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1. Introduction     

Among 67 or so viruses that are able to infect soybean, 27 are considered a threat to the 
soybean industry (Tolin and Lacy, 2004; Saghai Maroof et al., 2008). Soybean mosaic virus (SMV) 
is the most prevalent virus and is recognized as the most serious, long-standing problem in 
many soybean producing areas in the world (Wang, 2009). SMV is a member of the genus 
Potyvirus in the family Potyviridae. The disease caused by SMV was first documented in the 
USA in 1915 by Clinton (1916) and SMV was named by Gardner and Kendrick (1921). Since 
then, the virus has been found in China, Japan, South Korea, Canada, Bazil, Australia and 
many other countries wherever soybean is grown. Infection by SMV usually results in severe 
yield losses and seed quality reduction. It has been reported that yield losses usually range 
from 8 to 50% under natural field conditions (Hill, 1999; Arif and Hassan, 2002) and reach up 
to 100% in severe outbreaks (Liao et al., 2002).  Since SMV is a seed-borne viral pathogen and 
aphids can efficiently spread it from plant to plant while they feed, it is difficult to control the 
virus and produce SMV-free seeds. Furthermore, SMV often infects soybeans with other 
viruses such as Bean pod mottle virus (BPMV), Alfalfa mosaic virus (AMV) and Tobacco ringspot 
virus (TRSV) (Wang, 2009). Such synergistic infections with two or more viruses cause much 
more severe damages than infection by each virus alone (Hill et al., 2007; Wang, 2009). 
Utilization of soybean cultivars resistant to SMV is considered the most effective way of 
controlling the diseases. Extensive screening for soybean gemplasm resistant to SMV has 
resulted in the identification of three independent resistant genes, i.e., Rsv1, Rsv3, and Rsv4 
(Hayes et al., 2000; Gunduz et al., 2002; Liao et al., 2002; Zheng et al., 2005; Li et al., 2010a). 
Interestingly, several naturally occurring resistance-breaking SMV isolates have also been 
reported that can break all three or two soybean resistance loci (Choi et al., 2005; Gagarinova et 
al., 2008a). The development of durable genetic resistance to SMV becomes a research priority 
for soybean breeders and soybean pathologists. This may depend on advances in the 
understanding of the SMV life cycle and molecular SMV-soybean interactions. 

2. General biology of SMV 

2.1 Physical and biological properties 

As a potyvirus, SMV virions consist of a capsid that is filamentous, flexuous rod-shaped 
with 650-760 nm in length and 15-18 nm in width (ICTVdB Management, 2006). 
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Encapsulated in the viral particle is the viral genome which is a linear, positive-sense, 
single-stranded RNA molecule. The thermal inactivation point (10 min) of particles is 55 to 

60°C.  (Bos, 1972). The decimal exponent (DEX) of the dilution end point (DEP) is 10-3～10-5, 

and the longevity in vitro (LIV) is 2～5 days at 25°C (Hill, 1999). SMV is relatively stable at 
pH 6.0 and loses infectivity at pH values higher than 9 or lower than 4 (Galvez, 1963). The 
cylindrical, pinwheel-shaped inclusions formed by the viral CI protein, a characteristic 
cellular phenotype for potyvirus infection, are often found in the cytoplasm of infected cells 
(A. Wag, unpublished). 

2.2 Host range and symptoms 

In comparison with other potyviruses, SMV has a relatively narrow host range. It infects six 
plant families, i.e., Fabaceae (also Leguminosa), Amaranthaceae, Chenopodiaceae, Passifloraceae, 
Schropulariaceae and Solanaceae, but mostly the Leguminosae including soybean and its wild 
relatives (Galvez, 1963; Hill, 1999). The symptoms induced by SMV depend on host 
genotype, virus strain, plant age at infection, and environment. In SMV-infected soybeans, 
symptoms commonly observed include  rugosity, dark green vein banding and light green 
interveinal areas, stunting, leaf curling and seed coat mottling, male sterility, flower 
deformation, less pubescent, necrosis, sometimes necrotic local lesions, systemic necrosis 
and bud blight (ICTVdB Management, 2006). Some of these SMV symptoms may be masked 
at temperatures above 30°C (Hill, 1999). 

