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1. Introduction    

Phomopsis seed decay (PSD) of soybean, Glycine max (L.) Merrill, is the major cause of poor 
seed quality in most soybean-growing countries (Sinclair, 1993). The disease is caused 
primarily by the fungal pathogen, Phomopsis longicolla, along with other Phomopsis and 
Diaporthe spp. PSD severely affects soybean seed quality due to reduction in seed viability 
and oil content, alteration of seed composition, and increased frequencies of moldy and/or 
split beans (Hepperly & Sinclair, 1978; Rupe and Ferriss, 1986; Rupe 1990; Wrather at al., 
2004). Hot and humid environmental conditions, especially during the period from the pod 
fill through harvest stages, favor pathogen growth and disease development (Balducchi & 
McGee, 1987; Hartman et al., 1999).  
PSD has resulted in significant economic losses (Baird et al., 2001; Hepperly and Sinclair, 
1978).  Losses on a worldwide basis were approximately 0.19 million metric tons (MMT) in 
1994 (Kulik & Sinclair, 1999).  Effects of PSD on yields in the United States from 1996 to 2007 
ranged from 0.38 to 0.43 MMT (Wrather & Koenning, 2009). In 2009, due to the prevalence of 
hot and humid environmental conditions from pod fill to harvest in the southern United 
States, PSD caused over 12 million bushels of yield losses in 16 states (Koenning, 2010). 

2. Disease symptoms 

Soybean seeds infected by P. longicolla or other Phomopsis spp. range from symptomless to 
shriveled, elongated, or cracked, and often appear chalky-white (Fig. 1). Infected seeds either 
fail to germinate or germinate more slowly than healthy seeds.  Seed infection causes pre- and 
post-emergence damping-off, and under severe conditions, stands can be reduced to the point 
of lowering yield (Kulik & Sinclair, 1999; Sinclair, 1993). Soybean pods can be infected at any 
time after they form. The fungi initially colonize seed coats, followed by colonization of the 
cotyledons and plumules. Mycelia invade the ovule and developing seeds through the 
funiculus and hilum.  Within the seed, the fungi colonize all tissues of the seed coat and 
cotyledons, and eventually the radicle and plumule as well. (Kulik & Sinclair, 1999).   
Although P. longicolla is primarily known as a seedborne pathogen, it can be isolated from 
all parts of plant. It was the predominant species isolated from diseased plants collected 
from nine locations over a 3-year period in Canada (Xue et al., 2007).  In another study, P. 
longicolla was the most frequently isolated fungal pathogen from both discolored and non-
discolored mature soybean stems (Harrington et al., 2000).  It was also reported that P. 
longicolla was the major fungal species with the highest isolation frequency from all 
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Fig. 1. Phomopsis seed decay caused primarily by the fungus Phomopsis longicolla. 

vegetative plant parts, pods, and seeds in hot and humid environments over a 3-year period 
(Mengistu et al., 2009).  

3. The causal agents 

Species of the coelomycete genus Phomopsis (Sacc.) Bubák have been frequently isolated 
from different parts of host plants including seeds, stems, leaves and roots from a wide 
range of angiosperms, gymnosperms, and occasionally from bryophytes and pteridophytes 
(Farr et al., 1989). Over 65 species of Phomopsis have been reported as plant pathogens, and 
some of them cause severe diseases in economically important crops (Rehner and Uecker, 
1994). Although PSD of soybean is caused primarily by Phomopsis longicolla T.W. Hobbs (Fig. 
2), other Diaporthe and Phomopsis spp. have been found to be associated with the disease 
(Hartman et al., 1999; Sinclair, 1993). 

3.1 Diaporthe – Phomopsis complex 

The members of the Diaporthe – Phomopsis complex consist of P. longicolla and three varieties 
of Diaporthe phaseolorum (Cooke and Ellis) Sacc. (anamorph P. phaseoli (Desmaz) Sacc.), in 
which D. phaseolorum var. caulivora K. L. Athow and R. M. Caldwell, and D. phaseolorum var. 
meridionalis  Fernández cause stem canker of soybean while D. phaseolorum var. sojae (S. G. 
Lehman) Wehmeyer causes pod and stem blight (Sinclair, 1993; 1999). The Diaporthe – 
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Fig. 2. Isolates of Phomopsis longicolla collected from Mississippi Delta in 2006 and grown on 
acidified potato dextrose agar (pH 4.5) at 24°C for 20 days. 

