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1. Introduction 

The estimation of harmonic components of power voltage signals is one of the 
measurements prescribed by the power quality (PQ) standards (IEC 61000-4-30, 2008). In 
general, the harmonic components originate from non-linear elements connected to the 
power system such as non-linear loads (e.g., switched-mode power supplies) or 
transformers. An example of a distorted voltage measured in an office building is shown in 
Fig. 1. The negative effects associated with the presence of voltage harmonics include, for 
example, overheating and increased losses of transformers, malfunction of electronic 
instruments, additional losses in rotating machines or overheating of capacitor banks. 
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Fig. 1. Example of a power voltage distorted by the presence of non-linear loads 

The aim of this chapter is to provide an overview of power quality standards related to 
voltage harmonics assessment and a detailed description of both common and alternative 
measurement methods. 
In this chapter’s introductory part (Section 2), an overview of international standards that 
concern measurement methods for estimation of voltage harmonics as well as the standards 
that address the measurement uncertainty limits is provided. This is followed by a 
description of several applicable measurement methods. The description is divided in two 
parts: Section 3 deals with methods working in the frequency domain (including the 
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standard method described in the standard (IEC 61000-4-7, 2009)) while Section 4 contains 
the description of several time-domain based methods. Each section presents a detailed 
description of the respective method including its strong and weak points and potential 
limitations. Section 5 focuses on the calculation of the total harmonic distortion. In Section 6, 
the performance of the methods described in Section 3 and Section 4 is discussed. The 
chapter is concluded by Section 7, in which the characteristics of the described algorithms 
will be summarized. 

2. Power quality standards and harmonic estimation 

Several international standards deal with the issue of harmonic estimation. In this section, a 
short overview of these standards and of the requirements imposed in them is provided. 
In the standard (IEEE 1159-2009, 2009), the harmonics are classified as one of the waveform 
distortions that typically have a steady state nature, their frequency band is from 0 Hz up to 
9 kHz and their magnitude can reach up to 20% of the fundamental. 
The standard (IEC 61000–4–7, 2009) describes a general instrument for harmonic estimation. 
The instrument is based on the Discrete Fourier Transform (DFT); however, the application 
of other algorithms is also allowed. The DFT algorithm and its application according to the 
standard are described in Section 3.1. In the standard (IEC 61000–4–30, 2008), it is required 
that at least 50 harmonics are estimated. 

Standard (IEC 61000–4–7, 2009) also includes the accuracy requirements for harmonic 

estimation. The requirements are divided into two classes: Class I of the IEC 61000–4–7 

corresponds to Class A of IEC 61000–4–30, while Class II of the IEC 61000–4–7 corresponds 

to Class S of IEC 61000–4–30. The requirements are based on the relation between the 

magnitudes of the measured harmonics ( hU ) and the nominal voltage range ( nomU ) as 

shown in Table 1. 
 

Class Condition Maximum error 

Uh ≥ 1% Unom ±5% Uh 
I 

Uh < 1% Unom ±0.05% Unom 

Uh ≥ 3% Unom ±5% Uh 
II 

Uh < 3% Unom ±0.15% Unom 

Table 1. Accuracy requirements for voltage harmonics measurement 

The measuring range is specified in (IEC 61000–4–30, 2008) using the compatibility levels 
(maximum disturbance levels to which a device is likely to be subjected) for low-frequency 
disturbances in industrial plants, which are standardized in (IEC 61000–2–4, 2002). The 
measuring range should be from 10% to 200% of the class 3 compatibility levels specified in 
(IEC 61000–2–4, 2002) for Class A instruments and as 10% to 100% of these compatibility 
levels for Class S instruments. 
The class 3 compatibility levels according to (IEC 61000–2–4, 2002) are shown in Table 2. 
Note that the compatibility levels of odd harmonics are higher than the compatibility levels 
of even harmonics. This reflects the fact that in power systems, the odd harmonics are 
usually dominant. 
The compatibility level for total harmonic distortion (THD) is 10% in the class 3. 
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Harmonic order h 
Class 3 compatibility level 