2.3 Transmission 

Up to 30% or more of the seeds from SMV-infected soybean plants carry SMV depending on 
cultivar and time of infection before flowering (Bos, 1992). SMV-infected seeds are the 
primary inoculum source, though weeds and other plants may also serve as a reservoir of 
SMV. Further spread within and among soybean fields is through the activity of more than 
32 different aphid species of 15 different genera in a non-persistent manner (Cho and 
Goodman, 1982; Arif and Hassan, 2002; Steinlage et al., 2002). Some aphid species are 
Acyrthosiphom pisum, Aphis craccivora, A. fabae, A. glycine, A gossypii, Myzus persicae, 
Rhopalosiphum maidis and R. padi. In addition, SMV can be efficiently sap-transmitted with or 
without the use of abrasives. 

2.4 Strains 

Numerous SMV isolates have been reported worldwide. In the United States, at least 98 
isolates of SMV have been documented (Cho and Goodman, 1979, 1982, 1983). Based on 
their differential reactions in two susceptible, i.e., Clark and Rampage, and six resistant 
soybean cultivars including Buffalo, Davis, Kwangyo, Marshall, Ogden and York, SMV 
isolates were classified into seven distinct strain groups,  G1 through G7 (Cho and 
Goodman, 1979). Later, two more groups, G7A and C14 were added (Buzzell and Tu, 1984; 
Lim, 1985). Similarly, five strains (A to E) have been identified in Japan (Takahashi et al., 
1963; Takahashi et al., 1980). In Canada, a necrotic strain, SMV-N, and a number of G2 
isolates were identified (Tu and Buzzell, 1987; Gagarinova et al., 2008a; Viel et al., 2009). But 
SMV-N shares high sequence similarity with the G2 group and is thus considered a G2 
isolate (Gagarinova et al., 2008b).  
In South Korea, SMV was also monitored by pathotype. All the SMV G strains, including G1 
through G7, SMV-N, G5H, G7a and G7H, have been found (Seo et al., 2009), but dominant 
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strains varied in different times. For instance, G5 caused about 80% of the SMV damages in the 
early 1980s, whereas in the late 1980s, G5H was a dominant strain, responsible for over 65% of 
the SMV-caused losses (Cho et al., 1983; Kim, 2003). More recently, G7H became the most 
prevalent strain and accounted for approximately 50% of SMV incidence in soybean fields 
(Kim et al., 2003; Seo et al., 2009). Due to the genetic variability of SMV and strong selection 
pressure, resistance breaking isolates may occur. Indeed, several resistance-breaking isolates 
including CN18 were identified in soybean fields in South Korea (Choi et al., 2005).  
In China, SMV isolates were grouped into strains based on geographical distributions and 
responses in soybean resistant cultivars (Wang et al., 2003; Guo et al., 2005; Wang et al., 2005; 
Zhan et al., 2006). For instance, SMV isolates found in Northeast China were grouped into 
three strains, No. 1, 2, 3 using three soybean cultivars (Lv et al.,1985), whereas SMV isolates  
identified in  Jiangsu Province were classified into strains Sa, Sb, Sc, Se, Sg and Sh based on 
pathogenicity in 10 other cultivars (Pu et al., 1982; Chen et al., 1986). Recently, a more 
comprehensive study using 10 soybean cultivars has classified 606 SMV isolates identified in 
South China into 21 strains,  SC1 through SC21 (Li et al., 2010b). Since an SMV isolate may be 
grouped into different groups when different sets of soybean cultivars are used, obviously this 
creates difficulty for SMV identification, exchange of resistance germplasm, and comparison of 
resistance assay results. It is necessary to establish a standardized system for strain 
classification in China as well as other countries in the world. 
It is worth to mention that SMV grouping based on their sequence similarity may be a more 
reliable approach. As more and more SMV isolates are sequenced, the complete genome 
sequences and partial gene sequences can be used to study the phylogenetic relationship and 
molecular variability (Frenkel et al., 1989; Saruta et al., 2005; Schirmer et al., 2005; Wetzel et al., 
2006; Gagarinova et al., 2008b; Seo et al., 2009). The outcomes of these studies will certainly 
provide new insights into the evolutionary process of SMV in relation to its natural hosts.  

