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1. Introduction  

The geotechnical engineering properties of soil exhibit varied and uncertain behaviour due 
to the complex and imprecise physical processes associated with the formation of these 
materials (Jaksa, 1995). This is in contrast to most other civil engineering materials, such as 
steel, concrete and timber, which exhibit far greater homogeneity and isotropy. In order to 
cope with the complexity of geotechnical behaviour, and the spatial variability of these 
materials, traditional forms of engineering design models are justifiably simplified. 
Moreover, geotechnical engineers face a great amount of uncertainties. Some sources of 
uncertainty are inherent soil variability, loading effects, time effects, construction effects, 
human error, and errors in soil boring, sampling, in-situ and laboratory testing, and 
characterization of the shear strength and stiffness of soils.  
Although developing an analytical or empirical model is feasible in some simplified 
situations, most manufacturing processes are complex, and therefore, models that are less 
general, more practical, and less expensive than the analytical models are of interest. An 
important advantage of using Artificial Neural Network (ANN) over regression in process 
modeling is its capacity in dealing with multiple outputs or responses while each regression 
model is able to deal with only one response. Another major advantage for developing NN 
process models is that they do not depend on simplified assumptions such as linear 
behavior or production heuristics. Neural networks possess a number of attractive 
properties for modeling a complex mechanical behavior or a system: universal function 
approximation capability, resistance to noisy or missing data, accommodation of multiple 
nonlinear variables for unknown interactions, and good generalization capability.  
Since the early 1990s, ANN has been increasingly employed as an effective tool in 
geotechnical engineering, including: constitutive modelling (Agrawal et al., 1994; Gribb & 
Gribb, 1994; Penumadu et al., 1994; Ellis et al., 1995; Millar & Calderbank, 1995; Ghaboussi & 
Sidarta 1998; Zhu et al., 1998; Sidarta & Ghaboussi, 1998; Najjar & Ali, 1999; Penumadu & 
Zhao, 1999); geo-material properities (Goh, 1995; Ellis et al., 1995; Najjar et al., 1996; Najjar 
and Basheer, 1996; Romero & Pamukcu, 1996; Ozer et al., 2008; Park et al., 2009; Park & Kim, 
2010; Park & Lee, 2010; Bearing capacity of pile (Chan et al., 1995; Goh, 1996; Bea et al., 
1999; Goh et al., 2005; Teh et al., 1997; Lee & Lee, 1996; Abu-Kiefa, 1998; Nawari et al., 1999; 
Das & Basudhar, 2006, Park & Cho, 2010); slope stability (Ni et al., 1995; Neaupane and 
Achet, 2004; Ferentinou & Sakellariou, 2007; Zhao, 2007; Cho, 2009); liquefaction (Agrawal 
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et al., 1997; Ali & Najjar, 1998; Najjar & Ali, 1998; Ural & Saka, 1998; Juang and Chen, 1999; 
Goh, 2002; Javadi et al., 2006; Kim & Kim, 2006); shallow foundations (Sivakugan et al., 1998; 
Provenzano et al., 2004; Shahin et al., 2005); and tunnels and underground openings (Lee & 
Sterling, 1992; Moon et al., 1995; Shi, 2000; Yoo & Kim, 2007). For example, the behavior of pile 
foundations installed in soils is considerably complicated, uncertain, and not yet entirely 
understood (Baik, 2002). This fact has encouraged many researchers to apply the ANN 
technique to the prediction of the behavior of foundations such as, modeling the axial and 
lateral load capacities of deep foundations. Constitutive modeling of soil behavior plays an 
important role in dealing with issues related to soil mechanics and foundation engineering. 
Over the past three decades many researchers devoted enormous effort collectively to model 
soil behavior. However, proposed constitutive models based on elasticity and plasticity 
theories have limited capability to simulate properly the behavior of soils. This is attributed to 
reasons associated with the formulation complexity, idealization of soil behavior, and 
excessive empirical parameters. In this regard, many ANNs have been proposed as a reliable 
and practical alternative to model the constitutive behavior of soils. Geotechnical properties 
soils are controlled by factors such as mineralogy; stress history; void ratio; pore water 
pressure, and the interactions of these factors are difficult to establish solely by traditional 
statistical methods due to their interdependence. Based on the application of ANNs, 
methodologies have been developed for estimating several soil properties, including the 
compression index, shear strength, permeability, soil compaction, lateral earth pressure, and 
others. 
The performance and computational complexity of NNs are mainly based on network 
architecture, which generally depends on the determination of input, output and hidden 
layers and number of neurons in each layer. The number of layers and neurons in each layer 
affect the complexity of NN architecture. NN architectures are discussed at length in several 
research works (Hecht-Nelson,1987; Bounds et al., 1988; Lawrence & Fredrickson, 1988; 
Cybenko, 1989; Marchandani & Cao, 1989; Fahlman & Lebiere, 1990; Lawrence, 1994; Goh, 
1995; Swingler, 1996; Öztütk, 2003). Nevertheless, there is no clear framework to select the 
optimum NN architecture and its parameters. Structural design of NN involves the 
determination of layers and neurons in each layer and selection of training algorithm. In 
general, parameters of NN architecture are determined by trial and error approach such that 
the number of neurons in input layer, number of hidden layers, number of neurons in 
hidden layers and number of neurons in output layer are found using several repeated runs 
of the system.  
The main objective of this chapter is to provide a brief overview of the operation of ANN 
models, the area, the areas of geotechnical engineering to which ANNs have been applied, 
and highlights and discusses four important issues which require further attention in the 
future. The chapter is divided into seven major parts. The first part reviews the background 
for application of ANN methodology to getechnical engineering. In the second part, an 
introduction to basic neural network architectures is followed. In the third part, 
methodologies for designing appropriate network architectures and practical guidelines on 
finding optimum structure of neural network are shortly discussed. The forth part is the 
application section, which summarizes the completed applicable work in geotechnical 
engineering problems and mathematical calculation of an ANN model is illustrated in the 
fifth part. In the sixth part of this chapter, in order to investigate further research directions 
of ANNs in geotechnical engineering, author’s latest issues of researches related to ANNs 
are reviewed and then the conclusion is followed in the seventh part. 
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2. Oververw of the Artificial Neural Network 

2.1 The concept of artificial neuron 

Much is still unknown about how the brain trains itself to process information, so theories 
abound. In the human brain, a typical neuron collects signals from others through a host of 
fine structures called dendrites (See Fig. 1). The neuron sends out spikes of electrical activity 
through a long, thin stand known as an axon, which splits into thousands of branches. At the 
end of each branch, a structure called a synapse converts the activity from the axon into 
electrical effects that inhibit or excite activity from the axon into electrical effects that inhibit 
or excite activity in the connected neurones. When a neuron receives excitatory input that is 
sufficiently large compared with its inhibitory input, it sends a spike of electrical activity 
down its axon. Learning occurs by changing the effectiveness of the synapses so that the 
influence of one neuron on another changes. An artificial neuron is a device with many 
inputs and one output. The neuron has two modes of operation; the training mode and the 
using mode. In the training mode, the neuron can be trained to fire (or not), for particular 
input patterns. In the using mode, when a taught input pattern is detected at the input, its 
associated output becomes the current output. If the input pattern does not belong in the 
taught list of input patterns, the firing rule is used to determine whether to fire or not. 
 

