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1. Introduction 

Complex network systems are pervasive in life sciences at all levels, from molecules and 
genes to organisms and ecosystems. All these systems are characterized by being constituted 
of numerous components or nodes (molecules, genes, cells, tissues, organisms), which are 
interconnected by many links in an intricate tangle, just as biological neural networks 
consist of many interacting neurons (Fig. 1). Apart from its structural complexity, complex 
networks are inherently difficult to understand because interactions are non-linear, 
distributed non-randomly, and are adaptive, that is, changing continuously in response to 
the state of the system itself (Strogatz, 2001; Pascual & Dunne, 2006). Understanding the 
functioning of these systems consisting of a large number of strongly interacting units 
represents therefore a major endeavour for biologists and ecologists. 
As complex networks, ecosystems are non-linear systems constituted by countless interacting 
pieces, both biotic and abiotic, constituting the entangled web of life. In a world threatened by 
global environmental problems such as biodiversity loss, climate change, fishing 
overexploitation or pollution, ecologists are challenged by the need to understand and predict 
the dynamics of ecosystems as never before. Along with the complexity of ecological systems, 
ecologists are also faced with a huge amount of information that recent advances in data 
collection technology such as remote sensing have produced. To cope with the ecosystem 
complexity and large data sets currently available, ecologists nowadays have the opportunity 
to use machine-like learning techniques such as the artificial neural networks (ANNs). 
As their name implies, ANNs are biologically inspired and were initially intended to mimic 
the neural activity in the human or animal brains (Garson, 1991; Goh, 1995; Stern, 1996). 
ANNs models are based on the same learning processes as the animal brain, which gathers 
information from the environment (input data) and gives an answer (output data) after 
using learned training algorithms. However, given that the architecture and dynamics of the 
animal brain is exceedingly complex, even the most elaborated ANN models are mere 
caricatures of the biological brain. Although the original works on ANNs date back to the 
forties (McCulloch & Pitts, 1943; Pitts & McCulloch, 1947), they not became really popular 
until the eighties after the work of the physicist John Hopfield. Hopfield (1982) introduced 
an oversimplified neural network, comprising a set of fully connected binary units, as a 
metaphor of neural computation. The most remarkable feature of this model was that it 
could learn by association and was quiet insensitive to noise. This capacity to recognize 
previously learned patterns, which was thought to be an exclusive property of brains, is 
precisely what the Hopfield model does (Solé & Goodwin, 2000). 
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Fig. 1. Examples of complex networks in living systems: a) Caribbean Reef food web. The 
image is organized vertically, with basal species in the bottom, top predators above and 
intermediate species in between. b) Metabolic pathways of H. sapiens and two bacteria 
present in the human intestine and considered key commensals in the human intestinal 
microflora. c) Depiction of highly interconnected neurons in the animal brain. 

The first applications of ANNs did not appear until the early 1990s after the publication of 
the error back-propagation algorithm (Rumelhart et al., 1986). ANNs have enjoyed 
explosive growth since then and have been successfully applied across a broad range of 
scientific domains, as shows this book and other previous works (e.g. Bishop, 1995; Sarle, 
1997; Picton, 2000). However, a review of the literature reveals only a modest use of these 
approaches in ecology as compared to other disciplines, which could be related to the lack of 
the computational background necessary to implement these methods among ecologists 
(Olden et al., 2008). In spite of these limitations, ecologists have nowadays good 
comprehensive overviews of ANN applications in ecological sciences, such as the books of 
Fielding (1999), Lek & Guegan (2000), Lek et al. (2005) and Recknagel (2006). These books 
adds to an ever-increasing number of papers being published during the last years in many 
scientific journals, among which is worth highlighting some specialized ones such as 
Ecological Modelling (www.elsevier.com/locate/ecolmodel) and the recently launched 
Ecological Informatics (www.elsevier.com/locate/ecolinf). 
In this chapter we review the use of ANNs in marine and freshwater ecology, including 
fisheries science, during the 1990s and 2000s. Such review is restricted to works published in 
international journals and is not intended to be exhaustive but simply to familiarize the 
reader with the capabilities and practical applications of ANNs in aquatic ecology. Detailed 
insights on the methodology are not given because those general aspects of ANNs are 
already discussed either on other chapters of this book or in other works (e.g. Bishop, 1995; 
Picton, 2000), and those issues specific to ecological applications have been reviewed 
elsewhere (e.g. Maier & Dandy, 2000; Lek & Guegan, 2000; Ozesmi et al., 2006). 

a b

c 
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2. Handling ecological data with ANNs 

The characteristics of ecological data are quite different from those data handled by sciences 
traditionally considered harder than ecology like mathematics or physics. Ecological data 
are generally bulky, non-linear and highly complex, showing noise, redundancy, internal 
relations and outliers (Park et al., 2003a). In many cases researchers have rather unbalanced 
data sets, such as in community or taxonomical studies when data contain both a lot of 
uncommon, or not present species, and a reduced number of very abundant species. 
Traditionally, multivariate analyses of ecological data have been done using conventional 
techniques based on linear principles, such as multiple regression or discriminant analysis. 
However, relationships between variables in ecology are often non-linear or even unknown, 
which demands non-linear transformations to improve the results. Despite transformations 
by logarithmic, power or exponential functions, results are not satisfactory in many cases 
(Lek et al., 1996b; Brosse et al., 1999). In this respect ANNs constitute a promising alternative 
approach since they are powerful tools that manage large, complex datasets well, and are 
especially suitable when relationships between variables are non-linear or unknown (Lek et 
al., 1996b). This idea that neural networks do not require distributional assumptions is fully 
shared by ecologists and is generally claimed as the most important advantage of ANNs 
over classical statistical models. In fact, Maier & Dandy (2000) recommend that the primary 
focus should be on achieving good results, rather than statistical optimality, as this is one of 
the features that has attracted water resources modellers to ANNs in the first place. 
According to Sarle (1997), however, ANNs are subjected to the same assumptions as 
statistical models, and the explanation is simply that, whereas statisticians are concerned 
about the implications of those assumptions, many neural network users ignore them. 
Formerly, ANNs were compared to “black boxes” because they always give an answer 
(output) when they are fed with data (input), although the internal processes taking place 
inside the network were not clearly understood. This prevented knowing the contribution of 
the independent variables in the prediction process, which is a major concern to ecologists, 
who are always interested in uncovering the causal relationships driving ecological 
phenomena (Olden & Jackson, 2002). The “black box” term is no longer a suitable term, since 
recent advances in the field of environmental sciences have provided a set of techniques to 
determine the relative importance of each input variable. These techniques include sensitivity 
analyses (Scardi, 1996; Lek et al., 1996a; Recknagel et al., 1997), input variable relevancies and 
neural interpretation diagrams (Ozesmi & Ozesmi, 1999), randomization tests of significance 
(Olden, 2000; Olden & Jackson, 2002), and partial derivatives (Dimopoulos et al., 1999; Reyjol 
et al., 2001; Gevrey et al., 2006). All these approaches are based on the fact that the contribution 
of each independent variable depends on the magnitude and direction of the connection 
weights between neurons (Olden et al., 2008). Good examples of papers dealing with the 
performance of several of these methods are Olden & Jackson (2002) and Gevrey et al. (2003). 
Olden & Jackson (2002) reviewed both qualitative and quantitative algorithms, but also 
described a randomization procedure for testing the statistical significance of the input 
variables. Gevrey et al. (2003) compared up to seven approaches and found that the partial 
derivatives method was the most useful in an empirical example predicting the density of 
brown trout spawning redds using habitat characteristics. 
There are many different types of ANNs, which are classified according to their learning 
process and learning algorithm (Sarle, 1997). In supervised learning, the known target 
values are given to the ANN during training, after which the network is tested using 
exclusively the input values. In unsupervised learning, the target values are not provided to  
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N Reference 
Type of 
ANN 