% of fundamental 

2 3 

3 6 

4 1.5 

5 8 

6 1 

7 7 

8 1 

9 2.5 

10 1 

11 5 

13 4.5 

15 2 

17 4 

21 1.75 

10 < h ≤ 50 (h even) 1 

21 < h ≤ 45 (h odd multiples of three) 1 

17 < h ≤ 49 (h odd) 4.5·(17/h) – 0.5 

Table 2. Voltage harmonics compatibility levels 

3. Frequency domain methods 

One approach to harmonic estimation is to use some kind of a transform to decompose the 
time series of measured voltage signal samples into frequency components. Most 
commonly, methods based on the Discrete Fourier Transform (DFT) are used but, for 
example, the Discrete Wavelet Transform (DWT) is also sometimes applied as well (Pham & 
Wong, 1999), (Gaouda et al., 2002). 
In Section 3.1, the application of the DFT for harmonic estimation according to the standard 
(IEC 61000-4-7, 2009) is described. In Section 3.2, an alternative method based on the 
Goertzel algorithm (Goertzel, 1958) and its properties are described. 

3.1 Discrete Fourier Transform 

The Discrete Fourier Transform (DFT) and its optimized implementation called the Fast 
Fourier Transform (FFT) is arguably the most used method for harmonic estimation. The 
harmonic measuring instrument described in (IEC 61000–4–7, 2009) is based on this method. 

The DFT of a voltage signal u  whose length is N  samples is described as (Oppenheim et 

al., 1999) 

 
1

2 /

0

               0, , 1 .
N

ikn N

n

X k u n e k Nπ
−

−

=

= = … −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  (1) 

The result of (1) is a complex frequency spectrum X k⎡ ⎤⎣ ⎦  with frequency resolution of  

 /Sf f NΔ =   (2) 
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where sf  is the sampling frequency. 
The amplitudes of individual frequency components are then calculated as 

 ( ) ( )2 22
U k Re X k Im X k

N
= +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (3) 

In (3), the factor 1 / N  is a normalization factor and the multiplication by two is used to take 

into account the symmetry of a real-input DFT ( [ ] [ ]X k X N k= − ). 
In (IEC 61000–4–7, 2009), the DFT  is applied to 10 cycles (in case of 50 Hz power systems) or 
12 cycles (in case of 60 Hz power systems) of the power system’s fundamental frequency. 
Since the power system’s frequency is varying, the length of the window to which the DFT 
is applied has to be adjusted accordingly. Standard (IEC 61000–4–7, 2009) allows a 
maximum error of this adjustment of ±0.03%. The window adjustment can be done e.g., by 
using a phase-locked loop (PLL) to generate the sampling frequency based on the actual 
power system’s frequency. Alternatively, when the sampling frequency is high enough, the 
window can be adjusted by selecting the number of samples that correspond to 10 (or 12) 
cycles at the measured fundamental frequency. In a 50-Hz system, at least 10 kS/ssf ≅  are 
required to ensure the 0.03% maximum error specification. 
An example of an amplitude DFT spectrum calculated from 10 cycles of the signal shown in 
Fig. 1 is depicted in Fig. 2. 
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Fig. 2. Detail of an amplitude DFT spectrum of a measured power voltage signal 

Note that when processing signals according to the (IEC 61000–4–7, 2009), the frequency 

resolution of the spectrum is 5 Hz for both 50 Hz and 60 Hz power systems. This means that 

the harmonic components (the fundamental, the 2nd and the higher harmonics) can be found 

on indices 10, 20, 30,k = …  for 50 Hz power systems (i.e., 1 [10]U U= , 2 [20]U U= , etc.) and 

on 12, 24, 36,k = …  for 60 Hz power systems. 

3.2 The Goertzel algorithm 

The Goertzel algorithm (Goertzel, 1958) is an efficient algorithm for calculation of individual 
lines of the DFT spectrum. The algorithm applies a second-order infinite impulse response 
(IIR) filter to the samples of the voltage signal in order to calculate one spectrum line. 

The Goertzel algorithm calculates the line k  of the spectrum using 

 2 /[ ]   e   [  –  1] –   [  –  2]k NX k s N s Nπ=  (4) 

where 
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 [ ]    [ ]   2 cos(2 / )  [  1] –   [  –  2]s n u n k N s n s nπ= + − , (5) 

[ 1] [ 2] 0s s− = − = , [ ]u n  is the measured voltage signal, N  is the number of samples being 

processed and [0; 1]n N∈ − . 

