEQ Single-channel 81.07
DSB + HEQ Single-channel 92.74
Clean signals 99.01

(b) Multicondition acoustic model

Bx =0°|By = 10°|Bx = 60°
HEQ MFCCmean 94.56 94 .45 94.32

HEQ MFCCmean CDFMean| 93.60 93.54 93.44

HEQ MFCCmean CDFconc | 92.51 92.48 92.32

HEQ Single-channel 90.65
DSB + HEQ Single-channel 96.89
Clean signals 97.94

Table 8. Results for HEQ algorithms: accuracy is averaged across Test A, B and C.

0 dB]|5 dB[10 dB|15 dB]20 dB|AVG
HEQ MFCCmean 66.47|82.63|89.96|93.72|95.96 (85.74
HEQ MFCC CDFmean |73.62(89.54|95.09{97.02|98.18(90.69
HEQ MFCCmean CDFconc|72.98|89.42(95.23|97.16 98.14(90.58

[ HEQ Single-channel _ [47.31]76.16[89.93[94.90]97.10[81.78]

Table 9. Recognition results for Clean acoustic model and B, = 0°: accuracy is averaged
across Test A, B and C.

2 Channels|4 Channels|8 Channels
C M C M C M
0° 188.27|93.32(90.68(93.60(91.44(93.64
10°(87.97/93.18(90.39|93.44(91.19|93.46
60°(87.81/92.95(90.43(93.43(91.32/93.52

Table 10. Results for different values of B, and number of channels for the HEQ MFCC
CDFmean configuration. “C” denotes clean whereas “M” multi-condition acoustic models.
Accuracy is averaged across Test A, B and C.

7.Conclusions

In this chapter, different multi-channel feature enhancement algorithms for robust speech
recognition were presented and their performances have been tested by means of the Aurora
2 speech database suitably modified to deal with the multi-channel case study in a far-field
acoustic scenario. Three are the approaches here addressed, each one operating at a different
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level of the common speech feature extraction front-end, and comparatively analyzed:
beamforming, bayesian estimators and histogram equalization.

Due to the far-field assumption, the only beamforming technique here addressed is the
delay and sum beamformer. Supposing that the DOA is ideally estimated, DSB improves
recognition performances both alone as well as coupled with single-channel HEQ. Future
works will investigate DSB performances when DOA estimation is carried out by a suitable
algorithm.

Considering bayesian estimators, the multi-channel feature-domain MMSE and MAP
estimators extend the frequency domain multi-channel approaches in (Lotter et al. (2003))
and generalize the feature-domain single-channel MMSE algorithm in (Yu, Deng, Droppo,
Wu, Gong & Acero (2008)). Computer simulations showed the DOA independence of
the C-M-MMSE algorithm, differently from its frequency domain counterpart, and poor
recognition accuracy probably due to the presence of random phases in the gain expression.
On the contrary, results of the C-M-MAP algorithm confirm, as expected, its DOA
independence and show that it outperforms single-channel algorithms both in frequency and
feature-domain.

Moving towards the statistical matching methods, the impact of multi-channel occurrences of
same speech source in histogram equalization has been also addressed. It has been shown that
averaging both the cepstral coefficients related to different audio channels and the cumulative
density functions of the noisy observations allow augmenting the equalization capabilities
in terms of recognition performances (up to 10% of word accuracy improvement using clean
acoustic model), with no need of worrying about the speech signal direction of arrival.
Further works are also intended to establish what happens in near-field and reverberant
conditions. Moreover, the promising HEQ based approach could be extended to other
histogram equalization variants, like segmental HEQ (SHEQ) (Segura et al. (2004)),
kernel-based methods (Suh et al. (2008)) and parametric equalization (PEQ) (Garcia et al.
(2006)), which the proposed idea can be effectively applied.

Finally, due to the fact of operating in different domains, it is possible to envisage of suitably
merge the three approaches here addressed in a unique performing noise robust speech
feature extractor.
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