Dependent  
variables 

Independent variables 

1 Xu et al. (2005) BRBPNN
Algal  
abundance (1) 

Environmental 
variables (3-5) 

2 Park et al. (2003b) CPN  Fish richness (1) 
Environmental 
variables (34) 

3 Jeong et al. (2008a) TARNN Algal biomass (1) 
Algal  
biomass (1) 

4 Palmer et al. (2009) 
GRNN, 
MLP 

Fishing  
strategies (4) 

Fish catches (33, 6) 

5 Iglesias et al. (2004) 
FNN, 
MLP 

Fish landings (1) 
Environmental 
variables (6) 

6 Scardi (1996) MLP 
Algal  
abuncance (1) 

Environmental 
variables (3, 4) 

7 
Scardi & Harding 
(1999) 

MLP 
Algal  
abundance (1) 

Environmental 
variables (12) 

8 Scardi (2001) MLP 
Algal  
abundance (1) 

Environmental 
variables (11) 

9 
Wilson & Recknagel 
(2001) 

MLP 
Algal  
abundance (1) 

Environmental 
variables (4, 5) 

10 Recknagel et al. (1997) MLP 
Algal  
abundance (10) 

Environmental 
variables (7, 10, 11) 

11 
Ozesmi & Ozesmi 
(1999) 

MLP 
Bird nesting 
probability (1, 3) 

Environmental 
variables  (6) 

12 Manel et al. (1999) MLP Bird occurrence (1) 
Environmental 
variables (32) 

13 Fang et al. (2009) MLP Bird richness (1) 
Environmental 
variables (4) 

14 Dedecker et al. (2005) MLP 
Crustacean  
density (1) 

Environmental 
variables (24) 

15 Mouton et al. (2010) MLP 
Crustacean  
density (1) 

Environmental 
variables (24) 

16 
Huse & Gjosaeter 
(1999) 

MLP Fish abundance (1) 
Environmental 
variables (6) 

17 Joy & Death (2004) MLP 
Fish and 
crustacean 
occurrence (14) 

Environmental 
variables (31) 

18 Dagorn et al. (1997) MLP Fish behaviour (1) 
Environmental 
variables (7) 

19 
Huse & Ottersen 
(2003) 

MLP Fish density (1) 
Environmental 
variables (10) 
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N Reference 
Type of 
ANN 

Dependent  
variables 

Independent variables 

20 Baran et al. (1996) MLP Fish density (1) 
Environmental 
variables (11) 

21 Brosse et al. (1999) MLP Fish density (1) 
Environmental 
variables (8) 

22 Gevrey et al. (2003) MLP Fish density (1) 
Environmental 
variables (10) 

23 Lae et al. (1999) MLP Fish density (1) 
Environmental 
variables 

24 Lek et al. (1996b) MLP Fish density (1) 
Environmental 
variables (11) 

25 
Gutierrez-Estrada et al. 
(2009) 

MLP Fish landings (1) 
Environmental 
variables (18) 

26 Olden et al. (2006) MLP 
Fish  
occurrence (16) 

Environmental 
variables (24) 

27 Maravelias et al. (2003) MLP Fish occurrence (2) 
Environmental 
variables (5) 

28 Mastrorillo et al. (1997) MLP Fish occurrence (2) 
Environmental 
variables (10) 

29 Olden (2003) MLP 
Fish  
occurrence (27) 

Environmental 
variables (9) 

30 Chen & Hare (2006) MLP 
Fish recruitment 
(1) 

Environmental 
variables (2) 

31 Ibarra et al. (2003) MLP Fish richness (1) 
Environmental 
variables (5) 

32 Beauchard et al. (2003) MLP 
Invertebrate 
richness (1) 

Environmental 
variables (7) 

33 Dedecker et al. (2004) MLP 
Invertebrates 
occurrence (1) 

Environmental 
variables (15) 

34 
Engelhard & Heino 
(2004) 

MLP 
Age  
at maturation (1) 

Annual  
growth layers (3-9) 

35 Engelhard et al. (2003) MLP 
Age  
at maturation (1) 

Annual  
growth layers (3-9) 

36 Dreyfus-Leon (1999) MLP 
Fishermen 
strategies (3, 16) 

Fishing variables (9, 20) 

37 Newbury et al. (1995) MLP Fish density (10) 
Frequency  
image data (51) 

38 Power et al. (2005) MLP Fishing location (3) Parasite abundances (5) 

39 
Haralabous & 
Georgakarakos (1996) 

MLP 
Fish  
identification (3) 

School  
descriptors (25) 
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N Reference 
Type of 
ANN 

Dependent  
variables 

Independent variables 

40 Song et al. (2006) SOM Sampling sites; invertebrates assemblages 

41 Jeong et al. (2008b) SOM Sampling sites 

42 Brosse et al. (2001) SOM Fish assemblages 

43 Hyun et al. (2005) SOM Fish assemblages 

44 Zhu et al. (2006) SOM Fish genetic structure 

45 Chon et al. (1996) SOM Invertebrates assemblages 

46 Cereghino et al. (2001) SOM Invertebrates assemblages 

47 Park et al. (2006) SOM Invertebrates assemblages 

48 Cho et al. (2009) SOM Sampling sites 

49 
Hardman-Mountford 
et al. (2003) 

SOM Sea level variations 

50 Park et al. (2003a) 
SOM, 
MLP 

SOM: sampling sites; 
MLP: invertebrate assemblages 

51 Gevrey et al. (2004) 
SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

52 Tison et al. (2007) 
SOM, 
MLP 

SOM: sampling sites; 
MLP: diatom assemblages 

53 Park et al. (2004) 
SOM, 
ART 

Invertebrates assemblages  

54 Chon et al. (2000) 
SOM, 
ART 

Invertebrates assemblages 

Table 1. List of papers with applications of ANNs in aquatic ecology: source, type of ANN, 

dependent variable and independent variables. In the case of MLPs, the numbers into 

brackets are the number of input neurons (independent variables) or output neurons 

(dependent variables). In the case of SOMs, the single cell under the dependent and 

independent variable headers contains the type of data that was patternized by means of the 

SOM. In those papers (50-53) using unsupervised (SOM) followed by supervised neural 

networks (MLP), the variable to be predicted by the MLP it is also shown. 

the network, which usually performs some kind of dimensionality reduction or clustering. 