The Goertzel algorithm is more efficient than the Fast Fourier Transform (FFT) when the 

number of spectrum lines to be calculated ( H ) meets the condition 

 2 log  ( )H N≤ . (6) 

However, even when the number of spectrum lines to be calculated does not fulfill the 
condition (6), the application of the Goertzel algorithm can be advantageous in some cases. 
It is faster than implementing DFT according to its definition (1) and unlike most of the 
implementations of the FFT, the Goertzel algorithm does not require N to be an integer 
power of two. Although algorithms for fast calculation of DFT when the number of samples 
is not equal to power of two exist, e.g. (Rader, 1968), many libraries for digital signal 
processing include only the radix-2 FFT. For the Goertzel algorithm, it is sufficient to ensure 
that N contains an integer number of fundamental periods (to avoid problems with 
spectrum leakage). 

4. Time domain methods 

Section 3 described methods for estimation of voltage harmonics in the frequency domain. 
However, it is possible to estimate the harmonics in the time domain as well. The time-
domain approaches are based on a least-square fitting procedure that attempts to estimate 
the parameters of the voltage signal’s model so the root-mean-square error between the 
model and the measured signal is minimized. 
The time domain methods that try to fit one or more single-tone harmonic signals on the 
measured signal are in general called sine fitting algorithms. 
The general model of a signal that contains multiple harmonic components can be written as 

 ( )
1

cos 2
H

h h h
h

u U f t Cπ φ
=

⎡ ⎤= + +⎣ ⎦∑  (7) 

where hU  are the amplitudes of individual harmonics, hf  their frequencies (expressed as 

an integer multiple of the fundamental’s frequency: 1hf h f= ⋅ ), hϕ  their phases, C  is the dc 

component and H  is the number of harmonics included in the model. 
For the purpose of the sine fitting algorithms, it is convenient to re-write (7) as 

 ( ) ( )
1

cos 2 sin 2
H

h h h h
h

u A f t B f t Cπ π
=

⎡ ⎤= + +⎣ ⎦∑  (8) 

where hA  are the in-phase and hB  are the quadrature components. 

The amplitudes hU  and phases hϕ  can be then calculated as 

 2 2
h h hU A B= + , (9) 

 ( )atan2 ;h h hB Aϕ = − . (10) 
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4.1 The 3- and 4-parameter sine fitting algorithm 

The 3- and 4-parameter sine fitting algorithms are described in (IEEE Std. 1057-2007, 2008) 
where they are used for testing of analog to digital converters in waveform recorders. 
The 3-parameter algorithm estimates the amplitude and the phase of a signal whose 
frequency is known. With the frequency known, model (8) is a linear function of the 
remaining unknown parameters. Thus, the calculation using the 3-parameter sine fitting 
algorithm is non-iterative and is based on solving 

 ( ) 1T T TA B C
−

=⎡ ⎤⎣ ⎦ D D D u  (11) 

where u  is the column vector of measured voltage samples, D  is a matrix 

 

( ) ( )
( ) ( )

( ) ( )

0 0

1 1

1 1

cos 2 sin 2 1

cos 2 sin 2 1

cos 2 sin 2 1N N

ft ft

ft ft

ft ft

π π
π π

π π− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D
B B B

 (12) 

and nt  are the timestamps of voltage samples. 
The accuracy of the 3-parameter sine fitting algorithm depends on the frequency estimate. 
The frequency can be estimated using algorithms such as the Interpolated DFT (IpDFT) 
algorithm (Renders et al., 1984); however, many algorithms are applicable for this task 
(Slepička et al., 2010). 
In case the frequency estimate is not sufficiently accurate (Andersson & Händle, 2006), the 4-
parameter algorithm can be used. Including the frequency in the algorithm makes the least-
square procedure non-linear, which means that the algorithm has to use an iterative 
optimization process to find the optimum value of the estimated parameters. 
The 4-parameter sine fitting algorithm solves the equation 

 ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1T T T

Δi i i i i i i
A B C ω

−
⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

D D D u  (13) 

where i is the iteration number, ω  is the angular frequency 2 fω π= ; ( )iωΔ  is the change of 

the angular frequency from the previous iteration, matrix D(i) is 

 ( )

( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1 1 1
0 0 0

1 1 1
1 1 1

1 1 1
1 1 1

cos sin 1

cos sin 1

cos sin 1

i i i

i i i
i

i i i
N N N

t t t

t t t

t t t

ω ω α

ω ω α

ω ω α

− − −

− − −

− − −
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

D
B B B B

, (14) 

and ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1
sin cos

i i i i i
t A t t B t tα ω ω− − − − −= − × + × . 