2.5 Diagnosis 

Because the initial infection source of SMV is mainly the seeds from SMV-infected soybean 
plants, the accurate diagnosis of SMV is very important for its effective management. A 
conventional method for SMV detection is to inoculate diagnostic hosts (indicator plants) to 
observe differential visual symptoms and determine the host range. The diagnostic host 
species and symptoms for SMV are: Chenopodium album or C. quinoa, chlorotic local lesions; 
Lablab purpureus, necrotic local lesion; Macroptilium lathyroides, systemic mosaic; Phaseolus 
vulgaris, systemic mosaic with some strains in some cultivars, but often latent or no 
infection; P. vulgaris cv. Top Crop, necrotic local lesions at 30°C in detached leaves (ICTVdB 
Management, 2006). The advantage of this method is relatively simple and does not require 
expensive instrument and complex techniques. This method, however, is not sensitive and 
requires considerate time and greenhouse space. 
To overcome these shortcomings, serological assays have been used for SMV detection. 
These include the direct double sandwich – enzyme-linked immunosorbent assay (DAS-
ELISA), indirect-ELISA, tissue-print immunoassay (TPIA), dot immunobinding assay 
(DIBA), immunosorbent electron microscopy (ISEM), immunofluorescence and western 
blotting. Some of these methods, particularly ELISA-related technology, can be used for the 
detection and quantitative estimation of a large number of soybean samples and thus are 
commonly used for SMV detection and screening.  In addition to protein-based technology, 
highly sensitive polymerase chain reaction-based technology such as reverse transcription 
polymerase chain reaction (RT-PCR) and real-time PCR have also been widely used for SMV 
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detection. The SMV viral genome-derived PCR products may be sequenced, allowing 
comparison analysis with the published SMV sequence and providing the most accurate 
information for identification of virus strains. 

3. Molecular biology of SMV 

3.1 Sequence and genomic organization 

The genome of SMV is a positive single-stranded [(+)ss] monopartite RNA molecule. 
Complete sequencing of 45 SMV isolates including all G1 to G7 strains suggests the SMV 
genome is approximately 9600 nucleotides (nt) in length (Jayaram et al., 1992; Gagarinova et 
al., 2008a). There is a virus genome-linked protein (VPg) at the 5' end and a poly(A) tail at 
the 3' end. The genomic RNA contains one long open reading frame (ORF) and a smaller 
ORF resulting from a frame-shift, both together encoding 11 mature viral proteins (Berger et 
al., 2005; Chung et al., 2008). From the N to C terminus of the two polyproteins, the 11 
mature proteins are: P1 (the first protein), HC-Pro (the helper component/protease), P3 (the 
third protein), P3N-PIPO (resulting from the frame-shift in the P3 cistron), 6K1 (the first 6 
kDa peptide), CI (the cylindrical inclusion protein), 6K2 (the second 6 kDa peptide), NIa-
VPg (nuclear inclusion “a”–viral genome-linked protein; also VPg), NIa-Pro (nuclear 
inclusion “a” protein–the protease), NIb (the nuclear inclusion “b” protein), CP (coat 
protein) (Jayaram et al., 1992). Most of these viral proteins are multi-functional.  

3.2 SMV-host interactions 

Due to the availability of a large number of SMV isolates as well as numerous soybean 
cultivars, the SMV-soybean interaction may be the most complex of virus-plant interactions. 
As briefly discussed above, SMV is classified into different strains based on their different 
responses on several susceptible and resistant cultivars. These responses include susceptible 
(mosaic or crinkling), necrotic, or resistance (symptomless). In soybeans, three independent, 
dominant resistance loci, Rsv1, Rsv3 and Rsv4 conferring genetic resistance to partial or all 
SMV strains have been identified. Rsv2 was initially assigned to the resistance gene in 
cultivar OX670 and later dropped when it was revealed to actually possess two resistance 
genes, Rsv1 and Rsv3 (Gunduz et al., 2001). 
Rsv1 is a single-locus, multi-allelic gene. It was initially named Rsv and found in PI96983 
soybean (Kiihl and Hartwig, 1979) and later renamed Rsv1 (Chen et al., 1991). Subsequent 
studies on soybean cultivars resistant to SMV revealed additional eight different Rsv1 
alleles, Rsv1-t, Rsv1-y, Rsv1-m, Rsv1-k, Rsv1-r, Rsv1-h, Rsv1-s and Rsv1-n from cultivars 
Ogden, York, Marshall, Kwanggyo, ‘Raiden’, ‘Suweon 97’, LR1 and PI507389, respectively 
(Kiihl and Hartwig, 1979; Buss et al., 1997; Buzzell and Tu, 1989; Chen et al., 1991, 1993, 
1994, 2001, 2002; Ma et al., 1995; Zheng et al., 2005). The responses of soybeans carrying 
these Rsv1 alleles to different SMV strains are diverse, ranging from extreme resistance 
and necrosis to mosaic symptoms. The nine Rsv1 alleles confer resistance to lower 
numbered SMV strain groups (G1 to G3), but allow mosaic or necrotic reactions to higher 
numbered strain groups (G5 to G7). Rsv1 was mapped to the molecular linkage group F 
(soybean chromosome 13) in a cluster of resistance genes (Gore et al., 2002; Hwang et al., 
2006). Rsv3, another single dominant gene, was found in cultivar Columbia, conditioning 
systemic necrosis against SMV strains G1 and G4 (Buzzell and Tu, 1989). Resistance 
cultivar L29, a Williams isoline contains an Rsv3 allele derived from cultivar Hardee 
(Gunduz et al., 2002). Soybean plants carrying Rsv3 alleles  are resistant to higher 
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numbered strains G5 through G7, but susceptible to lower numbered strains G1 to G4 
(Gunduz et al., 2002). Rsv3 was mapped to the molecular linkage group B2 (soybean 
chromosome 14), also containing a cluster of disease resistance genes (Jeong et al., 2002). 
Rsv4 is the third resistance gene of soybean, independent of Rsv1 and Rsv3. It was 
reported in PI486355 and isolated in V94-5152, derived form hybrid PI486355 x Essex 
(Buss et al., 1997). Columbia was also found to carry Rsv4 (in addition to Rsv3) (Ma et al., 
2002). Rsv4 is dominant, non-necrotic and non-strain specific, conferring resistance to all 
strains of SMV (Ma et al., 1995). It was mapped to the molecular linkage group D1b 
(soybean chromosome 2) where no other resistance genes have been found (Hayes et al., 
2000; Saghai Maroof et al., 2010).  
To study Rsv1-SMV interaction, Hajmorad et al. (2005) used the Rsv1 gene in soybean 