 dendrites 

Axon 

Cell body 

Synaptse 

 
Fig. 1. Biological neuron 

2.2 Mathematical modeling of artificial neuron 

A neuron is an information-processing unit that is fundamental to the peration of a neural 
network. As shown in Fig. 2, we may identify three basic elements of the neuron model. A 
set of synapses, each of which is characterized by a weight or strength of its own. Specifically, 
a signal xj at the input of synapse j connected to neuron k is multiplied by the synaptic 
weight wkj. It is important to make a note of the manner in which the subscripts of the 
synaptic weight wkj are written. The first subscript refers to the neuron in question and the 
second subscript refers to the input end of the synapse to which the weight refers. The 
weight wkj is positive if the associated synapse is excitatory; it is negative if the synapse is 
inhibitory. An adder for summing the input signals, weighted by the respective synapses of 
the neuron. An activation function for limiting the amplitude of the output of a neuron. The 
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activation function is also referred to in the literature as a squashing function in that it 
squashes (limits) the permissible amplitude range of the output signal to some finite value. 
Typically, the normalized amplitude range of the output of a neuron is written as the closed 
unit interval [0, 1] or alternatively [-1, 1]. The model of a neuron also includes an externally 
applied bias (threshold) wk0 = bk that has the effect of lowering or increasing the net input of 
the activation function. In matrix form, we may describe a neuron k by writing the following 
matrix. 
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x2 

xp 

…
 

Activation function  

ϕ(•) 

Synaptic weights  

Inputs  
Output 

yk 

wk0 = bk(bias)  
Fixed input x0 =+1 

 
Fig. 2. Basic elements of an artificial neuron 

2.3 Activation function 

In this section, three of the most common activation functions are presented. An activation 
function performs a mathematical operation on the output. More sophisticated activation 
functions can also be utilized depending upon the type of problem to be solved by the 
network. As is known, a linear function satisfies the superposition concept. The function is 
shown in Fig. 3(a). The mathematical equation for the above linear function can be written 
as 

 Y = f (u) = α.u  (2) 

where ǂ is the slope of the linear function. If the slope ǂ is 1, then the linear activation 
function is called the identity function. The output (y) of identity function is equal to input 
function (u). Although this function might appear to be a trivial case, nevertheless it is very 
useful in some cases such as the last stage of a multilayer neural network. 
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As shown Fig. 3(b), sigmoidal(S shape) function is the most common nonlinear type of the 
activation used to construct the neural networks. It is mathematically well behaved, 
differentiable and strictly increasing function. A sigmoidal transfer function can be written 
in the following form: 

 
1

( )
1 x

f x
e α−=

+
 , 0 ≤ f (x ) ≤ 1 (3) 

where ǂ is the shape parameter of the sigmoid function. By varying this parameter, different 
shapes of the function can be obtained as illustrated in Fig. 3(b). This function is continuous 
and differentiable.  
Tangent sigmoidal function is described by the following mathematical form: 

 
2

( ) 1
1 x

f x
e α−= −

+
 , -1 ≤ f (x ) ≤ +1 (4) 

 

 

u 

f(u) 

  

 

+1 

0 u 

f(u) 

0.5 

   

 

+1 

-1 

f(u) 

u 

 
 

                           (a)                                               (b)                                             (c) 

Fig. 3. Activation Function. 

2.4 Multilayered Neural Network 

The source nodes in the input layer of the network supply respective elements of the 
activation pattern (input vector), which constitute the input signals applied to the neurons 
(computation nodes) in the second layer (i.e. the first hidden layer). The output signals of the 
second layer are used as inputs to the third layer, and so on for the rest of the network. 
Typically, the neurons in each layer of the network have as their inputs the output signals of 
the preceding layer only. The set of output signals of the neurons in the output layer of the 
network constitutes the overall response of the network to the activation pattern supplied 
by the source nodes in the input layer. The commonest type of artificial neural network 
consists of three groups, or layers, of units: a layer of “input” units is connected to a layer of 
“hidden” units, which is connected to a layer of “output” units (see Fig. 4). The activity of 
the input units represents the raw information that is fed into the network. The activity of 
each hidden unit is determined by the activities of the input units and the weights on the 
connections between the input and the hidden units. The behaviour of the output units 
depends on the activity of the hidden units and the weights between the hidden and output 
units.  
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Fig. 4. Example of Multilayer neural network 

2.4 Back-propagation 

Backpropagation algorithm (BP) is the most widely used search technique for training 
neural networks. Information in an ANN is stored in the connection weights which can be 
thought of as the memory of the system. The purpose of BP training is to change iteratively 
the weights between the neurons in a direction that minimizes the error E, defined as the 
squared difference between the desired and the actual outcomes of the output nodes, 
summed over training patterns (training dataset) and the output neurons. The algorithm 
uses a sample-by-sample updating rule for adjusting connection weights in the network. In 
one algorithm iteration, a training sample is presented to the network. The signal is then fed 
in a forward manner through the network until the network output is obtained. The error 
between the actual and desired network outputs is calculated and used to adjust the 
connection weights. Basically, the adjustment procedure, derived from a gradient descent 
method, is used to reduce the error magnitude. The procedure is firstly applied to the 
connection weights in the output layer, followed by the connection weights in the hidden 
layer next to output layer. This adjustment is continued backward through to network until 
connection weights in the first hidden layer are reached. The iteration is completed after all 
connection weights in the network have been adjusted. Rumelhart, Hinton, and Williams 
(1986) popularized the use of BP for learning internal representation in neural networks. 
Despite their popularity, BP has the drawback of converging to an optimal solution slowly 
when the gradient search technique is applied. That is, a BP using the gradient search 
technique has two serious disadvantages: the gradient search technique converges to an 
optimal solution with inconsistent and unpredictable performance for some applications 
and when trapped into some local areas, the gradient search technique performs poorly in 
getting a globally optimal solution. The most major problem during the training process of 
the neural network is the possible overfitting of training data. That is, during a certain 
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training period, the network no longer improves its ability to solve the problem. In this case, 
the training stopped in a local minimum, leading to ineffective results and indicating a poor 
fit of the model. In order to attempt to prevent these disadvantages, researchers have 
modified the basic algorithm to try to escape local optima and find the global solution. 
Numerous modifications have been implemented in order to overcome this problem.  
Over-fitting problem or poor generalization capability happens when a neural network over 
learns during the training period. As a result, such a too well-trained model may not 
perform well on unseen data set due to its lack of generalization capability. Several 
approaches have been suggested in literature to overcome this problem. The first method is 
an early learning stopping mechanism in which the training process is concluded as soon as 
the overtraining signal appears. The signal can be observed when the prediction accuracy of 
the trained network applied to a test set, at that stage of training period, gets worsened. The 
second approach is the Bayesian Regularization. This approach minimizes the over-fitting 
problem by taking into account the goodness-of-fit as well as the network architecture. Early 
stopping approach requires the data set to be divided into three subsets: training, test, and 
verification sets. The training and the verification sets are the norm in all model training 
processes. The test set is used to test the trend of the prediction accuracy of the model 
trained at some stages of the training process. At much later stages of training process, the 
prediction accuracy of the model may start worsening for the test set. This is the stage when 
the model should cease to be trained to overcome the over-fitting problem. The Bayesian 
Regularization approach involves modifying the usually used objective function, such as the 
mean sum of squared network errors (MSE) The modification aims to improve the model’s 
generalization capability. The objective function in Eq. (5) is expanded with the addition of a 
term, w E which is the sum of squares of the network weights: 