The iterative computation continues until the absolute relative change of the estimated 
frequency drops below a predefined threshold or until the maximum number of allowed 
iterations is exceeded. 
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In order to estimate the voltage harmonics, first, the 4-parameter sine fitting algorithm is 
applied to the voltage signal and the signal’s fundamental frequency, amplitude and phase 
are estimated. In the second step, the 3-parameter algorithm is repeatedly applied to the 
residuals after estimation of the fundamental to estimate the individual higher harmonics. 
This means that the frequency supplied to the 3-paramater algorithm is an integer multiple 
of the fundamental’s estimated frequency. 

4.2 The multiharmonic fitting algorithm 

The previously described combination of the 4- and 3-parameter sine fitting algorithms 

estimates the harmonic amplitudes and phases one by one. The advantage of this approach 

is that it keeps the computational requirements low because in each step only operations 

with small matrices are required. Its weak point is that it relies on the accuracy of the 

estimation of the fundamental frequency using the 4-paramater algorithm. Since the 3- and 

4-parameter algorithms take into account only one frequency at a time, the other frequencies 

contained in the signal act as disturbances that affect the final estimate of the frequency and 

of the harmonic amplitudes. 

The multiharmonic fitting algorithm (Ramos et al., 2006) provides more accurate but also 

computationally heavier approach. It uses an optimization procedure in which all the 

parameters (i.e., the fundamental’s frequency and the amplitudes and phases of all 

harmonics) are estimated at the same time. 

There are two versions of the multiharmonic fitting algorithm: non-iterative and iterative 

version. 

The non-iterative version is similar to the 3-parameter sine fitting algorithm. It assumes that 

the signal’s fundamental frequency is known and estimates the remaining parameters (the 

components hA  and hB  of the harmonic amplitudes and the dc component C ) 

 ( ) 1T T T
1 1 2 2 H HA B A B A B C

−
=⎡ ⎤⎣ ⎦ D D D uA  (15) 

where D is a matrix 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

cos sin cos 2 sin 2 cos sin 1

cos sin cos 2 sin 2 cos sin 1
 

cos sin cos 2 sin 2 cos sin 1N N N N N N

t t t t H t H t

t t t t H t H t

t t t t H t H t

ω ω ω ω ω ω
ω ω ω ω ω ω

ω ω ω ω ω ω− − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

A
A

B B B B D B B B
A

 (16) 

and ω  is the angular frequency of the fundamental. 

As in the case of the 3-parameter sine fitting algorithm, the non-iterative multiharmonic 

algorithm relies on the initial frequency estimate. However, the initial estimate can be 

improved using an iterative optimization procedure. 

The iterative multiharmonic fitting algorithm adds the frequency into the calculations 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1T T T

1
1 1 2 2 Δi i i i i i i i i i i

H HA B A B A B C ω
−

− ⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
D D D uA  (17) 

where ( )iD  is a matrix 
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 ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
0 0 0 0 0

1
1 1 1 1 1

1
1 1 1 1 1

cos sin cos sin 1

cos sin cos sin 1

cos sin cos sin 1

i

i
i

i
N N N N N

t t H t H t t

t t H t H t t

t t H t H t t

ω ω ω ω α

ω ω ω ω α

ω ω ω ω α

−

−

−
− − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

D

A

A
B B D B B B B

A

 (18) 

and ( ) ( ) ( ) ( )( ) ( ) ( )( )1 11 1 1

1

sin cos
H

i ii i i
h h

h

t A ht h t B ht h tα ω ω− −− − −

=

⎡ ⎤= − +⎢ ⎥⎣ ⎦∑ . 

5. Calculation of the Total Harmonic Distortion 

The Total Harmonic Distortion (THD) is an important indicator used to express the total 
amount of harmonic components. It is defined as 

 

2

2

1

H

hh
U

THD
U

==
∑

 (19) 

and expressed in relative units or in percents. 
For stationary signals whose length is exactly 10 cycles (or 12 in case of 60 Hz power 
systems) the whole energy of a harmonic component is concentrated in one frequency bin. 
However, if the signal’s parameters such as its fundamental frequency vary, the energy will 
leak into neighbouring frequency bins (spectral leakage). To take into account this effect, the 
standard (IEC 61000-4-7, 2009) defines, besides the THD, two more indicators: the group 
total harmonic distortion (THDG) and the subgroup total harmonic distortion (THDS). 
The group total harmonic distortion is defined as 

 