PI96983 conferring extreme resistance to several G strains but susceptible to two G7 isolates, 

G7 and G7d. The former induced a leathal systemic hypersensitive response (LSHR) in 

PI96983, whereas the later, an experimentally evolved variant of G7, caused systemic mosaic 

symptoms. Through SMV chimeric infectious clones resulting from swapping different 

genomic regions of G7 and G7d and further SMV mutants through point mutagenesis, P3 

was narrowed down to be the elicitor of Rsv1-mediated LSHR (Hajimorad et al., 2005).  

However, further studies using G7 and other SMV strains suggest the absence of P3 elicitor 

function alone is not sufficient to gain virulence and HC-Pro complementation of P3 is 

required for G7 to gain virulence (Hajimorad et al., 2006, 2008). To elucidate SMV-Rsv3 

interaction, Zhang et al. (2009) used a G2 isolate (SMV-N) that systemically infects Rsv3 

soybean and a G7 isolate which is restricted by Rsv3 (Zhang et al., 2009). Infection test using 

recombinant SMVs from exchanging fragments between the avirulent G7 and the virulent 

SMV-N concluded that both the N- and C-terminal regions of the CI protein are required for 

Rsv3-mediated resistance (Zhang et al., 2009). For G2-Rsv4 interaction, Chowda-Reddy et al. 

(2010) constructed two infectious clones corresponding to a naturally occurring resistance-

breaking isolate and its closely related non-resistance-breaking avirulent isolate (Gagarinova 

et al., 2008a). Using the similar strategy described above, they determined that P3 in the G2 

strain is an avirulent elicitor for Rsv4 (Chowda-Reddy et al., 2010). Despite these studies, 

how these resistance genes control resistance to SMV and how the elicitors trigger resistance 

response to SMV remain unknown. 

In susceptible cultivars, SMV-soybean interaction is a compatible reaction. After entry into 

the cell, SMV proceeds viral genome translation and replication, vial particle assembling, 

and cell-to-cell and long-distance movement. Such compatible virus infection often induces 

and suppresses host gene expression at the global level (Whitham et al., 2006). Babu et al. 

(2008) assessed transcriptional changes in susceptible soybean cultivar Williams 82 infected 

by SMV using microarray. A number of transcripts encoding proteins for hormone 

metabolism, cell-wall biogenesis, chloroplast functions and photosynthesis were shown to 

be repressed at 14 days post infection (Babu et al., 2008). Theses changes were associated 

with the highest levels of SMV genomic RNA in the host cells and the progression of mosaic 

and vein clearing symptoms (Babu et al., 2008). The expression levels of a number of 

transcripts corresponding to genes involved in defense were either downregulated or not 

affected at the early stages of infection, but upregulated at the late stages (Babu et al., 2008). 