 F=ǃEd+ǂEw (5) 

where the ǂ and ǃ are parameters which are to be optimized in Bayesian framework of 
MacKay (1992a; 1992b). It is assumed that the weights and biases of the network are random 
variables following Gaussian distributions and the parameters are related to the unknown 
variances associated with these distributions.  

3. Designing the structure of Artificial Neural Network 

Structural design of NN involves the determination of layers and neurons in each layer and 
selection of training algorithm. The selection of only effective input parameters to the NN is 
one of the most difficult processes since: (1) there may be interdependencies and 
redundancies between parameters, (2) sometimes it is better to omit some parameters to 
reduce the total number of input parameters, and therefore computational complexity of the 
problem and topology of the network, and (3) NN is usually applied to problems where 
there is no strong knowledge about the relations between input and output, and therefore it 
is not clear which of the input parameters are most useful. Moreover, other design 
parameters of NN architecture, such as the number of neurons in input layer, number of 
hidden layers, number of neurons in hidden layers and number of neurons in output layer, 
are found using several repeated runs of the system based on trial and error method. There 
is no clear framework to select the optimum NN architecture and its parameters (Chung and 
Kusiak, 1994; Kusiak and Lee, 1996). Nevertheless, some research work has contributed to 
determine the number of hidden layers, the number of neurons in each layer, selecting the 
learning rate parameter, and others. 
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3.1 Determining the number of hidden layers 

Determining the number of hidden layers and the number of neurons in each hidden layer 
is a considerable task. The number of hidden layers is usually determined first and is a 
critical step. The number of hidden layers required depends on the complexity of the 
relationship between the input parameters and the output value. Most problems only 
require one hidden layer, and if relationship between the inputs and output is linear the 
network does not need a additional hidden layer at all. It is unlikely that any practical 
problem will require more than two hidden layers(THL). Cybenko (1989) and Bounds et al. 
(1988) suggested that one hidden layer (OHL) is enough to classify input patterns into 
different group.  
Chester (1990) argued that a THL should perform better than an OHL network. More than 
one hidden layer can be useful in certain architectures, such as cascade correlation (Fahlman 
& Lebiere, 1990) and others. A simple explanation for why larger networks can sometimes 
provide improved training and lower generalization error is that the extra degrees of 
freedom can aid convergence; that is, the addition of extra parameters can decrease the 
chance of becoming stuck in local minima or on “plateaus”. The most commonly used 
training methods for back-propagation networks are based on gradient descent; that is, error 
is reduced until a minimum is reached, whether it be a global or local minimum. However, 
there isn’t clear theory to tell how many hidden units are needed to approximate any given 
function. If only one input availavle, one sees no advantages in using more than one hidden 
layer. But things get much more complicated when two or more inputs are given. The rule 
of thumb in deciding the number of hidden layers is normally to start with OHL (Lawrence, 
1994). If OHL does not train well, then try to increase the number of neurons. Adding more 
hidden layers should be the last option.   

3.2 Determining the number of hidden neurons 

The choice of hidden neuron size is problem-dependent. For example, any network that 
requires data compression must have a hidden layer smaller than the input layer (Swingler, 
1996). A conservative approach is to select a number between the number of input neurons 
and the number of output neurons. It can be seen that the general wisdom concerning 
selection of initial number of hidden neurons is somewhat conflicting. A good rule 
  

Formula Comments 

2 1h i= +  

Hecht-Nelson (1987) used Kolmogorov’s theorem which any 
function of I variavles may be represented by the superposition 
of set of 2i+1 univariate functions-to derive the upper bound for 
the required number of hidden neurons. 

( ) / 2h i o= +
 

10 2

N N
i o h i o− − ≤ ≤ − −

Lawrence and Fredrickson (1988) suggested that a best estimation 
for the number of hidden neurons is to half the sum of inputs and 
outputs. Moreover, they proposed the range of number of hidden 
neurons. 

2logh i P=  Marchandani and Cao (1989) proposed a equation for best  
number of hidden neurons 

*. h = the number of hidden neurons, i = the number of input neurons, o = the number of output 
neurons. 

Table 1. Rule of thumbs to select the number of neurons in hidden layer 
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of thumb is to start with the number of hidden neurons equal to half of the number of input 
neurons and then either add neurons if the training error remains above the training error 
tolerance, or reduce neurons if the training error quickly drops to the training error tolerance. 

3.3 Determining the number of training data 

In order to train the neural network well, the number of data set must be carefully decided. 
An over fitted model could approximate the training data well but generalize poorly to the 
validation data set. On the other hand, an underfitted model would generalize to the 
validation data set well but approximate the training data poorly. To avoid over fitting and 
underfitting is to determine the best number of training observations. No general guidelines 
are available to achieve this. However, Lawrence and Fredrickson (1988) suggested the 
following rule of thumb. 