2
,2

,1

H

g hh

g

U
THDG

U

==
∑

 (20) 

where 

 

1
2

2 2 2 2
,

1
2

1 1
2 22 2

P

g h
Pk

P PU U P h U P h k U P h

−

=− +

⎡ ⎤ ⎡ ⎤= ⋅ − + ⋅ − + ⋅ +⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦∑  (21) 

and P  is the number of fundamental periods within the signal ( 10P =  for 50 Hz power 

systems and 12P =  for 60 Hz power systems). 
The subgroup total harmonic distortion is defined as 

 
2

,2

,1

H

sg hh

sg

U
THDS

U

==
∑

 (22) 

where 

 
1

2 2
,

1

.sg h
k

U U P h k
=−

= ⋅ +⎡ ⎤⎣ ⎦∑  (23) 
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Note that only the THD can be calculated when using the time-domain fitting algorithms. 
The Goertzel algorithm is not suitable when THDG and THDS have to be estimated, because 
as the number of spectrum lines that have to be calculated increases, the algorithm’s 
computational requirements also increase significantly. 

6. Comparison of the methods 

In this section, the above described methods for harmonics estimation are compared. Their 
accuracy is discussed in Section 6.1, while Section 6.2 focuses on the computational 
requirements of individual algorithms. 

6.1 Accuracy 

The standard (IEC 61000-4-30, 2008) specifies the conditions under which power quality 
measuring instruments should be tested. The standard recognizes three classes of 
instruments: Class A, Class S and Class B instruments. While for classes A and S the tests 
and required performance is described in the standard, the performance of Class B 
instruments is specified by manufacturer. 
As it was described in Section 2 of this chapter, the levels of harmonics in signals used for 
testing should be up to 200% of the values in Table 1 for Class A instruments and 100% of 
these values for Class S instruments. Furthermore, the test signals should contain other 
disturbances and variations of parameters as described by the three testing states. The most 
important parameters of these testing states are summarized in Table 3. 
 

Influence 
quantity 

Testing state 1 Testing state 2 Testing state 3 

Frequency fnom ± 0.5 Hz fnom – 1 Hz ± 0.5 Hz fnom + 1 Hz ± 0.5 Hz 

Flicker Pst < 0.1 Pst = 1 ± 0.1 Pst = 4 ± 0.1 

Voltage Udin ± 1% 
determined by flicker 
and interharmonics 

determined by flicker 
and interharmonics 

Interharmonics 0% to 0.5% Udin 1% ± 0.5% Udin at 7.5·fnom 1% ± 0.5% Udin at 3.5·fnom 

Table 3. Testing conditions for Class A and S instruments according to IEC 61000-4-30 

In Table 3, nomf  designates the nominal power frequency, stP  is the short-term flicker 

severity and dinU  is the nominal input voltage. 
Test signals according to the three testing states were simulated in order to test the above 
described algorithms for harmonic estimation. Harmonics were added to the signals to 
achieve signals with THD = 20%. The phases of harmonics were random and the 
distribution of harmonic amplitudes was as follows from Table 4. 
The testing signals also contained white Gaussian noise corresponding to a signal to noise 
ratio of 75 dB (the noise was added to simulate the equivalent noise of an ideal 12-bit analog 
to digital converter). The Goertzel algorithm, the combined 4- and 3- parameter sine fitting 
algorithm, the non-iterative multiharmonic fitting and the iterative multiharmonic fitting 
algorithm were applied to 10 000 of such test signals and the maximum error of estimation 
of individual harmonic amplitudes was calculated. The maximum allowed error for 
individual harmonics calculated using the Table 1 are shown in Fig. 3a and Fig. 3b for Class 
A and Class S instruments, respectively. The simulation results for the three testing states 
are shown in Fig. 4, Fig. 5 and Fig. 6. 
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Harmonic order h 
Amplitude 
(in % of the 

fundamental) 

2nd 4% 

3rd 12% 

4th 2% 

5th 10% 

7th 4% 

h odd from 9th to 17th 2% 

h even from 6th to 18th 1.6% 

h from 19th to 50th 1.6% 

Table 4. Distribution of harmonic amplitudes in the test signals 
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Fig. 3. Maximum allowed error of harmonic estimation for a) Class A and b) Class S 
instruments 