These data suggest that in susceptible cultivars, the plant immune response is not activated 

until the late time point of infection and such a delayed defense response may be critical for 

SMV to establish its systemic infection.   
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3.3 SMV replication 

SMV enters soybean cells either through a mechanical abrasion or by an aphid vector. 
Subsequently, uncoating of the viral RNAs in the cytoplasm, translation of the polyprotein 
and replication of the viral genome occur. Accumulated evidence suggests the replication of 
eukaryotic positive-strand RNA viruses including plant potyviruses is associated with 
intracellular membranous structures (Wei and Wang, 2008). These membranous vesicles 
have been proposed to provide a scaffold for anchoring the virus replication complex 
(VRC), confine the process of RNA replication to a specific safeguarded cytoplasmic location 
to prevent the activation of host defense responses, and to recruit the components required 
for replication and maintain the proper concentrations of these components (Wileman, 
2006). The potyvirus VRC-containing vesicles seem to originate at endoplasmic reticulum 
exit sites (ERES), traffic along the microfilaments and target chloroplasts for replication (Wei 
et al., 2010). It has been shown that in potyvirus-infected plant cells, these vesicular 
compartments contain a number of host proteins, i.e., heat shock cognate 70-3 (Hsc70-3), 
poly(A)-binding protein (PABP), eEF1A and eIF(iso)4E, and several non-structural viral 
proteins, such as the 6K2, NIb (the viral RNA dependent RNA polymerase, RdRp), NIa 
(including NIa-VPg or NIa-Pro or as a precursor protein) and CI (Dufresne et al., 2008; 
Thivierge et al., 2008; Cotton et al., 2009; Wei et al., 2010a).  
The 6K2 (also called 6K) protein is an integral membrane protein that induces the formation 
of 6K-containing membranous vesicles at ERES (Wei and Wang, 2008). These ER-derived 
vesicles further target chloroplasts where they amalgamate and induce chloroplast 
membrane invaginations (Wei and Wang, 2008; Wei et al., 2010a). Thus, 6K plays a pivotal 
role in the formation and targeting of VRC-associated vesicles. Since NIb has the RNA 
polymerase activity (Hong and Hunt, 1996), NIa-VPg (also called VPg) is the genome-linked 
protein (Murphy et al., 1996; Schaad et al., 1996) and CI has the helicase activity (Laín et al., 
1990), it is not surprising that these viral proteins are present in VRC-associated vesicles and 
involved in the replication of potyviruses (Revers et al., 1999). It has been suggested that NIa 
is brought into VRCs by the domain for the 6K protein present on the intermediate 
precursor protein 6K-NIa (Restrepo-Hartwig and Carrington, 1992; Thivierge et al., 2008). 
The NIb protein (RdRP) has been reported to be present in the vesicles induced by 6K-NIa 
due to its physical interaction with NIa or as an intermediate precursor (6K-NIa-NIb) (Daròs 
et al., 1999; Dufresne et al., 2008; Thivierge et al., 2008). The viral RNA is probably enclosed 
to VRCs by the RNA-binding domain of NIb (Thivierge et al., 2008; Dufresne et al., 2008).  
The host proteins, heat shock cognate 70-3 (Hsc70-3), poly(A)-binding protein(PABP) and 
eEF1A are recruited by VRC likely through interactions with NIb, and eIF(iso)4E is present 
in the replication vesicles as an interactor with VPg (Dufresne et al., 2008; Thivierge et al., 
2008). Within the induced vesicles, the RdRp binds to the 3' termini of the viral (+)RNA to 
initiate transcription of negative strand replicative form RNA. This (-)RNA intermediate is 
used as a template to produce progeny (+)RNAs that are delivered to the cytoplasm for 
translation or encapsidation. The CP binds positive-sense progeny (+)RNAs to form 
progeny virions with VPg attaching on the end. The potyvirus replication possibly begins 
with uridylylation of VPg which acts as a primer for progeny RNA synthesis, a process 
shared by the Picornaviridae family (Puustinen and Mäkinen, 2004).  