Depending on the existence or not of cycles in the connections between nodes the networks 

are classified as feedback, or recurrent ANNs, and feed-forward ANNs. Up to now, the most 

popular ANNs in ecological applications are the multilayer perceptron (MLP) with back-

propagation algorithm and the Kohonen network or self-organizing map (SOM), although 

examples of other family of models have also been applied. In this work, for instance, we 

have reviewed a total of 54 papers dealing with applications of ANNs in the field of marine 

and freshwater ecology (Table 1): the MLP and the SOM were used in 39 and 15 cases, 

respectively, whereas other types of networks (see Section 8) were only used in 7 cases. In 

later sections, we give a succinct description of these methods and revise their main 

applications among researchers working on aquatic ecology. 
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3. Development of ANN models 

Several papers have reviewed the use of ANNs in ecological applications and summarized 

both the main drawbacks in the available works and the main methodological issues that 

should be considered in the development of new models (Maier & Dandy, 2000; Maier & 

Dandy, 2001; Ozesmi et al., 2006). Maier & Dandy (2000) analysed different modelling issues 

of ANNs for the prediction and forecasting of water resources variables by reviewing up to 

43 papers published until the end of 1998. One year later, the same authors (Maier & Dandy, 

2001) published a systematic approach to the development of ANNs for environmental 

studies, which was intended to act as a guide for users of feed-forward, back-propagation 

ANNs. Ozesmi et al. (2006) also analysed different methodological issues in building, 

training and testing ANNs in ecological applications and made useful suggestions on its 

use. More recently, Suryanarayana et al. (2008) performed a thorough revision of the use of 

neural networks in fisheries research; after a brief description of ANNs the authors 

reviewed their applications in forecasting, classification, distribution and fisheries 

management since 1978 (97 and 103 papers during 1978-1999 and 2000-2006, respectively). 

What follows is an extract from all these papers; although they focused on the MLP, most of 

their recommendations also apply to other types of ANNs.  

In general the modelling process is not described clearly, what prevents to assess the 

optimality of the results and the comparison between models. The major problem was 

overtraining (over-fitting), which could be avoided by limiting the complexity of the model. 

To do so, there are some rules of thumb, such as using at least 10 times the number of 

samples as parameters in the model (Burnham & Anderson, 2002). Another important 

concern refers to the lack of independent data sets, what makes that some data are used 

both in the training and testing processes. Given that it is difficult or costly to obtain a 

sufficient number of replicates in ecological studies, examples with independent test data 

sets are rather scarce. As an alternative, researchers use different methodologies to create a 

testing data set such as jack-knife or cross-validation. Finally, the choice of the type of 

model, its architecture and the internal parameters (e.g. number of hidden layers) are also 

poorly described in most cases. 

In order to avoid all these concerns and to optimize the performance of the models, 

specialists recommend considering the following methodological issues. First, the input 

variables should be standardized and, although there is no need to transform data, it is 

recommended in order to remove trends and heteroscedasticity. Next, appropriate input 

variables should be determined with the aid of a priori knowledge, by using analytical 

techniques or a stepwise model-building approach. Learn rate and weight range should also 

be determined since these network parameters influence the performance of the model by 

affecting the weights. The choice of adequate network geometry involves the optimization 

of the architecture, the number of hidden layers and number of hidden neurons. Although 

there are guidelines in the literature to obtain optimal network geometries, for each 

application it has been done traditionally by a process of trial and error. To compare the 

performance of models created with the same data set it is recommended the use of criteria 

such as the Akaike Information Criteria (AIC). Finally, model performance should be 

assessed using independent data sets to ensure that the results obtained are valid, since the 

real model test does not involve the training but the testing phase. 
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N Reference 
Type of 
ANN 

ANN 
Performance

Type of 
MSM 

MSM 
Performance 

1 
Haralabous & 

Georgakarakos (1996) 
MLP 95.92% DA 89.29% 

2 Baran et al. (1996) MLP 0.92, 0.93 GLM 0.54, 0.69 

3 Lek et al. (1996b) MLP 0.96 MLR 0.471, 0.722 

4 Brosse et al. (1999) MLP 66, 97% MLR 46, 95% 

5 Lae et al. (1999) MLP 0.95, 0.83 MLR 0.621, 0.812 

6 Gevrey et al. (2003) MLP 0.75, 0.76 MLR 0.47 

7 Ibarra et al. (2003) MLP 0.55, 0.82 MLR 0.33, 0.72 

8 
Engelhard et al. 

(2003) 
MLP 66.6% DA 68.0% 

9 
Engelhard & Heino 

(2004) 
MLP 0.976 DA 0.985 

10 
Maravelias et al. 

(2003) 
MLP 83.3, 85.6% DA 49.5, 83.3% 

11 
Mastrorillo et al. 

(1997) 
MLP 82.1, 90.1% DA 62.5, 78.0% 

12 Fang et al. (2009) MLP 0.28 MLR 0.28 

13 
Gutierrez-Estrada et 

al. (2009) 
MLP 0.98t, 0.92s 

MLR, 
GAM 

MLR: 0.69t, 0.70s 
GAM: 0.87t, 0.86s 

14 Jeong et al. (2008a) TARNN
0.97, 0.98t, 
0.94, 0.92s 

SARIMA, 
SES 

SARIMA: 0.54t, 0.28s 
SES: 0.88t, 0.38s 

15 Olden et al. (2006) MLP 66, 91% 
MDA, 
LOG 

MDA: 46%, 
LOG: 83% 

16 Power et al. (2005) MLP 92, 94% 
DA, 

QDA, 
KKN 

DA: 93, 94% 
QDA: 92, 93% 
KNN: 94, 96% 

17 Lae et al. (1999) MLP 0.95t, 0.83s MLR 0.81 

18 Scardi (1996) MLP 0.90, 0.954 MLR 0.273, 0.744 

Table 2. Performance of ANNs compared to classical multivariate statistical models (MSM) 
in aquatic ecological applications. The indexes used to calculate the performance are not 
specified (mainly determination coefficient and percentage of correctly classified instances) 
but are the same in each reference for comparisons. When available, results are given for the 
training (t) and testing (s); numbers in superscripts refer to raw (1) vs. transformed (2) data, 
and single (3) vs. composite (4) linear model. MLR: multiple linear regression; GLM: 
generalized linear models; DA: discriminant analysis; GAM: generalized additive models; 
SARIMA: seasonal auto-regressive integrated moving average; SES: simple exponential 
smoothing; MDA: multiple discriminant analysis; LOG: logistic regression analysis; QDA: 
quadratic discriminant analysis; KKN: k-nearest neighbour classification. 

www.intechopen.com



The Use of Artificial Neural Networks (ANNs) in Aquatic Ecology 

 