From the comparison of Fig. 4a, Fig. 5a and Fig. 6a with Fig. 3a it can be seen that the DFT 
(i.e., also the Goertzel algorithm), the non-iterative multiharmonic fitting and the iterative 
harmonic fitting are all suitable for a Class A instrument according to the IEC 61000-4-30 
specification. The combined 4- and 3-paramter sine fitting algorithm produces worse results. 
However, this algorithm can still be used in Class S or Class B instruments (compare Fig. 4b, 
Fig. 5b and Fig. 6b with Fig. 3b). Note that the harmonic levels employed in the test 
corresponded to Class A testing; for Class S lower levels should be applied (e.g., the THD 
should be up to 10%). 
From Fig. 4a, Fig. 5a and Fig. 6a it can be seen that the multiharmonic algorithms are more 
accurate than the DFT calculation and that the difference between the results provided by 
the non-iterative and the iterative multiharmonic algorithm is negligible. The main 
difference between these two algorithms is in the estimates of the phases and in the 
frequency estimate, which are not employed when estimating only harmonic amplitudes. 
In the following test, the accuracy of estimation of the THD was investigated. Signals with THD 
ranging from 0.5% up to 20% were simulated. The signals contained influencing quantities 
according to the testing state 3 (see Table 3) and normally distributed additive noise 
corresponding to the equivalent noise of an ideal 12-bit analog to digital converter. In 
total, 10 000 of such signals were simulated and the considered algorithms were applied to 
them. The DFT was used to calculate the values of THD (19), THDG (20) and THDS (22). The 
maximum absolute errors of estimation of the THD using all the algorithms are shown in Fig. 7. 
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Fig. 4. Accuracy of estimation of harmonic amplitudes – testing state 1 
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Fig. 5. Accuracy of estimation of harmonic amplitudes – testing state 2 

www.intechopen.com



 Power Quality 

 

266 

1 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

Harmonic h

M
ax

im
u

m
 e

rr
o

r 
(%

)

 

 

Non-iterative multiharm. Multiharmonic DFT

a)  

1 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

Harmonic h

M
a

x
im

u
m

 e
rr

o
r 

(%
)

 

 

4- and 3- parameter sine fitting

b)  
 

Fig. 6. Accuracy of estimation of harmonic amplitudes – testing state 3 

The calculation of the THDG values includes all the spectrum lines of the DFT spectrum. 
This means, that it includes also the frequencies that contain spurious components (e.g., the 
interharmonic component) and the noise. This explains the poor results of the THDG shown 
in Fig. 7. The rest of the algorithms produced almost identical results. Only the combined 4- 
and 3-parameter sine fitting algorithm performs slightly worse for higher values of the THD. 
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Fig. 7. Accuracy of estimation of the THD – testing state 3 
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6.2 Computational requirements 

In this section, the memory and processing time requirements of the previously described 
algorithms are discussed. 
The memory requirements of the algorithms for fast calculation of the DFT depend on the 
particular implementation and can differ substantially. For example, the real radix-2 FFT 
available as a library function in the VisualDSP++ development environment for digital 
signal processors (Analog Devices, 2010) requires 2 × N memory spaces to store the real and 
imaginary part of the result and 3 × N/4 memory space to store the twiddle factors. 

The Goertzel algorithm has very low memory requirements which do not depend on the 

number of processed samples  N. A typical implementation requires only 4 memory spaces: 

2 for the variable s; one for the multiplication constant in (5) and one auxiliary variable. 

When implementing the 3- and 4-parameter sine fitting algorithms by the definition (see (11) 

and (13), respectively), it is necessary to construct the matrix D  whose size is 3N ×  and 

4N × , respectively. However, both algorithms can be optimized by constructing directly the 

resulting matrices TD D  and TD u . This way, only matrices 3 3×  and 3 1×  (in the case 3-

parameter sine fitting algorithm) or 4 4×  and 4 1×  (in the case 4-parameter sine fitting 

algorithm) have to be stored in the memory. Besides saving memory space, this approach is 

also faster because some of elements of these matrices are identical (Radil, 2009). This way, 

the 3-parameter algorithm requires 24 memory spaces and the 4-paramater algorithm 

requires 40 memory spaces independent of the length of the processed signal. The values 

include the space for intermediate results and exclude memory space required to calculate 

the initial estimate. 