Phomopsis complex is distributed worldwide and causes more losses in soybean than any 
other single fungal pathogen (Sinclair, 1993).  P. longicolla differs from others in the Diaporthe 
– Phomopsis complex in its morphology. It also does not have a known teleomorph (Hobbs et 
al., 1985). Although other Diaporthe and Phomopsis spp. may be associated with PSD, the 
disease is primarily caused by P. longicolla (Sinclair, 1993). 

3.2 Discovery and description of Phomopsis longicolla 

Phomopsis longicolla was first identified in 1985 (Hobbs et al., 1985).   The majority of isolates  

used in that study were obtained as mycelial cultures from soybean seed, pod, and stem 

tissues collected from various locations in several states in the U. S.  Hobbs et al. (1985) 

found that isolates used in their study could be divided into two groups based on colony 

appearance on potato dextrose agar (acidified to pH 4.5 with 85% lactic acid) after being 

incubated under intermittent fluorescent light with a photoperiod of 12 hours daily for 2 

weeks. Isolates from the first group clearly fit Lehman’s (1923) description of P. Sojae and 

were always associated with a telemorph D. phaseolorum var. sojae. In contrast, isolates from 

the second group never formed perithecia.  These isolates differed from Lehman’s 

description of P. sojae,  and from the isolates in the first group, in the shape of the pycnidial 

locule, the morphology of the conidiomata, the size and shape of the stromata, and in the 

conidiophore morphology (Hobbs et al., 1985).   Hobbs et al. (1985) pointed out that isolates 

similar to the second group might have been observed in the past, but were probably 

reported as D. phaseolorum var. sojae. In addition, isolates in the second group were distinct 

from P. glycines and P. phaseoli Petch, the other Phomopsis species described from soybean. 

Based on the mophological differences and the pathological and ecological notes in reported 
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studies (Kmetz et al., 1974; 1979),  Hobbs et al. (1985) proposed that isolates similar to those 

in the first group retained the name of Phomopsis sojae, while isolates from the other group 

was described as a new species, Phomopsis longicolla. The description of P.  longicolla by 

Hobbs et al. (1985) is as follows: 

“Phomopsis longicolla Hobbs, sp. Nov. 
Colonies on potato dextrose agar floccose, dense, white with  occasional greenish-yellow areas; 
reverse colorless with large black stromata. Conidiomata pycnidial, black, stomatic, solitary or 
aggregated, unilocular or multilocular, with prominent necks more than 200 µm long, opening 
by apical ostioles. Locules uniostiolate or multiostiolate, globose, up to 500 µm wide. 
Conidiophores hyaline, simple or usually branched, septate, 3.5-24 x 1-4 µm. Conidiogenous 
cells hyaline, filiform, phialidic. Alpha-conidia hyaline, ellipsoid to fusiform, guttulate, 5-9.5 x 
1.5-3.5 µm. Beta-conidia rare, hyaline, filiform, hamate. Isolated from seeds, pods, and stems of 
Glycine max (L.) Merr.; TWH P74 (BPI), Holotype, Hobbs, Wooster, Ohio, 13. XI.. 1983.” 