575 

4. ANNs vs. multivariate analyses 

Several studies indicate that ANNs are identical or similar to different standard statistical 
models. Changing some parameters of the network structure, such as the transfer function 
or the number of hidden nodes, gives rise to existing models. Feed-forward networks with 
no hidden layer, for instance, are basically generalized linear models, whereas Kohonen 
SOMs are discrete approximations to principal curves and surfaces (Sarle, 1997). The 
training and learning phases in neural networks are not different from the parameter 
estimation phase in conventional statistical models (Maier & Dandy, 2000). 
Many of the published works on ANNs in marine and freshwater ecology compare this 
modelling method with classical multivariate statistical procedures, such as multiple linear 
regression (MLR) or discriminant analysis (DA). In all cases, these works found that ANNs 
either clearly outperformed (e.g. Baran et al., 1996; Lek et al., 1996b; Mastrorillo et al., 1997; 
Brosse et al., 1999) or at least performed as well (e.g. Engelhard et al., 2003; Engelhard & 
Heino, 2004; Power et al., 2005; Fang et al., 2009) as classical techniques (Table 2). 
Differences between methods are very important in some applications. Analysing the 
relationships between density of trout spawning sites and habitat characteristics, for 
instance, Lek et al. (1996) obtained values of determination coefficients of 0.96 for the MLP 
and 0.47 (raw data) or 0.72 (transformed data) for the MLR. In a similar study, Gevrey et al. 
(2003) also found important differences, about 0.77 for MLP and 0.47 for MLR. However, the 
highest differences were obtained by Jeong et al. (2008a) comparing a type of ANN known 
as temporal autoregressive recurrent neural network (TARNN) and two model types based 
on root mean square error (RMSE), seasonal auto-regressive integrated moving average 
(SARIMA) and simple exponential smoothing (SES). 
The work of Manel et al. (1999) exemplifies the concerns raised by most researchers when 
ANNs were not more performant than linear models. In their analysis of a river bird species 
distribution, substitute major conclusion was that ANN does not currently have major 
advantages over logistic regression and DA in the particular case of modelling species 
distribution, providing these latter methods are correctly applied. They also noted that the 
best method would depend on the aims of the study. When models are intended to be 
explanatory, any of the three approaches compared might be suitable, since all produced 
good overall fit to the data, but when there exist complex or non-linear influences on species 
distribution, the ANN may well turn out to be advantageous.  
In spite of all these considerations, and provided that enough information is available, it is 
not possible that a multiple regression outperforms an ANN because if a process is 
inherently linear, an ANN is as effective as a linear model although it may take more data to 
be properly generalized (Palmer et al., 2009). When ANNs were not found to perform better 
than linear methods it was most probably due to non-optimal training strategies, ANN 
architectures or data-limited situations. 
Haralabous & Georgakarakos (1996) reported that comparing ANNs and DA is not 
straightforward, because an ANN can only be tested on a subset of training-free cases, while 
DA can be acceptably tested on the whole dataset. However, this is not exactly correct because 
the performance of DA cannot be tested without an independent test set. The accuracy of DA 
can be inferred according to the underlying statistics, but these inferences rely on several 
assumptions that are probably not met in real world applications (e.g. multi-normality). 
Consequently, a proper comparison should take a single subset of the data to train the ANN 
and DA, and then a separate subset to test both methods (Palmer et al., 2009). However, this 
would require having a sufficiently large number of cases to obtain enough examples in each 
subset, which is not usual in environmental sciences where sampling programs are costly. 
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5. Multilayer perceptron (MLP) 

The MLP is a supervised ANN which architecture is defined by highly interconnected 
neurons (units or nodes) that process information in parallel along three successive layers 
(Fig. 2). The input layer contains as many neurons as independent variables or descriptors 
used to predict the dependent variables, which in turn constitute the output layer. The third 
layer, called the hidden layer, is situated between the input and output layers and its 
number of layers/neurons is an important parameter since it optimizes the performance of 
the ANN. Neurons from one layer are interconnected to all neurons of neighbouring layers, 
but no connections are established within a layer or feedback connection. Training any type 
of supervised ANN consists in using a training dataset to adjust the connection weights in 
order to minimize the error between observed and predicted values. Once the connections 
have been established by training they remain fixed in the hidden layer and the ANN can be 
used for testing. After the network has been trained it should be able to correctly classify 
patterns that are different from those used during the training phase. 
Since the MLP was first used in ecological studies (Komatsu et al., 1994; Lek et al., 1995), the 
network has been extensively implemented in diverse fields (Park & Chon, 2007). A good deal 
of examples (39 cases) of applications in marine and freshwater ecology is shown in Table 1. 
Most studies used the predictability capabilities of MLPs to infer some dependent variable 
from a set of environmental variables (29 cases). This dependent variable was generally an 
index of the quantity of individuals of a certain species (16 cases) such as the abundance, 
biomass or density or, to a lesser extent, the species occurrence (presence/absence; 7 cases). In 
other cases the dependent variable referred to community indexes (species richness; 4 cases). 
In the overall set of papers the number of input and output neurons ranged between 2-51 and 

1-27 respectively. An output layer with a single neuron was by far the most usual network 

architecture (28 cases), representing this single output the value to be predicted by the MLP for 

a single species (e.g. abundance, biomass, species richness). In other cases, the MLP was used 

to predict those values for a set of species. Recknagel et al. (1997), for instance, predicted the 

abundance of 10 algae species from four different lakes using different sets of environmental 

variables (7, 10 and 11). Joy & Death (2004) predicted the occurrence of 14 species of fish and 

crustaceans taking into account up to 31 driving variables. Similarly, Olden (2003) predicted 

the occurrence of 27 fishes considering 9 physical variables, whereas Olden et al. (2006) used 

24 variables to infer the occurrence of 16 fish species. 

Other applications in aquatic ecology different from the prediction of species abundances or 
occurrences are reported in this paragraph. In two cases the MLP has been used to 
determine the age at maturation of fish species from annual growth layers in scales or 
otoliths (Engelhard et al., 2003; Engelhard & Heino, 2004). Ozesmi & Ozesmi (1999) 
predicted the nesting probability of two riverine bird species using 6 environmental 
variables. The MLP has also been used to identify three different fish species from 25 
variables corresponding to the main school descriptors (Haralabous & Georgakarakos, 
1996). Power et al. (2005) made use of MLP to classify a marine fish species according to the 
three different fisheries from which it was harvested using as predictors the abundance of 
different sets of parasites (3-6). Dreyfus-Leon (1999) built a model to mimic the search 
behaviour of fishermen with two MLPs to cope with two separate decision-making 
processes in fishing activities. One MLP (20 input neurons, 16 output neurons) dealt with 
decisions to stay or move to new fishing grounds and the other one was constructed to 
finding prey within the fishing areas (9 inputs, 3 outputs). 
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Fig. 2. Scheme of the architecture of a multilayer perceptron (MLP). The example was taken 
from Palmer et al. (2009), who used the MLP to infer the fishing tactics used by fishermen in 
their daily trips, taking as predictors the species composition present in the landings 
statistics. The figure represents a three-layered MLP with 10 neurons in the hidden layer 
and 33 neurons in the input layer corresponding to the landings of the 33 most important 
commercial species. The 4 nodes in the output layer are the 4 different fishing tactics to be 
predicted. 