3.4 SMV cell-to-cell and long-distance movement 

After replication and assembling, nascent virus particles will spread to neighboring cells 
and further to other parts of the plant. The first process is called cell-to-cell movement and 
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the latter long-distance movement. Cell-to-cell movement of viruses occurs through 
plasmodesmata (PD), a specialized intercellular organelle, unique to the plant kingdom. 
This is an active process mediated by virus-encoded protein(s) termed movement protein 
(MP). Potyviruses do not encode a dedicated MP, and movement functions have been 
allocated to several proteins. Of the 11 potyvrial proteins, CP, VPg, HC-Pro, CI and P3N-
PIPO have been suggested to have functions in intercellular transport (Dolja et al., 1994, 
1995; Nicolas et al., 1997; Rojas et al., 1997; Carrington et al., 1998; Wei et al., 2010b; Wen et 
al., 2010). Accumulating evidence indicates that HC-Pro and VPg are essential in other aspects 
of the infection process such as viral genome replication or suppression on host defense (RNA 
silencing) (Kasschau and Carrington, 1998; Puustinen and Mäkinen, 2004), whereas CP, CI and 
P3N-PIPO are likely to be MPs of potyviruses. The potyviral CP is a three-domain protein with 
variable N- and C-terminal regions exposed on the particle surface and a conserved core 
domain that interacts with viral RNA (Allison et al. 1985; Shukla and Ward 1988). The C 
terminal part of SMV CP contains two small regions (amino acids 190-212 and 245-249) 
required for CP-CP interaction and virus assembly (Kang et al., 2006). Mutations in the CP-
core domain result in defective cell-to-cell movement and virion assembly (Dolja et al., 1994, 
1995; Rojas et al., 1997; Jagadish et al. 1993), suggesting potyviruses likely move as virions. The 
potyvirus CI has been suggested to play a role in cell to cell movement (Laín et al. 1990; Eagles 
et al. 1994; Klein et al. 1994). High-resolution ultrastructural analyses indicate that CI forms the 
cone-shaped structures at the cell periphery adjacent to PD (Rodríguez-Cerezo et al. 1997; 
Roberts et al. 1998, 2003). In the case of the newly found P3N-PIPO protein, it has been shown 
that mutation of the putative SMV PIPO domain impeded cell-to-cell movement (Wen et 
al.,2010) and that P3N-PIPO mediated  the formation of CI conical structures at PD (Wei et al., 
2010b). Based on the model suggested by Wei et al. (2010b), cell-to-cell movement may be 
initiated when the recruitment of nascent virus particles by CI or self-interacting CI structures 
at membrane-bound sites of replication adjacent to chloroplasts. Then CI-virion complexes 
may associate with either pre-targeted P3N-PIPO followed by trafficking to PD, or with PD-
associated P3N-PIPO. CI structures accumulate from P3N-PIPO-anchored sites at PD, forming 
thread-like structures that might recruit additional virus particles for transport. Virus particles 
fed through the CI structures and PD to enter the adjacent cell may be facilitated by PD-
traversing CI complexes.  
Long-distance movement is the process by which the virus moves from the mesophyll via 
bundle sheath cells, phloem parenchyma, and companion cells into phloem sieve elements 
(SE) where they are translocated, then unloaded at a remote site from which further 
infection will occur (Carrington et al. 1996). Due to the complexity of the various cellular 
structures involved, the molecular mechanism of potyviral long-distance movement is 
poorly understood. Four potyviral proteins, i.e., CP, HC-Pro, VPg and 6K2, have been 
suggested to be implicated in long distance movement. HC-Pro and CP are both 
multifunctional proteins (Shukla et al., 1994; Mahajan et al., 1996; Maia et al., 1996). The 
central region of HC-Pro and both termini of CP were shown to be essential for virus long-
distance movement (Dolja et al., 1994, 1995; Cronin et al., 1995; López-Moya and Pirone, 
1998). VPg affecting long-distance movement may function through its direct or indirect 
interaction with host components (Schaad et al., 1997). The 6K2 protein of Potato virus A is a 
host-specific determinant for long-distance movement in N. tabacum and N. benthamiana 
(Spetz and Valkonen, 2004). Potyvirus long-distance movement also requires a set of host 
factors. Strain and virus specific restriction of movement in plants has been described in 
several virus-host systems. Genetic characterization from natural ecotype variations and 
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chemically induced mutants has revealed that at least three dominant genes named RTM1, 
RTM2 and RTM3 are involved in the restriction of long-distance movement of potyviruses 
in the Arabidopsis accession Columbia (Col-0) (Mahajan et al., 1998; Whitham et al., 1999). 
These RTM factors affect the potyvirus long-distance transport through direct or indirect 
interaction with CP (Decroocq et al., 2009). 

4. Control of SMV 

The best strategy against plant viruses is either through the physical separation of the 
pathogen and host to avoid, or through the deployment of genetic resistance to prevent or 
limit the extent of the infection (Maule et al., 2007). In practice, the SMV-infected seeds and 
aphid transmission are the most prevalent factors causing SMV in fields. Thus, utilization of 
virus-free seeds and avoiding aphid transmission are an effective management measure 
against SMV in farming practices. Although considerable time and cost may be required for 
developing varieties, breeding for genetic stable varieties with the appropriate range of 
resistances is still the preferred and reliable approach to control the disease. 