 2 (i + h +o) ≤ N ≤ 10((i + h +o) (6) 

4. ANN applications in geotechnical engineering 
4.1 Constitutive Modelling of geo-materials 

During the past decades, increasing interest has been shown in the development of a 
satisfactory formulation for the stress–strain relationships of geo-materials that incorporates 
a concise statement of nonlinearity, inelasticity and stress dependency based on a set of 
assumptions and proposed failure criteria. In spite of the considerable complexities of these 
constitutive models, and due to an inadequate understanding of the mechanisms and all 
factors involved, it is not possible to capture the complete material response along all 
complex stress paths and densities. Furthermore, the degree of complexity of these 
constitutive models (in many cases) inhibits their incorporation into general purpose 
numerical codes, thus restricting their usefulness in engineering practice (Shin and Pande, 
2000). On the other hands, for the convenience of practical in engineering, the model seems 
to be established simple enough. In the process of establishing the model, the conventional 
method oversimplifies the soil mechanic behavior. When simplifying the model, parameters 
have been artificially lessened and only a few of them could be applied in setting up the soil 
constitutive model while the remaining large number of test data is neglected. Eventually, 
the model will be poor. 
Unlike conventional constitutive models, it needs no prior knowledge, or any constants 
and/or assumptions about the deformation characteristics of the geo-materials. Other 
powerful attributes of ANN models are their flexibility and adaptivity, which play an 
important role in material modeling (Ghaboussi & Sidarta 1998). When a new set of 
experimental results cannot be reproduced by conventional models, a new constitutive model 
or a set of new constitutive equations, needs to be developed. However, trained ANN models 
can be further trained with the new data set to gain the required additional information 
needed to reproduce the new experimental results. These features ascertain the ANN model to 
be an objective model that can truly represent natural neural connections among variables, 
rather than a subjective model, which assumes variables obeying a set of predefined relations 
(Zhu et al., 1998). So far, ANNs have been applied to the constitutive modeling of rocks, clays, 
sands, gravels and other geo-materials (Zhu et al., 1998; Millar & Calderbank, 1995; Penumadu 
et al., 1994; Ellis et al., 1995; Penumadu & Zhao, 1999; Najjar & Ali, 1999) 
Ghaboussi and co-workers originally proposed an NN-based framework for constitutive 
modeling in geomechanics (Ghaboussi & Sidarta, 1998; Sidarta & Ghaboussi, 1998). They 
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introduced a concept of nested adaptive NNs, which considers the nested structure of the 
material test data, e.g. dimensionality, stress path dependency or drainage conditions. By 
means of the finite element (FE) method and the autoprogressive training algorithm 
proposed in (Ghaboussi et al., 1998), they trained NNs with experimental nonuniform 
triaxial test data, in order to capture and reproduce the non-linear response of the soil 
without conventional concepts of the theory of plasticity. In addition, further research 
proved that the NN-constitutive models can be successfully embedded within the FE codes 
to compute the consistent tangent stiffness matrix (Shin and Pande, 2000; Hashash et al., 
2004). Hashash et al. (2004) demonstrated that a tangent stiffness matrix can be derived from 
the NN-based material models, using the explicit formulation represented by network 
parameters. However, the main drawback of the NN-constitutive models is that it is valid 
only for a specific material for which a new NN has to be adopted each time. Moreover, a 
material model loses its ‘flexibility’, which is inherent in the case of conventional models 
and which is controlled by parameters explicitly describing concepts of plasticity, such as 
yield surface, flow rule and hardening law. 

4.2 Properties of geo-materials 

In geotechnical engineering, empirical relationships are often used to estimate certain 
engineering properties of soils. Using data from extensive laboratory or field testing, these 
correlations are usually derived with the aid of statistical methods. The relationships 
between soil parameters are clearly complex, but the degree of interaction enables a degree 
of statistical correlation to be established, suggesting the promise of a potential for 
estimation. Developing engineering correlations between various soil parameters is an issue 
discussed by Goh (1995). Goh used neural networks to model the correlation between the 
relative density and the cone resistance from cone penetration test (CPT), for both normally 
consolidated and over-consolidated sands. Laboratory data, based on calibration chamber 
tests, were used to successfully train and test the neural network model. 
The neural network model used soil parameters as inputs and the compression index as a 
single output(Ozer et al., 2008; Park & Lee, 2010). The ANN models was found to give higher 
coefficients of correlation than empirical equations for the training and testing data, 
respectively, which indicated that the neural network was successful in modelling the complex 
relationship between the compression index and the other soil parameters. Many other studies 
have successfully used ANNs for modelling soil properties. Ellis et al. (1995) developed an 
ANN model for sands based on grain size distribution and stress history. Najjar et al. (1996) 
showed that neural network-based models can be used to accurately assess soil swelling, and 
that neural network models can provide significant improvements in prediction accuracy over 
statistical models. Romero and Pamukcu (1996) showed that neural networks are able to 
effectively characterise and estimate the shear modulus of granular materials. Agrawal et al. 
(1994); Gribb and Gribb (1994) and Najjar and Basheer (1996) all used neural network 
approaches for estimating the permeability of clay liners. Park et al. (2010) used ANN models 
to develop an empirical model for the resilient modulus of subgrade soils and subbase 
materials from basic material properties and in-situ conditions related to stresses. 
Park and Kim (2010a) proposed an ANN model to predict the unconfined compressive 
strength of reinforced lightweight soil (RLS). RLS consisting of dredged soil, cement, air-
foam, and waste fishing net is considered to be an eco-friendly backfilling material in 
construction because it provides a means to recycle both dredged soil and waste fishing net. 
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Several series of laboratory tests were performed to investigate the unconfined compressive 
strength of RLS in various mixing ratios. It may be difficult to find an optimum mixing ratio 
of RLS considering the design criteria and the construction’s situation using the limited test 
results because the unconfined compressive strength is complicatedly influenced by various 
mixing ratios of admixtures. As a result, in order to expedite the field application of 
reinforced lightweight soil, an appropriate prediction method is needed. However, since the 
strength of RLS is strongly influenced by the mixing ratio of each admixture (i.e., cement, 
water, air foam, and waste fishing net), it is difficult to empirically formulate a mathematical 
relationship between the strength and the admixture content of the composite materials. An 
ANN model that predict the strength of RLS at a given mixing ratio was developed using 
experimental test results performed on various mixing admixture contents. 
 

Air-foam

Dredged soil

Cement

Waste 

fishing net

 
Fig. 5. Schematic diagram of (a) unreinforced and (b) reinforced light-weight soil (Park & 
Kim, 2010) 

As shown in Fig.6(a) the proposed NN model has four nodes in the input layer, four nodes 
in the hidden layer, and one node in the output layer Fig. 6(a). Fig. 6(b) shows the 
relationship between the output targets (measured values) and predicted values obtained 
through the training and testing process. the model shows very good correlation to the  
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Fig. 6. Architecture for the developed artificial neural network (Park & Kim, 2010) 
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training and testing data. As shown in Fig. 7, the developed ANN model is able to obtain 
the complex behaviors between the compressive strength of RLS and the mixing ratios of 
admixitures. It has been proven that NN is well suited to modeling the complex behavior of 
most geo-materials which, by their very nature, exhibit extreme variability.  
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Fig. 7. The unconfined compressive strength with variation of input parameters (Park & 
Kim, 2010)  