6. Self-organizing map (SOM) 

The SOMs, also referred to as Kohonen network, are unsupervised ANNs that approximates 
the probability density function of the input data to display the data sets in a more 
comprehensible representation form (Kohonen, 2001). In terms of grouping the input data, 
the SOM is equivalent to conventional multivariate methods such as principal component 
analysis; it maps the multidimensional data space of complex data sets on two or a few more 
dimensions, preserving the existing topology as much as possible (Chon et al., 1996). The 
description that follows on the SOM functioning is based on the book of Lek et al. (2005). 
The SOM consists exclusively of two layers, the input and output layers, connected by 
weights that give the connection intensity; the outputs are usually arranged into two 
dimensional grids on a hexagonal lattice for better visualization (Fig. 3). When an input 
vector is sent through the network, each neuron in the network computes the distance 
between the weight vector and the input vector. Among all the output neurons, the one 
having the minimum distance between the weight and input vectors is chosen. The weights 
of both this winner neuron and its neighbouring neurons are then updated using the SOM 
algorithm to further reduce the distance between the weight and the input vector. The 
training is usually done in two phases: a rough training for ordering based on a large 
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neighbourhood radius, followed by fine tuning with a small radius. As a result, the network 
is trained to classify the input vectors according to the weight vectors that are closest to 
them. Given that there are not still boundaries between clusters in the trained SOM map, it 
has to be subdivided into different groups according to the similarity of the weight vectors 
of the neurons. To analyse the contribution of variables to clusters, each input variable 
calculated during the training process is visualised in each neuron of the trained SOM in 
grey scale. The resulting clusters can outperform the results obtained using conventional 
classification methods, although there is the drawback that the size and shape of the map 
have to be fixed in advance. 
Since Chon et al. (1996) first applied the SOM to patterning benthic communities, it has 
became the most popular unsupervised neural network in aquatic ecology applications for 
classification and patterning purposes (Park & Chon, 2007). In most cases the SOM has been 
used to classify sampling sites according to different environmental variables or faunal 
assemblages from their species composition. Jeong et al. (2008b), for instance, classified the 
different habitats present in a lagoon from a set of 21 limnological characteristics, whereas Cho 
 

 

Fig. 3. Example of an output of a two dimensional hexagonal lattice obtained using a self-
organizing map (SOM). The figure comes from Park et al. (2003a), who used the SOM to 
classify sampling sites with different environmental variables. The Latin numbers (I–V) 
represent different clusters, and the acronyms in the hexagonal units represent different 
water types. The font size of the acronym is proportional to the number of sampling sites in 
the water types in the range of 1–18 samples. 
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et al. (2009) characterized the habitat preferences of a river otter species taking into account 
several environmental variables. Song et al. (2006) used the SOM with two different objectives: 
first to define hydro-morphological patterns of the sampling sites based on four environmental 
variables, and then to reveal temporal changes in the macro-invertebrate communities 
inhabiting the sites clustered by SOM. Concerning the classification of faunal communities, the 
SOM has been mainly used to pattern invertebrate (Chon et al., 1996; Cereghino et al., 2001; 
Park et al., 2006) and fish (Brosse et al., 2001; Hyun et al., 2005) assemblages. In an original 
paper, Park et al. (2006) used SOM to patternize benthic macro-invertebrate communities in 
terms of exergy, which is a measure of the free energy of a system and it is used as an 
ecological indicator. Hyun et al. (2005) used the SOM to pattern temporal variations in long-
term fisheries data (1954-2001) according to the 30 commercially most important species; five 
clusters were identified corresponding to different time periods reflecting environmental and 
economic forcings on fish catch. Other SOM applications include the study of the genetic 
population structure of a sturgeon species (Zhu et al., 2006) and the identification of 
characteristic patterns from sea level differences using a seven-year time series of satellite-
derived data (Hardman-Mountford et al., 2003; Fig. 4). Further SOM applications, in 
combination with other neural network types, are reviewed in the following section. 
In most cases, the ecological studies dealing with SOM applications manage complex, large 
data matrices. The results of all these works agree that the SOM is a powerful tool to extract 
information from such complex datasets which outperforms conventional approaches used 
previously in ecology for patterning purposes (e.g. principal component analysis). 

7. Combined networks 

Although ANNs are mainly used for prediction (e.g. MLP) or classification (e.g. SOM), there 
are also networks performing both functions at the same time. One example used in some 
ecological applications is the counter-propagation network (CPN), which consists of 
unsupervised and supervised learning algorithms to classify input vectors and predict output 
values. The CPN, which name alludes to the counter-flow of data through the network with 
data flowing inward from both sides, functions as a statistically optimal self-adapting look-up 
table (Hecht-Nielsen, 1988). Park et al. (2003b) applied a CPN to predict species richness and 
diversity index of benthic macro-invertebrate communities using 34 environmental variables. 
The trained CPN was useful for finding the corresponding values between environmental 
variables and community indices and displayed a high accuracy in the prediction process. 
In some cases, researchers simply use two different networks in sequential steps for 
classification purposes first, followed by prediction. Chon et al. (2000) analysed patterns of 
temporal variation in community dynamics of benthic macro-invertebrates by combining two 
unsupervised ANNs, the adaptive resonance theory (ART) and the SOM. Park et al. (2004) also 
used the combination of ART and SOM to assess benthic communities in stream ecosystems, 
first using the SOM to reduce the dimension of the community data and secondly the ART to 
further classify the groups in different scale. Park et al. (2003a) used the SOM to classify 
sampling sites using species richness of aquatic insect orders and afterwards applied the MLP 
to predict the arrangements obtained using a set of environmental variables. Gevrey et al. 
(2004) used the SOM to classify samples according to their diatom composition, and then MLP 
to predict these assemblages using environmental characteristics of each sample. Similarly, 
Tison et al. (2007) classified diatom samples using the SOM and then predicted the community 
types with different environmental variables through a MLP. 
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Fig. 4. The SOM of sea level differences obtained by Hardman-Mountford et al. (2003) using 
remote sensing data. The 15 patterns in a 5 by 3 array, where the land is shown in grey, 
correspond to different time periods with contrasting oceanographic scenarios. 

8. Other types of ANNs 

Apart from MLP and SOM there are still very few examples of applications of other types of 
ANNs in ecological studies. We have only found the use of four different types of networks 
in our review: functional neural network (FNN), Bayesian regularized back-propagation 
neural network (BRBPNN), temporal autoregressive recurrent neural network (TARNN) 
and generalized regression neural network (GRNN). 
Iglesias et al. (2004) applied the FNN, a type of network in which the weights of the neurons 
are substituted by a set of functions, to predict the catches of two pelagic fish species taken 
as independent variables a set of oceanographic parameters obtained from remote sensors. 
The results of this study showed that functional networks considerably improved the 
predictions obtained using MLP. Xu et al. (2005) used the BRBPNN to predict chlorophyll 
trends in a lake; the advantage of this model is that it can automatically select the 
regularization parameters and integrate the characteristics of high convergent rate of 
traditional back-propagation neural networks and prior information of Bayesian statistics. 
Jeong et al. (2008a) developed a TARNN model to predict time-series changes of 
phytoplankton dynamics in a regulated river ecosystem. The TARNN algorithms were 
found to be an alternative solution to overcome the increasing size and structural 
complexity of the models used in freshwater ecology. Palmer et al. (2009) used the GRNN, 
together with MLP and DA, to predict fishing tactics from daily landing data. In this 
application, the GRNN, which is a type of ANN having the same number of neurons as 
there are cases in the training data set, outperformed both the MLP and DA. 
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9. Conclusion 