3.3 Molecular detection and identification of the pathogens 
Because of the economic impacts of the PSD, accurate detection and identification of the 
PSD-causing pathogens are important for the development of the disease control strategies. 
The potato dextrose agar (PDA) seed-plating bioassay (Sinclair, 1982) is a common method 
used to identify causal fungi based on culture morphology. However, this traditional 
approach is very time-consuming and labor-intensive. Furthermore, the circumscription and 
identification of Phomopsis species using morphological and cultural characteristics is 
hampered by the plasticity of the characteristics. It was reported that in Phomopsis, 
morphological and cultural variation within single isolate may be as great as variation 
observed among isolates (Nitimargi, 1935; Parmeter, 1958). Serological assays, such as 
enzyme-linked immunosorbent assay (ELISA), also have also been used to detect PSD 
causal pathogens in plants and seeds (Brill et al., 1994; Gleason et al., 1987; and Velicheti et 
al., 1993). Due to insufficient specificity and sensitivity, the serological approaches are not 
used routinely in seed-testing laboratories. Molecular approaches, such as the polymerase 
chain reaction (PCR) and DNA sequencing are now commonly used to detect and identify 
fungal pathogens in plant tissues including soybean pathogens in soybean (Harrington et 
al., 2000; Li & Hartman, 2003; Zhang et al., 1997). 
Zhang et al. (1997) designed primers based on the sequences of nuclear ribosomal DNA that 
amplified the internal transcribed spacer (ITS) region of D. phaseolorum and P. longicolla. 
These primers could be used to specifically distinguish PSD-causal pathogens from each 
other and from other soybean fungal pathogens (Zhang et al., 1997). There were no 
differences in ITS sequences among seven geographically diverse isolates of P. longicolla 
(Zhang et al., 1998). Results from analysis of DNA from the Diaporthe - Phomopsis complex 
using PCR- restriction fragment length polymorphisms (PCR-RFLP) and DNA sequencing 
in the ITS and the 5.8 ribosomal DNA, along with morphological examination, indicated 
that P. longicolla is a distinct species, that D. phaseolorum var. caulivora and D. phaseolorum 
var. meridionalis are varieties of D. phaseolorum, and that D. phaseolorum var. sojae may either 
be several varieties of D. phaseolorum, or possibly several distinct species (Zhang et al., 1998). 

3.4 Aggressiveness of Phomopsis longicolla and other Phomopsis spp. isolates on 
soybean 
Knowledge about the variability of the pathogen is essential for understanding its 
population diversity, and such information will also be important for selecting isolates to 
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develop broad-based disease resistance in soybean lines. However, there are only a few 
publications on the variability of aggressiveness on soybean among P. longicolla isolates. The 
term “pathogen aggressiveness”, as used in this chapter, is based on colonization of and 
damage to soybean (Agrios, 1999; Shurtleff & Averre, 1997). 
Mengistu et al. (2009) reported that soybean pods inoculated at the growth stage R7 with 
two P. longicolla isolates from weeds showed 25% to 30% infection of seeds, while one 
soybean isolate caused seed infection of 80%. Although the  study used only a few isolates, 
the results indicated that there were real differences in aggressiveness between the isolates.  
In a recent study, Li et al (2010b) evaluated 48 isolates from the National Soybean Pathogen 
Collection Center at the University of Illinois at Urbana-Champaign. These included 35 P. 
longicolla isolates from soybean in eight states in the U.S., along with the type culture of P. 
longicolla (Fau 600, ATCC 64802) from soybean in Ohio (Hobbs et al., 1985), two P. longicolla 
isolates from velvetleaf in Illinois (Li et al., 2001), and 11 other Phomopsis spp. isolates from 
other hosts in four states in the U.S., as well as from Canada and Costa Rica. Prior to the 
pathogenicity tests, each isolate of P. longicolla was examined for sporulation, dimension of 
conidia, pattern of stroma, and presence or absence of hyaline, filiform, and hamate beta 
conidia and perithecia to confirm identification (Hartman et al., 1999). The identifications of 
soybean isolates were verified previously by sequence analysis of the ITS regions and the 
mitochondrial small subunit rRNA genes (Li et al., 2001; Zhang et al., 1998). The identities of 
11 other Phomopsis spp. isolates from other hosts were confirmed by the USDA-ARS 
Systematic Botany and Mycology Laboratory in  Beltsville, MD (http://nt.ars-grin.gov/ 
fungaldatabases/specimens/specimens.cfm). 
Evaluating isolates of seedborne pathogen for aggressiveness based on seed infecting 
characteristics are practically difficult, especially when working with many isolates. Since P. 
longicolla can be isolated from all plant parts, the cut-seedling assay measuring stem length 
and stem lesion length under controlled greenhouse conditions is, however, an easy and 
effective method to compare isolates and provide quantitative measurements of the 
infection by isolates on soybean. This method was used to test the pathogenicity of P. 
longicolla as a new pathogen on velvetleaf not only in the US (Li et al., 2001) but also in 
Croatia (Vrandecic et al., 2004), plus it was also used to confirm the first discovery of P. 
longicolla causing soybean stem blight in China (Cui et al., 2009). In the greenhouse 
pathogenicity tests conducted by Li et al. (2010b), aggressiveness of isolates of P. longicolla 
from soybean and other Phomopsis spp. from other hosts were compared by inoculating 2-
week old soybean plants of cv. Williams 82 with them. There were significant (P ≤ 0.0001) 
differences among isolates based on stem length and stem lesion length. The P. longicolla 
soybean isolate PL16, from Mississippi, caused the shortest stem length while the non-
soybean isolate P9, from Illinois, caused the greatest stem lesion length. The type isolate of 
P. longicolla, PL31 (Fau 600), was one of the three most aggressive isolates among the  48 
isolates evaluated. The velvetleaf isolate P9 from Illinois was the most aggressive among 13 
isolates from non-soybean hosts. This study provided the first evaluation of aggressiveness 
of P. longicolla isolates from different geographic origins and the first demonstration that 
Phomopsis spp. isolated from cantaloupe, eggplant, and watermelon was able to infected 
soybean. This information is very useful for selecting isolates for screening in breeding 
broad-based resistance in soybean lines to PSD. 