The multiharmonic fitting algorithms are more complex and attempts to construct the 

matrices TD D  and TD u  directly lead to higher computational burden. The non-iterative 

multiharmonic algorithm requires ( ) ( ) ( )22 2 1 2 2 1N H H+ × + + × +  memory space and the 

iterative algorithm requires ( ) ( ) ( )22 2 2 2 2 2N H H+ × + + × +  (including the space for 

intermediate results and excluding memory space required to calculate the initial estimate). 

Another important parameter of methods for estimation of harmonics is their time 

consumption because in power quality monitoring it is usually required that all the 

processing, including the harmonic estimation, is performed in real-time. 

To test the processing time required by individual algorithm, 10 000 signals with frequency 

49.95 Hzf = , 2%THD =  and random normally distributed noise were simulated. The 

signals were 10 fundamental cycles long (10 010 samples at 50 kS/ssf = ). The average 

processing time of individual algorithms implemented in Matlab was then evaluated and is 

shown in Table 5.  
From Table 5 it can be seen that, as expected, the FFT is the fastest of the considered 
algorithms. However, the Goertzel algorithm, the combined 4- and 3-parameter sine fitting 
algorithm and the non-iterative multiharmonic fitting are also able to work in real-time (the 
length of the processed signal was approximately 200 ms). 
Furthermore, some of the algorithms were implemented in a digital signal processor (DSP) 
Analog Devices ADSP-21369 running at the clock frequency of 264 MHz. A DSP like this one 
can be used for real-time processing in a power quality analyzer (Radil, 2009). Only the 
algorithms, whose implementation fits into the DSP’s internal memory, were selected. The 
algorithms are: 2048-point FFT, the Goertzel algorithm and the combined 4- and 3- 
parameter sine fitting algorithm. The DSP was acquiring a voltage signal from a 
230 V/50 Hz power system at a sampling rate fs=10kS/s.. The average processing times are 
shown in Table 6. 
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The results in Table 6 are similar to the results shown in Table 5 and all three considered 
algorithms are suitable for real-time operation. 
Note that the processing time of the 4-parameter algorithm shown in Table 6 is composed of 

two parts: initial calculations whose length depends only on the number of samples and the 

iterative parts which depends on the number of iterations required by the algorithm to 

converge. In the DSP implementation, the algorithm required on average 3 iterations. 

Significantly higher number of iterations indicates that the processed signal is disrupted by 

e.g., sag or interruption. 
 
 

Method 
Average processing 

time (ms) 

FFT 1.0 

Goertzel algorihm 10.2 

Combined 4- and 3-parameter sine fitting algorithm 143 

Non-iterative multiharmonic fitting algorithm 85 

Multiharmonic fitting algorithm 683 

Table 5. Average processing times of the algorithms implemented in Matlab 

 
 

Method 
Average processing 

time (ms) 

FFT 0.5 

Goertzel algorihm 1.53 

Combined 4- and 3-parameter sine fitting algorithm 100.2 

Table 6. Average processing times of the algorithms implemented in a DSP 

7. Summary and conclusions 

In this chapter, an overview of several methods applicable for estimation of voltage 

harmonics was provided. The methods include: DFT, the Goertzel algorithm, method based 

on the 4- and 3-parameter sine fitting algorithms, the non-iterative multiharmonic fitting 

and the iterative multiharmonic fitting. 

The DFT algorithm is a standard algorithm recommended by the power quality standards. 

However, as it was shown in Section 6 of this chapter, other methods can provided higher 

accuracy and/or lower computational and implementation requirements. The summary of 

the properties of the discussed methods is shown in Table 7. The selection of the most 

suitable method then depends on the requirements of each application and on the available 

resources. 
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Method Pros Cons 

DFT (FFT) • very fast 

• moderate memory 
requirements 

• many implementations 
work only with number of 
samples that is an integer 
power of two 

Goertzel algorihm • fast 

• very low memory 
requirements 

• signal has to include an 
integer number of periods 

Combined 4- and 3-
parameter sine fitting 
algorithm 

• moderate memory 
requirements 

• signal not limited to an 
integer number of periods 

• low accuracy (but can be 
used for Class S or Class B 
instruments) 

• slow (but still suitable for 
real-time operation) 

Non-iterative 
multiharmonic fitting 
algorithm 

• accurate 

• reasonably fast 

• signal not limited to an 
integer number of periods 

• high memory requirements 

Multiharmonic fitting 
algorithm 

• accurate 

• signal not limited to an 
integer number of periods 

• very slow 

• high memory requirements 

Table 7. Summary of the properties of the described algorithms for harmonic estimation 
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