4.3 Pile capacity 

Design of axial loaded pile can be done be solving equations of static equilibrium whereas 
design of lateral loaded piles requires solution of nonlinear differential equations (Poulos & 
Davis, 1980). Other semi-empirical methods used for lateral load capacity of piles are due to 
Hansen (1961), Broms (1964) and Meyerhof (1976). Although numerous investigations have 
been performed over the years to predict the behavior and capacity of piles, the mechanisms 
are not yet entirely understood. Predicting pile capacity is a difficult task because there are a 
large number of parameters affecting the capacity which have complex relationships with 
each other. It is extremely difficult to develop appropriate relationships between various 
essential parameters, including the soil condition, pile type, driving condition, time effect, 
and others. Baik (2002) illustrated that these factors include the soil condition (type of soil, 
density, shear strength, etc.), information related to the piles’ shape (diameter, penetration 
depth, whether the tip of pile is open-ended or closed-ended, etc.), and other information 
(driving method, driving energy, set-up effect, etc.). Although many methods predicting 
pile resistance have been presented, they did not appropriately consider the various 
parameters that affect pile resistance. The main criticism of these methods is that they 
oversimplify the complicated mechanism of pile resistance, and the soil characteristics, type 
of pile, and information on driving conditions are not properly taken into account.  
Hence, ANN models could be an alternate approach for the above case. Goh (1995) used 
back propagation neural network (BPNN) to predict the skin friction of pile in clay. Goh 
(1995; 1996) observed that ultimate load capacity of driven timber, pre-cast concrete and 
steel piles in cohesionless soils using ANN was found to outperform the methods like 
Engineering News formula, the Hiley formula and the Janbu formula. Chan et al. (1995) and 
Teh et al. (1997) found that the static pile capacity predicted by using neural network have 
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excellent agreement with the same obtained by using the commercially available computer 
code CAPWAP (GRL, 1972). Lee and Lee (1996) used neural networks to predict the 
ultimate bearing capacity of piles based on model and in situ pile load test results. Abu-
Kiefa (1998) used a generalized regression neural network (GRNN), which is a type of 
probabilistic neural network to predict the pile load capacity considering separately the tip, 
the shaft and total load capacity of piles driven in cohesionless soils. Nawari et al. (1999) 
have used neural networks for prediction of axial load capacity of steel H-piles, steel piles 
and pre-stressed and reinforced concrete piles using both BPNN and GRNN. They also 
predicted the top settlement of drill shaft due to lateral load based on in situ testing.  
Park and Cho (2010) applied an artificial neural network (ANN) to predict the resistance of 
driven piles in dynamic load tests. They collected 165 data sets for driven piles at various 
construction sites in Korea. Predictions on the tip, shaft, and total pile resistance were made 
for piles with available corresponding measurements of such values. The results indicate 
that the ANN model serves as a reliable and simple predictive tool to appropriately consider 
various essential parameters for predicting the resistance of driven piles. The proposed 
neural network model has seven nodes in the input layer, eight nodes in the hidden layer, 
and three nodes in the output layer (Fig. 8). In order to find an appropriate combination of 
transfer functions providing good correlation in training and testing stage, various 
combinations using log-sigmoid, tan-sigmoid and linear was applied to hidden layer and 
output layer. The combination of transfer functions applied to the hidden layer and output 

layer neurons are tan-sigmoid ( 22 /(1 ) 1ne−+ − ) and linear, respectively. 
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Fig. 8. Architecture of the artificial neural network model (Park & Cho, 2010)  
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Fig. 9. Comparison of predicted and measured pile resistance (Park and Cho, 2010) 

4.4 Slope stability 

Slope stability is important because slope failures or landslides can lead to the loss of life 
and property. Slope failures are complex natural phenomena that constitute a serious 
natural hazard in many countries. Limited data and unclearly defined problems often 
complicate the study of landslides (Nieuwenhuis 1991). To prevent or mitigate the landslide 
damage, slope-stability analyses and stabilization require an understanding and evaluation 
of the processes that govern the behavior of the slopes. The factor of safety based on an 
appropriate geotechnical model as an index of stability, is required in order to evaluate 
slope stability. Black-box models, based on the Artificial Neural Networks (ANNs), 
currently attract many researchers studying slope instability, owing to their successful 
performance in modeling non-linear multivariate problems (Ni et al., 1995; Neaupane & 
Achet, 2004; Sakellariou & Ferentinou, 2005; Cho, 2009; Wang et al., 2005). Many variables 
are involved in slope stability evaluation and the calculation of the factor of safety requires 
geometrical data, physical data on the geologic materials and their shear-strength 
parameters (cohesion and angle of internal friction), information on pore-water pressures, 
etc. To evaluate slope instability, the complexity of the slope system requires employment of 
new methods that are efficient in predicting this nonlinear characteristic of natural 
landslides.  

5. Practical mathematical formulation of ANN  

5.1 Mathematical formulation 

Training a neural network is conducted by presenting a series of example patterns for 
associated input and output values. Initially, when a network is created, the connection 
weights and biases are set to random values. The performance of an ANN model is 
measured in terms of an error criterion between the target output and the calculated output. 
The output calculated at the end of each feed-forward computation is compared with the 
target output to estimate the mean-squared error, as shown in Eq. (7) 
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( )

Num

i i
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E T t
=

= −∑  (7) 

where, Num = number of target data, Ti = ith target output, ti = ith calculated output, 
respectively.  
An algorithm called back-propagation is then used to adjust the weights and biases until the 
mean-squared error is minimized. The network is trained by repeating this process several 
times. Once the ANN is trained, the prediction mode simply consists of propagating the 
data through the network, giving immediate results. In this study, the training data sets 
(inputs and target outputs) were normalized according to Eq. (8). Processing of the training 
data was performed so that the processed data were in the range of -1 to +1. The output of 
the network was trained to produce outputs in the range of -1 to +1, and we converted these 
outputs back into the same units used for the original targets.  

 pn = 2 ( p - min p ) / ( max p – min p ) – 1 , tn = 2 ( t - min t ) / ( max t – min t ) – 1 (8) 

where p = a matrix of input vectors; t = a matrix of target output vectors; pn = a matrix of 
normalized input vectors; tn = a matrix of normalized target output vectors; max p = a 
vector containing the maximum values of the original input; min p = a vector containing the 
minimum value of the original input; max t = a vector containing the maximum value of the 
target output; and min t = a vector containing the minimum value of the target output. The 
normalized data were then used to train the neural network to obtain the final connection 
weights. The data from the output neuron have to be post-processed to convert it back into 
non-normalized units as shown in Eq. (9). 

 t = 0.5⋅(tn + 1)⋅(max t – min t) + min t (9) 

The normalized output is then obtained by propagating the normalized input vector 
through the network as follows:  

 tn = W2 × logsig (W1 × pn + B1) + B2 (10) 

where W1 = a weight matrix representing connection weights between the input layer 
neurons and the hidden layer; B1 = a weight matrix representing connection weights 
between the hidden layer neurons and the output neuron; W2 = a bias vector for the hidden 
layer neurons; and B2 = a bias for the output neuron. The log-sigmoid function log sig is 
defined in Eq. (3).  
The output t is then obtained using Eq. (9) and (10): 

 t = 0.5⋅( W2 × log sig ( W1 × pn + B1 ) + B2 + 1 )⋅(max t – min t ) + min t (11) 

where the transfer function in the hidden layer is the log-sigmoid activation function  
a=1/(1 - e-n), and the transfer function in the output layer is the linear function a=n. 