4.1 Breeding using natural resistance genes 

All the three genetically identified resistance genes (Rsv1, Rsv3 and Rsv4) have been 

deployed in China, the United States, Canada and other courtiers for controlling SMV. A 

number of soybean accessions (germplasm) and cultivars carrying resistance to SMV have 

been identified and used in the breeding program. V94-5152 confers an early resistance at 

the Rsv4 locus to SMV G1 to G7. The OX670, Tousan 140 and Hourei soybean were shown to 

possess two genes, Rsv1 and Rsv3 (Gunduz et al. 2001, 2002), conferring resistance to G1 to 

G7 too. In China, Zao18 and J05 also carry Rsv1 and Rsv3 (Liao et al. 2002; Zheng et al., 

2006). Zao18 was reported to be resistant to all strains found in Northeast China and 

majority strains in Southern China, while J05 is resistant to the most virulent strains of SMV 

in Northeastern China (Zheng et al., 2000). In addition, Columbia soybean was shown to 

carry two genes, Rsv3 and Rsv4, for resistance to SMV G1 to G3 and G5 to G7 (Ma et al. 2002, 

2004). All these soybean genotypes resistant to SMV are the valuable resource for breeding 

programs. Since the seed-borne, aphid-transmitted SMV is genetically variable and 

continually evolving via RNA recombination and spontaneous mutations by its own error-

prone RdRp, strong directional selection would lead to the occurrence of resistance-breaking 

isolates (Choi et al., 2005; Saruta et al., 2005; Gagarinova et al., 2008a). Incorporation of 

multiple resistance genes into a soybean genotype (cultivar or variety) through gene 

pyramiding becomes a priority for soybean breeders to develop durable resistance to SMV. 

To assist in breeding programs, molecular markers of all the three resistance genes have 

been developed based on fine mapping with several molecular techniques such as 

restriction fragment length polymorphism (RFLP), random amplified polymorphism DNA 

(RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR) 

and single nucleotide polymorphisms (SNP) (Yu et al., 1994; Hayes et al., 2000; Gore et al., 

2002; Jeong et al., 2002; Jeong and Saghai Maroof, 2004; Hwang et al., 2006; Shi et al., 2008).  

4.2 Development of genetic resistance through biotechnology 

Pathogen-derived resistance (PDR) is an established, effective approach to engineer 
resistance to plant viruses in plants.  It has been used to develop genetic resistance against a 
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wide range of plant viruses including potyviruses (Powell-Abel et al., 1986; Lius et al., 1995; 
Di et al., 1996; Wang et al., 2009). This approach requires generation of transgenic plants 
with partial viral genomes. The resulting resistance is often mediated by RNA silencing or 
posttranscriptional gene silencing (PTGS) which induces sequence-specific degradation of 
viral RNA (Waterhouse et al., 2001). But the RNA silencing-mediated resistance may be 
overcome in two scenarios (Huang et al., 2010), i.e., in mixed infections by a strong silencing 
suppressor from unrelated viruses (Mitter et al., 2001) or through mutations during virus 
replication by the viral RdRP that lacks  proofreading activities (Kang et al., 2005b). 
To develop PDR against SMV, the CP and 3’-UTR region of the SMV N isolate (strain G2) 
was engineered into soybean (Wang et al., 2001). The expression of the single copy of the 
partial viral genome segment was controlled by the cauliflower mosaic virus 35S promoter. 
Two transgenic lines showed high resistance to all SMV strains or isolates tested including 
G2, G6, G7 and an isolate named A15 obtained from South Carolina (Wang et al., 2001). 
None of the transgenic lines showed immunity to SMV infection (Steinlage et al., 2002). 
Since the transgenes that produce mRNA containing an intron-spanned hairpin structure 
usually induce high level of PTGS (Smith et al., 2000; Waterhouse et al., 2001), it is expected 
that soybean transformed with such constructs may obtain stronger resistance or immunity 
to SMV.  