4. Disease development and epidemiology 

PSD occurs in most soybean production areas, especially in the mid-south of the U.S. The 
incidence and severity of the disease vary year to year, particularly depending on the 
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weather conditions (Wrather et al., 2003; 2004). Bradley et al. (2002) observed a greater 
percentage of harvested seed infection by Phomopsis spp. in most cultivars at Champaign, 
Illinois in 1999 than 1998. In the southern U.S., because of the drought stress commonly 
occurring during the bloom and pod fill stages, the Early Soybean Production System (ESPS) 
was developed to help growers avoid late-season drought damage to soybean (Heatherly, 
1999). However, the ESPS creates a concern about seed quarlity because seed infection with 
Phomopsis spp. is high when early maturity cultivars are grown in the ESPS (Mayhew & 
Caviness, 1994). A 3-year study was conducted to investigate the effects of planting date and 
cultivar on seed yield, quarlity, and Phomopsis sp. seed infection (Wrather et al., 2003). It was 
found that the incidence of PSD was frequently high and the seed quality low in seeds from 
early-maturing maturity group (MG) III and IV soybean cultivars planted in early- to mid-
April in the southern U.S. (Wrather et al., 2003). In another study conducted in 1995 to 1997 
and in 2001 in the fields at Stoneville, Mississipi, significant effects due to year, irrigation, 
maturity group (MG), and date of planting (DOP) on the incidence of P. longicolla and seed 
germination were observed (Mengistu & Heatherly, 2006). Irrigation treatment increased the 
levels of P. longicolla infection indicating that soil moisture could increase the relative 
humidity in the canopy in a way that favors PSD development. The incidence of PSD was 
also associated with total rainfall and rainfall frequency (Mengistu & Heatherly, 2006). 

5. Disease management  

Several control strategies have been used to manage PSD and to reduce the impact of the 
disease. These include rotating soybeans with non-legume crops, such as corn or wheat, 
which are not hosts for the fungus, treating seeds with fungicides or applying fungicides 
during pod-fill, tilling the soil to disrupt spore dissemination, and harvesting mature seeds 
promptly. Along with these strategies, the use of resistant cultivars is the most effective 
method for controlling PSD (Jackson et al., 2005; Pathan et al., 2009; Roy et al., 1994), 
especially when environmental conditions are conducive for disease development. 