5.2 Example calculating pile resistance using ANN model(Park and Cho, 2010) 

The proposed neural network model has seven nodes in the input layer, eight nodes in the 
hidden layer, and three nodes in the output layer (Fig. 8). In this study, the soil types near 
the tip and shaft of pile were classified as shown in Table 2. Weight matrix and bias vector 
used in the ANN model are summarized in Table 3. 
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Classification of soil Value 
Clay 1 

Silt – Clay 2 
Silt 3 

Sand – Clay 4 
Sand – Silt 5 
Fine Sand 6 

Sand 7 
Sand – Gravel 8 

Table 2. Classification according to soil types near the shaft and the tip of pile  
 

0.910 -1.070 -3.323 1.594 0.376 -1.196 -2.252 1.189 
-0.785 0.189 -1.658 -0.106 0.133 1.922 -0.266 0.169 
2.505 0.625 -1.354 -0.422 -4.459 -0.615 1.252 -1.676 
2.871 2.612 -1.622 -0.413 -4.854 0.259 0.277 -0.712 
1.397 2.235 0.354 -0.972 0.194 -1.625 -2.250 -0.889 
0.227 4.302 -2.049 -0.753 0.391 1.649 -1.787 2.777 
-0.153 -0.506 -0.284 -3.868 -0.795 -1.434 1.386 -3.926 

W1 

0.058 -4.905 -0.370 0.882 -0.158 -0.712 -3.116 

B1 

1.408 
1.510 -0.472 -3.371 3.190 0.110 -1.474 -0.079 -1.192 0.598 
-0.417 -3.524 3.203 -2.910 -3.145 3.588 -0.768 1.880 -0.899 W2 
1.230 -2.128 -1.662 1.631 -1.397 0.317 -0.441 -0.231 

B2 
0.543 

*. Matrix W1 (8×7), B1 (8×1), W2 (3×8), and B2 (3×1) is used in Eq. (9). 

Table 3. Weight matrix and bias vector for ANN Model 

The input vector p is selected obtained given as follows:  
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The normalized input vector pn could be calculated using eq. (8) and min p and max p 
vectors are given in Table 4.  
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*. For the type of pile tip(TPT), 0 represents a closed-ended tip and 1 represents an open-ended one. 

Table 4. Maxiimum and minimum values of input parameters and output values 

The normalized output could be calculated by propagating the normalized input vector as 
follows.   

0.910 1.07 3.323 1.594 0.376 1.196 2.252

0.785 0.189 1.658 0.106 0.133 1.922 0.266

2.505 0.625 1.354 0.422 4.459 0.615 1.252

2.871 2.612 1.622 0.413 4.854 0.259 0.277

1.397 2.235 0.354 0.972 0.194 1.625 2.250
A pn B

− − − −
− − − − −

− − − −
− − −

× + =
− − −

0.396

1.0

1.0

0.473

0.442
0.227 4.302 2.049 0.753 0.391 1.649 1.787

0
0.153 0.506 0.284 3.868 0.795 1.434 1.386

0.429
0.058 4.905 0.370 0.882 0.158 0.712 3.116

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎢ ⎥ −× +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥⎢ ⎥− − − − − − ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥− − − − −⎣ ⎦

1.189 6.321

0.169 1.550

1.676 2.262

0.712 2.633

0.889 1.415

2.777 1.908

3.926 2.314

1.408 7.554

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
− −⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

0.998

0.825

0.094

0.067
log ( )

0.196

0.871

0.090

1.000

sig A pn B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥× + = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0.998

0.825

0.094
1.510 0.472 3.371 3.190 0.110 1.474 0.079 1.192

0.067
log ( ) 0.417 3.524 3.203 2.910 3.145 3.588 0.768 1.880

0.196
1.230 2.128 1.662 1.631 1.397 0.317 0.441 0.231

0.871

0.

tn C sig A pn B D

− − − − −⎡ ⎤
⎢ ⎥= × × + + = − − − − − ×⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

0.598 0.848

0.899 0.205

0.543 0.299

090

1.000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ + − =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The normalized output tn could be translated to real Pile resistance values using Eq. (9). 
t=0.5⋅(tn+1)⋅(max t–min t)+min t= 

0.848 1 5401 154 154 543.7

0.5 0.205 1 2742 158 158 1715.1

0.299 1 6126 360 360 2258.8

⎛ ⎞ ⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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Input parameters Output values 
 DIA 

(m) 
DEP
(m) 

TPT 
DE 

(kN⋅m)
ETS 

(day) 
STS STT 

Shaft 
(kN) 

Tip 
(kN) 

Total 
(kN) 

Max. 0.273 0 9.6 1.3 0 1 1 154 158 360 
Min 0.610 1 42.8 102.0 43 5 8 5401 2742 6126 
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Measured values for shaft, tip and total resistance of pile are 529.7, 1785.4 and 2315.2 kN and 
predicted values using ANN model are 543.7, 1715.1 and 2258.8 kN, respectively 

6. Advances in ANN technology 

6.1 Automatic design of ANN structure 
6.1.1 Overviews 

Neural network (NN), also called artificial neural system, is an information processing 
technique which is developed to simulate the functions of a human brain. Although ANN is 
an effective algorithm for solving complex engineering problems, only few approaches are 
available to design the network and most of them rely on iterative procedures. The design of 
network architecture mainly consists of the network layers, number of neurons of each 
layer, the transfer functions between layers, and the appropriate selections of a training 
algorithm. Especially, there are some kinds of input variables and values in which some of 
them may not carry important information to define the relationship between the input and 
output. These values can be ignored for the sake of solution convergence and efficiency, 
even sometimes at the cost of losing some input information. This provides smaller network 
models, which may be more desirable because of computational resource requirements and 
generalization capability. Therefore, the present study applies GA to select only effective 
inputs of network to decrease the time required to design smaller network and to reduce the 
computational complexity of problems. GA is used to find the best combination of only 
effective input parameters to provide a solution with less computational process. 
To make an ANN more efficient, the computational complexity of ANN should be reduced. 
The computational complexity of network are generally affected by the number of neurons 
in each layer. And the network performs poorly as the model become larger and more 
complex. Although the design methodology of structure of ANN was described in the 
chapter three, the structure of ANN have to be designed by the trial and error approach, 
which runs repeatedly to find the network architecture. There is no general framework for 
the selection of the optimum ANN architecture and its parameters. 
Genetic Algorithm (GA) is a very effective approach in solving problems from a wide range 
of applications, which is difficult to solve with traditional techniques. GA works by 
repeatedly modifying a population of artificial structures through the application of genetic 
operators (Goldberg, 1989). There have been a large number of applications of the GA for 
the NN especially for the evaluation of the weights and the architecture as a search engine to 
improve the convergence speed of network. Yu and Liang (2001) presented a hybrid 
approach involving ANN and GA to solve job-shop scheduling problem. The computational 
ability of the hybrid approach, ANN’s computability and GA’s searching efficiency, is 
strong enough to deal with complex scheduling problems.  
Park & Kim (2011) proposed the hybrid design method based on ANN and GA. In their 
approach, a trained NN was employed to model the complex relationships among the 
parameters related to the geotechnical problems, whereas GA was applied to determine a 
set of optimal architecture of NN including input parameters, number of hidden layer and 
each layer’s neuron, combination of transfer function between layers. The hybrid approach 
involving ANN and GA was developed and implemented. It consists of two unit: an NN 
prediction unit and a GA optimization unit. As shown in Fig. 10, their procedure can be 
summarized as follows: 
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1. First, an initial population, which contains a number of sets including information 
about the structure of ANN, is randomly generated. Then the individuals stored in it 
are fed into a NN-based prediction unit.  