The study of the highly complex structure and dynamics of ecological systems demands 
appropriate powerful tools such as ANNs. This is especially relevant nowadays, when the 
scientific community handles a lot of bulky databases and has to cope with global 
environmental threats that require urgent international attention. The purpose of this review 
is twofold. First, to familiarize ANNs users from other scientific disciplines, such as the ones 
covered in this book, with the use that ecologists make of these methods. Second, introduce 
ecologists unfamiliar with the ANNs to the capabilities of these tools and show them the 
palette of practical applications currently available in the domain of the aquatic ecology. 
Although the majority of ecologists lack the theoretical and computational background 
needed to implement these approaches (Fielding, 1999), they can take advantage of the user-
friendly software that is being rapidly developed during recent years (Olden et al., 2008). 
One important drawback is, however, the fact that ANN modelling is a very active research 
area and the dissemination of useful information for practitioners constitutes one of the 
greatest challenges facing ANNs users (Maier & Dandy, 2000). By contrast, these approaches 
are flexible and readily combinable with other methods (Lek et al. 2005; Recknagel 2006), 
which would allow ecologists to develop models of increasing complexity as requires the 
analysis of ecological systems. 
According to Pascual & Dunne (2006), understanding the ecology and mathematics of 
ecological networks is central to understanding the fate of biodiversity and ecosystems in 
response to perturbations. Knowing the network structure is essential to understand the 
properties of the network and the use of ANNs in ecological models constitutes a first step 
towards this understanding. We hope our review could awake the interest of ecologists in 
ANN modelling and maybe to help them with the use of these approaches in their studies 
on aquatic ecology. 

10. Acknowledgements 

The image of Figure 1a was produced with FoodWeb3D, written by R.J. Williams  
and provided by the Pacific Ecoinformatics and Computational Ecology Lab 
(www.foodwebs.org, Yoon et al., 2004). Figures 1b, 2, 3 and 4 were reproduced  
with permission. Figure 1c was reproduced with permission from 
http://technology.desktopnexus.com/wallpaper/48950/.  

11. References 

Baran, P., Lek, S., Delacoste, M. & Belaud, A. (1996). Stochastic models that predict trout 
population density or biomass on a mesohabitat scale. Hydrobiologia, 337, 1-3, 1-9, 
ISSN: 0018-8158 

Bishop, C.M. (1995). Neural networks for pattern recognition, Clarendon Press, ISBN-10: 
0198538642, Oxford 

Brosse, S., Giraudel, J.L. & Lek, S. (2001). Utilisation of non-supervised neural networks and 
principal component analysis to study fish assemblages. Ecological Modelling, 146, 1-
3, 159-166, ISSN: 0304-3800 

Brosse, S., Guegan, J.F., Tourenq, J.N. & Lek, S. (1999). The use of artificial neural networks 
to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic 
lake. Ecological Modelling, 120, 2-3, 299-311, ISSN: 0304-3800 

www.intechopen.com



Artificial Neural Networks - Application 

 

582 

Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: a 
practical information-theoretic approach, Springer, ISSN-10: 0387953647, New York 

Cereghino, R., Giraudel, J.L. & Compin, A. (2001). Spatial analysis of stream invertebrates 
distribution in the Adour-Garonne drainage basin (France), using Kohonen self 
organizing maps. Ecological Modelling, 146, 1-3, 167-180, ISSN: 0304-3800 

Cho, H.S., Choi, K.H., Lee, S.D. & Park, Y.S. (2009). Characterizing habitat preference of 
Eurasian river otter (Lutra lutra) in streams using a self-organizing map. Limnology, 
10, 3, 203-213, ISSN: 1439-8621 

Chon, T.S., Park, Y.S., Moon, K.H. & Cha, E.Y. (1996). Patternizing communities by using an 
artificial neural network. Ecological Modelling, 90, 1, 69-78, ISSN: 0304-3800 

Chon, T.S., Park, Y.S. & Park, J.H. (2000). Determining temporal pattern of community 
dynamics by using unsupervised learning algorithms. Ecological Modelling, 132, 1-2, 
151-166, ISSN: 0304-3800 

Dimopoulos, I., Chronopoulos, J., Chronopoulou-Sereli, A. & Lek, S. (1999). Neural network 
models to study relationships between lead concentration in grasses and 
permanent urban descriptors in Athens city (Greece). Ecological Modelling, 120, 2-3, 
157-165, ISSN 

Dreyfus-Leon, M.J. (1999). Individual-based modelling of fishermen search behaviour with 
neural networks and reinforcement learning. Ecological Modelling, 120, 2-3, 287-297, 
ISSN: 0304-3800 

Engelhard, G.H., Dieckmann, U. & Godo, O.R. (2003). Age at maturation predicted from 
routine scale measurements in Norwegian spring-spawning herring (Clupea 
harengus) using discriminant and neural network analyses. ICES Journal of Marine 
Science, 60, 2, 304-313, ISSN: 1054-3139 

Engelhard, G.H. & Heino, M. (2004). Maturity changes in Norwegian spring-spawning 
herring before, during, and after a major population collapse. Fisheries Research, 66, 
2-3, 299-310, ISSN: 0165-7836 

Fang, W.T., Chu, H.J. & Cheng, B.Y. (2009). Modeling waterbird diversity in irrigation ponds 
of Taoyuan, Taiwan using an artificial neural network approach. Paddy and Water 
Environment, 7, 3, 209-216, ISSN: 1611-2490 

Fielding, A.H. (1999). Machine learning methods for ecological applications, Klumer 
Academic Publishers, ISBN-10: 0412841908, Massachusetts  

Garson, G.D. (1991). Interpreting neural network connection weights. Artificial Intelligence 
Expert, 6, 47-51, ISSN: 0004-3702 

Gevrey, M., Dimopoulos, I. & Lek, S. (2006). Two-way interaction of input variables in the 
sensitivity analysis of neural network models. Ecological Modelling, 195, 1-2, 43-50, 
ISSN: 0304-3800 

Gevrey, M., Dimopoulos, L. & Lek, S. (2003). Review and comparison of methods to study 
the contribution of variables in artificial neural network models. Ecological 
Modelling, 160, 3, 249-264, ISSN: 0304-3800 

Gevrey, M., Rimet, F., Park, Y.S., Giraudel, J.L., Ector, L. & Lek, S. (2004). Water quality 
assessment using diatom assemblages and advanced modelling techniques. 
Freshwater Biology, 49, 2, 208-220, ISSN: 0046-5070 

Goh, A.T.C. (1995). Back-propagation neural networks for modelling complex systems. 
Artificial Intelligence in Engineering, 9, 143-151, ISSN: 0954-1810 

www.intechopen.com



The Use of Artificial Neural Networks (ANNs) in Aquatic Ecology 

 

583 

Gutierrez-Estrada, J.C., Yanez, E., Pulido-Calvo, I., Silva, C., Plaza, F. & Borquez, C. (2009). 
Pacific sardine (Sardinops sagax, Jenyns 1842) landings prediction. A neural network 
ecosystemic approach. Fisheries Research, 100, 2, 116-125, ISSN: 0165-7836 

Haralabous, J. & Georgakarakos, S. (1996). Artificial neural networks as a tool for species 
identification of fish schools. ICES Journal of Marine Science, 53, 2, 173-180, ISSN: 
1054-3139 