5.1 Screening for PSD resistance 
Screening soybean lines for resistance to PSD is the first step toward developing PSD-
resistant cultivars. A 3-year screening project begun in 2009 has been funded by the United 
Soybean Board (USB), a group of farmer-directors that administers the organization’s 
soybean checkoff program, which seeks to strengthen soybean marketing, production 
technology, and research on new, value-added uses. In this project, hundreds of soybean 
germplasm accessions representing 28 regions or origins and from MG III to V, breeding 
lines, and commercial cultivars collected around the world were screened for resistance to 
PSD in three states (Arkansas, Mississippi, and Missouri) of the U.S. (Li et al., 2010a,c, & d). 
Seeds, 33 seeds m-1 of row, were planted in 3.04-m long single row plots with a 0.96-m row 
spacing. The experimental design was a randomized complete block with four replications. 
Seeds were harvested from each plot when the plants were mature. Seeds from each plot 
were tested for percent seed infected by Phomopsis spp., percent seed germination, and 
visual quality using a scale of 1 to 5 (Fig. 3) where 1 = excellent (no bad/infected  seed); 2 = 
good (less than 10% bad/infected  seed); 3 = fair ( 11-30% bad/infected  seed); 4 = poor (31-
50% bad/infected  seed); and 5 = very poor (more than 50% bad/infected  seed). Factors 
considered in estimating seed quality were: seed wrinkling, molding, mottling, and 
discoloration. Frequent rainfall during seed maturation led to high levels of seed infection 
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by a number of fungi (Fig. 4). Significant differences in seed infection by Phomopsis spp. 
were observed among soybean lines with some lines having no infection, while others had 
infection levels as high as 90%. These differences between lines were also reflected in visual  
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Visual score of seed quality on a 1-5 scale, where 1 = excellent seed (no bad/infected 
seed) and 5 = very poor seed (more than 50% bad/infected seed). 

 

 

Fig. 4. Seed infection by a number of fungi were observed in the seed plating assays for the  
germplasm screening in United States in 2009 (Li et al., 2010 a,c, &d). 
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seed quality and seed germination (Fig. 5). Soybean lines with low infection incidences, 
good visual quality, and high germination rates at all locations were tested along with 
selected lines having differential responses to PSD cross locations in the 2010 field trials (Li 
et al., 2010 a,c, & d). In addition, field screenings of over 200 MG V plant introductions were 
conducted in Stoneville, Mississippi, U.S. from 2006 through 2009 (Li et al., 2009b). Two 
potential PSD-resistant lines were identified ( Li et al., unpublished). 
 

 

Fig. 5. Seed germination tests followed the protocol of Copeland, L. O. ed. (1981). The range 
of seed germination rates was from 10 to 100% for the assays of seed harvested from the 
germplasm screening in United States in 2009 (Li et al., 2010 a.c, &d). 

 

 

Fig. 6. Soybean lines without infection (left) and with high levels of Phomopsis spp. infection 
(right) were identified from the seed plating assay. 
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In another screening project (Li et al., 2009a), 50 soybean cultivars were planted at 
Stoneville, Mississippi to determine their reaction to PSD in 2007. Two lines, SS93-6012 and 
SS93-6181, previously reported to be PSD-resistant in Missouri were included, and the 
cultivars Hill and Williams 82 were used as susceptible checks. The seeds of soybean lines 
selected for planting were generally healthy. Of 50 lines tested, six lines had 100% 
germination, 30 lines had germination rates ranging from 80% to 97%, and 12 lines had rates 
ranging from 63% to 77%. Two lines had germination rates of 50% and 53%, respectively.  In 
the seed plating assay, 37 lines had no P. longicolla-infected seed, 10 and three lines had P. 
longicolla incidences of 3% and 7%, respectively. Incidence of P. longicolla in seeds from 
inoculated field plots differed significantly (P ≤ 0.05) ranging from 6% to 50% among 
soybean lines. Several soybean cultivars with lower disease incidence than the PSD resistant 
lines SS93-6181 and SS93-6013 were identified (Li et al., 2009a). 