2. The predicted quality measures, which related to objective function, are used to indicate 
the fitness of the individuals. Evaluate the fitness of each individual according to the 
rank-based fitness. 

3. Based on the fitness, select individuals and place them in the mating pool according to 
the rank-based fitness assignment and stochastic universal sampling.  

4. Do crossover and mutation to the current population to create new individuals.  
5. Insert a number of new random individuals replacing old individuals in the current 

population randomly. Make sure that the inserted individuals did not replace the best 
individual in the population. 

6. Evaluate the fitness of each individual. 
7. Steps 3–6 are called a generation, and they are repeated until a certain stop criterion is 

met. Typical stop criteria in a genetic algorithm run include a predefined maximum 
number of generations or an error smaller than a predefined value. In our genetic 
algorithm, maximum number of generations is used. 

 
 

Create initial random population of Nind individuals

for i = 1 to MAXGEN 

end 

”  ANN structure of jth individual 

”  Calculation Objective function  

”  Evaluate fitness  
Select individuals 

Genetic process 
(Crossover & mutation) 

Obtain the optimal structure of ANN  

in MAXGENth generation 

Yes 

Create i+1th population 
of Nsel individuals 

i ≤ MAXGEN 

No 

for j = 1 to Nind or Nsel 

end 

 
Fig. 10. Schematic flow chart of determination of optimal structure of ANN (Park & Kim, 2011) 

6.1.2 Creation of initial population 

The hybrid ANN-GA approach starts with the generation of an initial population, which 
contains a predefined number of chromosomes (strings). Each chromosome is composed of 
binary strings that include the design information of ANN’s structure. For example, in case 
of design condition given in Table 5, a chromosome created is presented in Fig. 11.  
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parameters values 

Total number of input variables, Nini 7 

Maximum number of hidden layer, NHL 2 

Maximum node number in hidden layer, NHN = 15 15 

Transfer functions which can be used between 
layers 

linear function, sigmoid function, 
tangent-sigmoid function 

Table 5. An Example of design information to determine the structure of ANN 
 

 

1  1  1  1  1  1  0  0  0  1  0  0  1  0  1  0  1   

Input layer Hidden layer Transfer function

” Node number of input layer, Nin = 6 
” Number of hidden layer, N hl = 1(in case of 0, N hl = 1 and in case of 1, N hl = 2)  
” Number of Node of hidden layer, Nhn = 23×0+22×1+21×0+20×1=5 
” Information of transfer function : Determination of the combination  

of transfer functions using five binary strings

No. of node of hidden layer
No. of hidden layer 

 
Fig. 11. Design information about the structure of ANN included in chromosome (Park & 
Kim, 2011) 

This chromosome is composed of the eighteen binary strings. First seven binary strings in 
the chromosome include the information about the selection of input parameters. Six binary 
strings deal with the input variables used for the network architecture, with the 0 code 
indicating that a variable that cannot be used and with the 1 code indicating that a variable 
can be used. There are seven input variables, in this chromosome; seven binary strings 
present that the first six inputs should be kept, and the last two inputs removed. One 
Hidden layer was selected and five node was applied to the hidden layer. The information 
about transfer function is included in the other five binary strings. For example, a 
population of q individuals can be created as follows: 

 

1

2

1 0 1 1 0 1 0 0 1 1 1 0 1 0 1

0 1 0 0 1 1 1 0 1 0 1 1 0 0 1

1 1 1 0 1 0 0 1 0 0 1 1 0 1 0q

P

P

P

=

=
=

=

B B B B
  (11) 

6.1.3 Genetic operation 

GA is an optimization procedure that operates on sets of design variables. Each set is called a 
string and it defines a potential. Each string consists of a series of characters representing the 
values of the discrete design variables for a particular solution. The fitness of each string is the 
measurement of the performance of the design variables as defined by the objective function. 
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In its simplest form, a genetic algorithm consists of three operations: (1) reproduction, (2) 
crossover, and (3) mutation (Goldberg, 1989). Each of these operations is described below.  
The reproduction operation is the basic engine of Darwinian natural selection by the 
survival of the fittest. The reproduction process promotes the information stored in strings 
with good fitness values to survive into the next generation. The next generation of 
offspring strings is developed from the selected pairs of parent strings exposed to the 
application of explorative operators such as crossover and mutation. 
Crossover is a procedure in which a selected parent string is broken into segments, some of 
which are exchanged with corresponding segments of another parent string. In this manner, 
the crossover operation creates variations in the solutions population by producing new 
solution strings that consist of parts taken from a selected parent string.  
 

 

parent 1 

i th node 

1  1  1  1  1  1  1  1  1  1  1  1  1  1  1   

0  0  0  0  0  0  0  0  0  0  0  0  0  0  0   

0  0  0  1  1  1  1  0  0  0  0  1  1  1  1   

1  1  1  0  0  0  0  1  1  1  1  0  0  0  0   

offspring 1 

parent 2 

offspring 2 

j th node k th node 

 
Fig. 12. Genetic process using crossover (Park & Kim, 2011) 

The mutation operation is introduced as an insurance policy to enforce diversity in a 
population. It introduces random changes in the solution population by exploring the 
possibility of creating and passing features that are nonexistent in both parent strings to the 
offsprings. Without an operator of this type, some possibly important regions of the search 
space may never be explored.  