Hardman-Mountford, N.J., Richardson, A.J., Boyer, D.C., Kreiner, A. & Boyer, H.J. (2003). 
Relating sardine recruitment in the Northern Benguela to satellite-derived sea 
surface height using a neural network pattern recognition approach. Progress in 
Oceanography, 59, 2-3, 241-255, ISSN: 0079-6611 

Hecht-Nielsen, R. (1988). Applications of counterpropagation networks. Neural Networks, 1, 
2, 131-139, ISSN: 0893-6080 

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective 
computational abilities. Proceedings of the National Academy of Sciences of the United 
States of America-Biological Sciences, 79, 8, 2554-2558, ISSN: 0273-1134 

Hyun, K., Song, M.Y., Kim, S. & Chon, T.S. (2005). Using an artificial neural network to 
patternize long-term fisheries data from South Korea. Aquatic Sciences, 67, 3, 382-
389, ISSN: 1015-1621 

Ibarra, A.A., Gevrey, M., Park, Y.S., Lim, P. & Lek, S. (2003). Modelling the factors that 
influence fish guilds composition using a back-propagation network: Assessment 
of metrics for indices of biotic integrity. Ecological Modelling, 160, 3, 281-290, ISSN: 
0304-3800 

Iglesias, A., Arcay, B., Cotos, J.M., Taboada, J.A. & Dafonte, C. (2004). A comparison 
between functional networks and artificial neural networks for the prediction of 
fishing catches. Neural Computing and Applications, 13, 1, 24-31, ISSN: 0941-0643 

Jeong, K.S., Kim, D.K., Jung, J.M., Kim, M.C. & Joo, G.J. (2008a). Non-linear autoregressive 
modelling by temporal recurrent neural networks for the prediction of freshwater 
phytoplankton dynamics. Ecological Modelling, 211, 3-4, 292-300, ISSN: 0304-3800 

Jeong, K.S., Kim, D.K., Pattnaik, A., Bhatta, K., Bhandari, B. & Joo, G.J. (2008b). Patterning 
limnological characteristics of the Chilika lagoon (India) using a self-organizing 
map. Limnology, 9, 3, 231-242, ISSN: 1439-8621 

Joy, M.K. & Death, R.G. (2004). Predictive modelling and spatial mapping of freshwater fish 
and decapod assemblages using GIS and neural networks. Freshwater Biology, 49, 8, 
1036-1052, ISSN: 0046-5070 

Kohonen, T. (2001). Self-organizing maps.  Springer, ISBN: 3-540-67921-9, New York 
Komatsu, T., Aoki, I., Mitani, I. & Ishii, T. (1994). Prediction of the catch of Japanese sardine 

larvae in Sagami Bay using a neural network. Fisheries Science, 60, 4, 385-391, ISSN: 
0919-9268 

Lae, R., Lek, S. & Moreau, J. (1999). Predicting fish yield of African lakes using neural 
networks. Ecological Modelling, 120, 2-3, 325-335, ISSN: 0304-3800 

Lek, S., Belaud, A., Baran, P., Dimopoulos, I. & Delacoste, M. (1996a). Role of some 
environmental variables in trout abundance models using neural networks. Aquatic 
Living Resources, 9, 1, 23-29, ISSN: 0990-7440 

Lek, S., Belaud, A., Dimopoulos, I., Lauga, J. & Moreau, J. (1995). Improved estimation, 
using neural networks, of the food consumption of fish populations. Marine and 
Freshwater Research, 46, 8, 1229-1236, ISSN: 1323-1650 

www.intechopen.com



Artificial Neural Networks - Application 

 

584 

Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. & Aulagnier, S. (1996b). 
Application of neural networks to modelling nonlinear relationships in ecology. 
Ecological Modelling, 90, 1, 39-52, ISSN: 0304-3800 

Lek, S. & Guegan, J.F. (2000). Artificial neural networks: application to ecology and evolution. 
Springer, ISSN-10: 3540669213, New York 

Lek, S., Scardi, M., Verdonschot, P.F.M., Descy, J.P. & Park, Y.S. (2005). Modelling community 
structure in freshwater ecosystems.  Springer, ISBN-10: 3540239405, New York 

Letunic, I., Yamada, T., Kanehisa, M. & Bork, P. (2008). iPath: interactive exploration of 
biochemical pathways and networks. Trends in Biochemical Sciences, 33, 3, 101-103, 
ISSN: 0968-0004 

Maier, H.R. & Dandy, G.C. (2000). Neural networks for the prediction and forecasting of 
water resources variables: a review of modelling issues and applications. 
Environmental Modelling & Software, 15, 1, 101-124, ISSN: 1364-8152 

Maier, H.R. & Dandy, G.C. (2001). Neural network based modelling of environmental 
variables: A systematic approach. Mathematical and Computer Modelling, 33, 6-7, 669-
682, ISSN: 0895-7177 

Manel, S., Dias, J.M. & Ormerod, S.J. (1999). Comparing discriminant analysis, neural 
networks and logistic regression for predicting species distributions: a case study 
with a Himalayan river bird. Ecological Modelling, 120, 2-3, 337-347, ISSN: 0304-3800 

Maravelias, C.D., Haralabous, J. & Papaconstantinou, C. (2003). Predicting demersal fish 
species distributions in the Mediterranean Sea using artificial neural networks. 
Marine Ecology Progress Series, 255, 249-258, ISSN: 0171-8630 

Mastrorillo, S., Lek, S., Dauba, F. & Belaud, A. (1997). The use of artificial neural networks to 
predict the presence of small-bodied fish in a river. Freshwater Biology, 38, 2, 237-
246, ISSN: 0046-5070 

McCulloch, W.S. & Pitts, W. (1943). A logical calculus of the ideas imminent in nervous 
activity. Bulletin of Mathematical Biophysics, 5, 115-133, ISSN: 0007-4985 

Olden, J.D. (2000). An artificial neural network approach for studying phytoplankton 
succession. Hydrobiologia, 436, 1-3, 131-143, ISSN: 0018-8158 

Olden, J.D. (2003). A species-specific approach to modeling biological communities and its 
potential for conservation. Conservation Biology, 17, 3, 854-863, ISSN: 0888-8892 

Olden, J.D. & Jackson, D.A. (2002). Illuminating the "black box": a randomization approach 
for understanding variable contributions in artificial neural networks. Ecological 
Modelling, 154, 1-2, 135-150, ISSN: 0304-3800 

Olden, J.D., Joy, M.K. & Death, R.G. (2006). Rediscovering the species in community-wide 
predictive modeling. Ecological Applications, 16, 4, 1449-1460, ISSN: 1051-0761 

Olden, J.D., Lawler, J.J. & Poff, N.L. (2008). Machine learning methods without tears: A 
primer for ecologists. Quarterly Review of Biology, 83, 2, 171-193, ISSN: 0033-5770 

Ozesmi, S.L. & Ozesmi, U. (1999). An artificial neural network approach to spatial habitat 
modelling with interspecific interaction. Ecological Modelling, 116, 1, 15-31, ISSN: 
0304-3800 

Ozesmi, S.L., Tan, C.O. & Ozesmi, U. (2006). Methodological issues in building, training, 
and testing artificial neural networks in ecological applications. Ecological Modelling, 
195, 1-2, 83-93, ISSN: 0304-3800 