5.2 Reported sources of PSD resistance 
Efforts have been made to identify sources of PSD resistance in the past decades. At least 
twenty-six soybean lines were found to have certain levels of PSD resistance (Table 1). 
However, some resistant lines identified in other regions were susceptible in Arkansas, 
Mississippi, or Missouri, U.S. (Li et al., unpublished). It is not known if there is “isolate by 
location” interaction, but there is a need to identify new sources of resistance to PSD.   

6. Inheritance of phomopsis seed decay resistance – case studies 

To date, inheritance of most reported sources of PSD resistance is still not clear. No gene 
symbol has been assigned for PSD resistance genes yet. However, there are some reports about 
the resistance to PSD characterized as qualitative and a number of major dominant genes 
(Jackson et al., 2005; 2009; Minor at al., 1995; Smith et al., 2008; Zimmerman & Minor, 1993).  

6.1 Inheritance of resistance to PSD in soybean PI417479 
It was  reported that PI 417479, a source of resistance to PSD, was identified by screening 

approximately 3,000 soybean introductions in MGs III and IV from 1983 through 1985 at the 

Agronomy Research Center of the University of Missouri, in Columbia, MO, USA and at the 

Isabela Substation of the University of Puerto Rico at Mayaguez ( Brown et al., 1987). To 

study the inheritance of PSD resistance in PI417479, crosses were made between PI417419 

and each of two PSD-susceptible genotypes (Zimmerman & Minor, 1993). By analyzing PSD 

incidence on plants from five generations (F1, F2, F3, B1, and B2, in which B1 represented a 

backcross between the F1 and the resistant parent and B2 represented a backcross between 

the F1 and the susceptible parents), it was concluded that the PSD resistance in PI417479 was 

controlled by two complementary dominant nuclear genes. The two resistance genes can 

thus be transferred using a backcross procedure (Zimmerman & Minor, 1993). 

6.2 Inheritance of resistance to PSD in soybean PI80837 and MO/PSD-0259 (PI562694) 
Ploper et al. (1992) identified PI 80837 having low levels of PSD infection in field trials in 

addition to its resistance to soybean mosaic virus and purple seed stain (Buss et al., 1979; 

Roy & Abney, 1988; Wilcox et al., 1975). The PSD-resistant line MO/PSD-0259 derives its 

resistance from PI417479 (Jackson et al., 2005). To characterize the inheritance of PSD 

resistance in PI80837 and to determine if it differs from resistance in MO/PSD-0259, PI80837 
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 Soybean line Reference 

1 PI548438 (Arksoy) Minor et al., 1995 

2 PI80837 Brown et al., 1987 

3 PI82264 Walters & Caviness, 1973 

4 PI88264 Minor et al., 1995 

5 PI181550 Athow, 1987 

6 PI200501 Ross, 1986 

7 PI200510 Minor et al., 1995 

8 PI204331 www.soydiseases.illinois.edu 

9 PI205089 www.soydiseases.illinois.edu 

10 PI205907 www.soydiseases.illinois.edu 

11 PI205908 www.soydiseases.illinois.edu 

12 PI205912 www.soydiseases.illinois.edu 

13 PI209908 Minor et al., 1995 

14 PI219635 www.soydiseases.illinois.edu  

15 PI227687 Minor et al., 1995 

16 PI229358 Minor et al., 1995 

17 PI259539 www.soydiseases.illinois.edu 

18 PI279088 www.soydiseases.illinois.edu 

19 PI341249 www.soydiseases.illinois.edu 

20 PI360835 www.soydiseases.illinois.edu 

21 PI360841 Brown et al., 1987 

22 PI385942 www.soydiseases.illinois.edu 

23 PI417419 Brown et al., 1987 

24 PI423903 www.soydiseases.illinois.edu 

25 PI562694 Minor et al., 1993 

26 PI80837 Ploper et al., 1992 

 

 