4.3 Novel strategies to control SMV 

During the past several years, several new strategies have been developed against plant 
viruses. At the protein level, one approach is to engineer transgenic plants producing 
desirable proteins that can inhibit activities of essential viral proteins (Sanfaçon, 2009). For 
instance, transgenic plants expressing single-chain antibodies specific for the viral RdRp 
were shown to be resistant to a tombusvirus and several related viruses (Boonrod et al., 
2004). Broad application of this approach may be hindered by the adverse pleiotropic 
effects of the antibodies and low levels of protein accumulation due to unwanted PTGS 
(Sanfaçon, 2010). At the RNA level, one of the reported approaches is to utilize artificial 
miRNAs which are small RNA molecules of 21-25 nucleotides long and negatively 
regulate the expression of their target genes in plants. miRNA precursors can be modified 
to produce artificial miRNA specifically targeting virus of interest and to induce 
resistance to the virus (Niu et al., 2006). Artificial miRNAs may be designed to target 
conserved regions of a virus family or related viruses to gain broad resistance. Since the 
miRNAs approach eliminates the potentially undesired recombination events due to their 
short length and does not involve translation because of their untranslatable nature, it 
becomes a very promising technology for controlling plant viruses. An alternative 
approach to the utilization of transgene-derived miRNAs is the direct application of PTGS 
inducer, long double-strand RNA (dsRNA) (Tenllando et al., 2003). Spray onto the surface 
of plant leaves with bacteria-produced double-strand RNA was shown to be efficient 
against different viruses (Tenllando et al., 2003). Limitations of this approach may rely on 
the maintenance of effectiveness of dsRNA, costs of dsRNA production and safety of 
large-scale application of dsRNA in the field.  
Advances in the understanding of molecular virus-plant interactions as well as the virus life 
cycle will certainly assist the development of novel antiviral strategies. One emerging 
technology is to induce recessive resistance. The rational of this approach is that plant 
viruses have a relatively small genome that encodes a limited number of proteins and thus 
must depend on host gene products to fulfill their life cycle. Silencing or mutation of host 
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factors required for virus infection will generate genetic resistance to the virus.  Over the last 
decade, a number of host factors required for potyvirus infection have been identified and 
examples include eIF4E, eIF(iso)4E, eIF4G, PABP, AtRH8 and PpDDX (Lellis et al., 2002; 
Ruffel et al., 2002, 2005; Nicaise et al., 2003, 2007; Gao et al., 2004; Kang et al., 2005; Decroocq 
et al., 2006; Bruun-Rasmussen et al., 2007; Dufresne et al., 2008; Huang et al., 2010). Recently 
Piron et al. (2010) have reported a successful story about how to deploy host factors for the 
development of resistance to potyviruses in tomato. They exploited a chemical-induced 
tomato mutant population, screened for mutants of eIF4E and eIF4G using a reverse genetic 
tool, TILLING (Targeting Induced Local Lesions IN Genomes), and identified a splicing 
mutant of eIF4E. The mutant was shown to be immune to two plant potyviruses (Piron et 
al., 2010). This example is particularly encouraging as the mutant did not involve in genetic 
transformation. The technology may be adapted for the generation of resistance to viral 
diseases in virtually any crops including soybean. 

5. Conclusion remarks 

Soybean is one of a few most important crops in the world and serves as a principal dietary 

food and oil source. Soybean oil is also considered a promising alternative to fossil oil. SMV 

is one of the major biotic factors that adversely affect soybean production. In this chapter, 

we have briefly discussed SMV as a pathogen, SMV-soybean interactions and its current and 

future control strategies. The current measures to control damages caused by SMV are (1) 

the development and use of soybean cultivars carrying at least one resistance gene, (2) the 

use of SMV-free seeds, (3) the selection of proper planting time, and (4) the control of aphid 

with pesticides. Along with the climate change (such as global warming), the emergence of 

new severe isolates (including resistance-breaking isolates) and new vectors such as Aphis 

glycines, and an increasing rate of synergic infections of SMV and other soybean viruses, the 

current measures are becoming less and less effective. After extensive screening over a 

considerable time, isolation of new natural SMV resistance genes from existing germplasm 

is not optimistic. New technologies must be developed to deal with SMV. One of future 

research directions might be on identification of soybean genes that are required for SMV 

infection. These genes will be new targets for manipulation against SMV. SMV starts from 

infected seeds but spreads from plant to plant by aphids. Unfortunately, very little study has 

been done on SMV-aphid interactions. This may be a topic of collaborative research between 

plant virologists and entomologists. Recently, the complete draft sequence of soybean has 

been released (Schmutz et al., 2010). The availability of the complete soybean genome 

sequence will certainly facilitate the molecular cloning and characterization of the three R 

genes and elucidating their resistance signaling pathways, and provide a better 

understanding of the co-evolutionary events of the R genes and the SMV genome. 

Information from these studies will help develop novel strategies against SMV and other 

related viruses. 
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