Palmer, M., Quetglas, A., Guijarro, B., Moranta, J., Ordines, F. & Massuti, E. (2009). 
Performance of artificial neural networks and discriminant analysis in predicting 

www.intechopen.com



The Use of Artificial Neural Networks (ANNs) in Aquatic Ecology 

 

585 

fishing tactics from multispecific fisheries. Canadian Journal of Fisheries and Aquatic 
Sciences, 66, 224-237, ISSN: 0706-652X 

Park, Y.S., Cereghino, R., Compin, A. & Lek, S. (2003b). Applications of artificial neural 
networks for patterning and predicting aquatic insect species richness in running 
waters. Ecological Modelling, 160, 3, 265-280, ISSN: 0304-3800 

Park, Y.S. & Chon, T.S. (2007). Biologically-inspired machine learning implemented to 
ecological informatics. Ecological Modelling, 203, 1-2, 1-7, ISSN: 0304-3800 

Park, Y.S., Chon, T.S., Kwak, I.S. & Lek, S. (2004). Hierarchical community classification and 
assessment of aquatic ecosystems using artificial neural networks. Science of the 
Total Environment, 327, 1-3, 105-122, ISSN: 0048-9697 

Park, Y.S., Lek, S., Scardi, M., Verdonschot, P.F.M. & Jorgensen, S.E. (2006). Patterning 
exergy of benthic macroinvertebrate communities using self-organizing maps. 
Ecological Modelling, 195, 1-2, 105-113, ISSN: 0304-3800 

Park, Y.S., Verdonschot, P.F.M., Chon, T.S. & Lek, S. (2003a). Patterning and predicting 
aquatic macroinvertebrate diversities using artificial neural network. Water 
Research, 37, 8, 1749-1758, ISSN: 0043-1354 

Pascual, M. & Dunne, J.A. (2006). From small to large ecological networks in a dynamic 
world, In Ecological Networks: Linking Structure to Dynamics in Food Webs, Pascual M. 
& Dunne A. (Editors), 3-24, Oxford University Press, ISBN-10: 0195188160, Oxford 

Picton, P.D. (2000). Neural networks.  Palgrave Macmillan, ISBN-10: 033380287X, New York 
Pitts, W. & McCulloch, W.S. (1947). How we know universals: the perception of auditory 

and visual forms. Bulletin of Mathematical Biophysics, 9, 3, 127-147, ISSN: 0007-4985 
Power, A.M., Balbuena, J.A. & Raga, J.A. (2005). Parasite infracommunities as predictors of 

harvest location of bogue (Boops boops L.): a pilot study using statistical classifiers. 
Fisheries Research, 72, 2-3, 229-239, ISSN: 0165-7836 

Recknagel, F. (2006). Ecological Informatics: scope, techniques and applications, Springer, ISBN-
10: 3540283838, New York 

Recknagel, F., French, M., Harkonen, P. & Yabunaka, K. (1997). Artificial neural network 
approach for modelling and prediction of algal blooms. Ecological Modelling, 96, 1-3, 
11-28, ISSN: 0304-3800 

Reyjol, Y., Lim, P., Belaud, A. & Lek, S. (2001). Modelling of microhabitat used by fish in 
natural and regulated flows in the river Garonne (France). Ecological Modelling, 146, 
1-3, 131-142, ISSN: 0304-3800 

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning representations by back-
propagating errors. Nature, 323, 6088, 533-536, ISSN: 0028-0836 

Sarle, W.S. (1997). Neural network FAQ, periodic posting to the Usenet newsgroup 
comp.ai.neural-nets. Available from ftp.sas.com/pub/neural/FAQ.html 

Scardi, M. (1996). Artificial neural networks as empirical models for estimating 
phytoplankton production. Marine Ecology Progress Series, 139, 289-299, ISSN: 0171-
8630 

Solé, R. & Goodwin, B. (2000). Signs of life: how complexity pervades biology, Basic Books, ISBN-
10: 0465019285, New York 

Song, M.Y., Park, Y.S., Kwak, I.S., Woo, H. & Chon, T.S. (2006). Characterization of benthic 
macroinvertebrate communities in a restored stream by using self-organizing map. 
Ecological Informatics, 1, 3, 295-305, ISSN: 1574-9541 

www.intechopen.com



Artificial Neural Networks - Application 

 

586 

Stern, H.S. (1996). Neural networks in applied statistics. Technometrics, 38, 3, 205-214, ISSN: 
0040-1706 

Strogatz, S.H. (2001). Exploring complex networks. Nature, 410, 6825, 268-276, ISSN: 0028-
0836 

Suryanarayana, I., Braibanti, A., Rao, R.S., Ramam, V.A., Sudarsan, D. & Rao, G.N. (2008). 
Neural networks in fisheries research. Fisheries Research, 92, 2-3, 115-139, ISSN: 
0165-7836 

Tison, J., Park, Y.S., Coste, M., Wasson, J.G., Rimet, F., Ector, L. & Delmas, F. (2007). 
Predicting diatom reference communities at the French hydrosystem scale: a first 
step towards the definition of the good ecological status. Ecological Modelling, 203, 1-
2, 99-108, ISSN: 0304-3800 

Xu, M., Zeng, G.M., Xu, X.Y., Huang, G.H., Sun, W. & Jiang, X.Y. (2005). Application of 
bayesian regularized BP neural network model for analysis of aquatic ecological 
data: a case study of chlorophyll-a prediction in Nanzui water area of Dongting 
Lake. Journal of Environmental Sciences-China, 17, 6, 946-952, ISSN: 10010742 

Yoon, I., Williams, R.J., Levine, E., Yoon, S., Dunne, J.A. & Martinez, N.D. (2004). Webs on 
the Web (WoW): 3D visualization of ecological networks on the WWW for 
collaborative research and education. Proceedings of the IS&T/SPIE Symposium 
on Electronic Imaging, Visualization and Data Analysis, 5295: 124-132,  

Zhu, B., Zhao, N., Shao, Z.J., Lek, S. & Chang, J.B. (2006). Genetic population structure of 
Chinese sturgeon (Acipenser sinensis) in the Yangtze River revealed by artificial 
neural network. Journal of Applied Ichthyology, 22, 82-88, ISSN: 0175-8659 

www.intechopen.com



Artificial Neural Networks - Application

Edited by Dr. Chi Leung Patrick Hui

ISBN 978-953-307-188-6

Hard cover, 586 pages

Publisher InTech

Published online 11, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book covers 27 articles in the applications of artificial neural networks (ANN) in various disciplines which

includes business, chemical technology, computing, engineering, environmental science, science and

nanotechnology. They modeled the ANN with verification in different areas. They demonstrated that the ANN is

very useful model and the ANN could be applied in problem solving and machine learning. This book is

suitable for all professionals and scientists in understanding how ANN is applied in various areas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Antoni Quetglas, Francesc Ordines and Beatriz Guijarro (2011). The Use of Artificial Neural Networks (ANNs)

in Aquatic Ecology, Artificial Neural Networks - Application, Dr. Chi Leung Patrick Hui (Ed.), ISBN: 978-953-

307-188-6, InTech, Available from: http://www.intechopen.com/books/artificial-neural-networks-application/the-

use-of-artificial-neural-networks-anns-in-aquatic-ecology



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