Table 1.  A list of reported sources of resistance to Phomopsis seed decay. 
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was crossed with each of the two PSD-susceptible lines Agripro 350 (AP350) and PI9113, 

and with MO/PSD-0259 (Jackson et al., 2005).  Populations and lines were screened in the 

field and Phomopsis infection was assayed by plating seed. Seed infection of reciprocal F1 

plants of AP350 × PI80837 was not different from that of PI80837. Data from F2 populations 

of AP350 × PI80837 and PI91113 × PI80837; and F2:3 lines from AP350 × PI80837 fit models 

for a single dominant gene in PI80837 that confers PSD resistance. It was found that F2 

population data from AP350 × MO/PSD-0259 fit a model for single dominant gene 

resistance in MO/PSD-0259, and data from an F2 population and F2:3 lines of PI80837 × 

MO/PSD-0259 fit a model for two different dominant genes. Based on those results, Jackson 

et al. (2005) concluded that PSD resistance in PI80837 is conferred by a single dominant gene 

under nuclear control that is different from the gene in MO/PSD-0259.  

6.3 Inheritance of resistance to PSD in soybean PI360841 
Studies on the inheritance of resistance to PSD in soybean PI360841 were conducted to test 

populations developed from the crosses between PI360841 and two PSD-susceptible 

genotypes, Agripro 350 (AP350) and PI91113, to determine the number of genes for PSD 

resistance (Smith et al., 2008).  Other crosses were made between PI360841 and the PSD-

resistant parents MO/PSD-0259 and PI80837 to test the allelic relationships of the resistance 

genes (Smith et al., 2008). Seeds from the parents and the F2 population were assayed for 

Phomopsis infection. Chi-square analysis of F2 data from the resistant × susceptible crosses 

indicated a good fit to a 9R:7S model for two complementary dominant genes conferring 

PSD resistance in PI360841. F2 data from MO/PSD-0259 × PI360841 showed a good fit to a 

57R:7S model for two complementary dominant genes from PI360841 and a different 

dominant gene from MO/PSD-0259. Since there was no apparent segregation for resistance 

in the F2 population derived from PI360841 × PI80837, except for one suspicious susceptible 

plant, it suggested that one of the genes in PI360841 is allelic to a PSD resistance gene in 

PI80837 (Smith et al., 2008). This was the first report of a new gene in PI360841 for PSD 

resistance. This gene, along with other different PSD-resistance genes in MO/PSD-0259 and 

PI80837 are useful to breeders for developing lines with a high level of resistance to PSD. 

Further studies have identified simple sequence repeat (SSR) markers linked to genes for 

PSD resistance in PI80837 and MO/PSD-0259. Jackson et al. (2009) reported that PSD 

resistance in MO/PSD-0259 and PI80837 is controlled by two different single dominant 

genes. The gene in PI80837 is located in the vicinity of Sat_177 (4.3 cM) and Sat_342 (15.8 

cM) on molecular linkage group (MLG) B2 (chromosome 14). The gene that conditions 

resistance in MO/PSD-0259 is linked to Sat_317 (5.9 cM) and Sat_120 (12.7 cM) on MLG F 

(chromosome 13). Identification of these loci and markers linked to them will facilitate 

marker-assisted selection in breeding programs. 

7. Summary  

Phomopsis seed decay (PSD) of soybean causes poor seed quality and suppresses yield in 
most soybean-growing countries. The disease is caused primarily by the fungal pathogen 
Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seeds range from 
symptomless to shriveled, elongated, cracked, and often appear chalky-white. Seed quality 
is poor due to reduction in seed viability and oil content, alteration of seed composition, and 
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increased frequencies of moldy and/or split beans. Hot and humid environments, especially 
during the period from pod fill through harvest, favor pathogen growth and disease 
development. The use of resistant cultivars is the most effective method for controlling PSD. 
Extensive screening for PSD resistance has resulted in the identification of resistant sources. 
MO/PSD-0259 carries a single dominant gene for PSD resistance derived from PI417479 
whereas resistance in PI80837 is conferred by a different gene. PI360841 carries two 
complementary dominant genes for PSD resistance; both are different from the gene in 
MO/PSD-0259 but one of them maps to the same region as the gene in PI80837. Simple 
sequence repeat (SSR) markers linked to PSD resistance genes in PI80837 and MO/PSD-0259 
have been identified. These SSR markers should be useful in selection for resistant 
genotypes in breeding programs. 
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