6.1.4 Definition of objective function  

The objective function for each individual is computed by Eq. 12. The objective function of 
the ith individual, ObjV(i) is composed of the error function, Ei, calculated as the difference 
between measured values and predicted values, and the penalty function, Pi , calculated on 
the basis of the complexity of structure of ANN. The complex structure of an ANN model 
increases the probability that the value of the error function will decrease, but generality is 
more likely to decrease due to overfitting. Therefore, the penalty function, Pi, is included in 
the objective function to control the decrease of generality. 

 max max
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where α = 0.01;Nmea = the total number of measured data; Tmax = the maximum value among 
measured values; Tk = kth measured value; and tk = kth predicted value; Nin = total number 
of nodes used in the ith chromosome; Nmax= the maximum number of nodes that  can be 
applied to the structure of ANN in this study; CWi= total number of connections used in the 
ith chromosome; and CWmax= the maximum number of connections that can be applied to 
the structure of ANN in this study. 

6.2 Example analysis 

The developed methodology was estimated through it’s application to the geotechnical 
problem which ANN was used. The optimal ANN model obtained through opmization 
process based the developed GA-NN method was compared with the ANN model obtained 
in basis of researcher’s experiance. Rahman et al. (2001) develoved an ANN model to predict 
the uplift capacity of suction caissons which are frequently used for the anchorage of large 
compliant offshore structures. The uplift capacity of the suction caissons is a critical issue in 
these applications. the developed neural network model has five nodes in the input layer, 
ten nodes in the hidden layer, and one nodes in the output layer. The five input parameters 
to the neural network model are the aspect ration of caisson (L/d), the undrained shear 
strength of the caly soil in which the caisson is installed (su), the relative depth of the lug to 
which the caisson forces is applied (D/L), the angle that the chain force makes with the 
horizontal (θ), and the loading rate defined with respect ot the soil permeability (Tk). the 
transfer functions applied to the hidden layer and output layer neurons are tan-sigmoid and 
log-sigmoid functions, respectively. 
 

` d 

D 
P 

L θ 

 
Fig. 13. Description for suction cassion 

Design information for the application of GA-NN method is given in Table 6. Through the 
optimization process using the developed method, the optimal structure of ANN model is 
obtained in Table 7. Three input variables, D/L, Tk, and θ was removed through the 
optimization based GA-NN method. The optimized number of hidden node was decreased 
compared with Rahman et al. (2001)‘s model. the transfer functions of the hidden layer and 
output layer were obtained as tan-sigmoid and linear functions, respectively.  
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Parameters Values 

Number of initial population, Nind 400 

Number of maximum generation, MAXGEN 40 

Number of seleced individuals for genetic process, Nsel 400×0.9 = 360 

GA 
paraemters 

Probability of mutation, Pmut 0.005 

Maximum number of input node, ILmax 11 

Maximum number of hidden layer, HLmax 2 
NN 

parameters 
Maximum node number in each hiddlayer, NHmax 16 

Table 6. Design condition for application of the developed GA-NN method 

 

*. I-H means transfer function connecting input layer to hidden layer, H-O means transfer function 
connecting hidden layer to output layer. Tansig and logsig means tangent-sigmoid and log-sigmoid 
function, respectively. 

Table 7. Parameters of structure of ANN model obtained by each methods  

In Fig. 14, the predictied uplift capacity of ANN model obtained by GA-NN method was 
compared with those of Rahman et al. (2001)‘s ANN model. Even though three input 
variables were ommited in the prediction and also number of hidden node was decreased, it 
gave almost same correlation in traing and testing stage. the same the ANN model. It means 
that three input variable ommitted in input layer couldn’t affect to output value, uplift 
capacity in the data sets given by Rahman et al. (2001).  
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Fig. 14. Comparison of the uplift capacity predicted by each methods (Park & Kim, 2011) 

Transfer function R2 
Method 

No of 
input 
node 

No. of 
hidden 
node I-H H-O Training Testing 

Traditional method 5 10 tansig logsig 0.970 0.997 

GA-NN 2 7 tansig linear 0.984 0.982 
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In Fig. 15, the values of correlation coefficient, R2 were obtained with variations of number 
of hidden node and transfer functions in the ANN model obtained by GA-NN method. The 
R2 increased with the number of hidden nodes and then converged to a value after 
exceeding about seven node. In Eq. 11, Even though the value of error function doesn’t 
decrease any more, the value of complexity fuction should be continually increased with 
increasing hidden node after seven node. It implies that if seven hidden node gives the 
minimum value of objective function in comparison of other hidden nodes.  
Park & Kim (2011) suggested a hybrid NN/GA approach which is able to design optimal 
structure of ANN. The proposed approach combines the characteristics of GA and NN to 
overcome the shortcomings of NN structure design. The results of the proposed approach 
show that GA may enable the researchers to use NN more effectively and as an efficient tool 
for the solution of complex problems and reduces the risk of over designing the network 
architecture. The results of example showed that the performance of NN can be easily 
guaranteed with GA by selecting the optimal combination of input variables, number of 
hidden layer, node number of each hidden layer, and transfer functions between layers. GA 
reduces the complexity and over design of the network structure, as it helps to design 
smaller network architecture. Processing time of hybrid NN/GA for grouping parts can be 
decreased nearly to half of the preliminary NN-based approach. In summary, it is seen that 
GA enables to consider NN as an effective and efficient technique for the computationally 
complex type problems since it simultaneously reduces the computational complexity and 
enhances the prediction performance.  
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Fig. 15. The values of correlation coefficient with varing the design parameters of ANN 
model obtained by GA-NN method (Park & Kim, 2011) 

6.2 Generalization of Neural Network using committee methodology 
6.2.1 Generaliability of Neural Network 

Over-training is the most serious problem in neural network training. The drawback is that 
such a network is quickly over-trained which means that the network error is driven to a 
small value for the training samples but will become large when new input is presented. 
This indicates that the network has memorized the training samples but is not able to 
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generalize to give reasonable answers on unseen input parameter combinations. As a result, 
such a too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. In this section, we focus on one particular problem with learning 
which is typical for neural networks: their generalization capabilities. Generalization is the 
ability to train with one data set and then successfully classify independent test sets. 
Although continued training will increase the training set accuracy, the danger exists that 
test set accuracy decreases after a certain point.  
Approaches considered overcoming the over-fitting problems are early stopping, Bayesian 
Regularization approach, and others (Hirschen & Schäfer, 2006). One approach is to use 
early stopping, where the algorithm which minimizes the error function prevent it from 
doing so by stopping the algorithm at some point. In early stopping the available data is 
divided into a training, a validation and a test subset. The training set is used for training 
the network and updating the network weights. The validation subset is not used for 
training, yet the performance function indicates how the trained network responds to these 
samples. The validation error will normally decrease during the initial phase of training, as 
does the training set error. When the network begins to overfit the data, the error on the 
validation set will typically begin to increase. The test set is not used during the training, but 
utilized to compare different networks. If the response on the test set is too weak one may 
decide to restart the network training with a different division of data sets. The second 
approach is the Bayesian Regularization(MacKay, 1992a). This approach minimizes the 
over-fitting problem by taking into account the goodness-of-fit as well as the network 
architecture. The following is the short description about the Bayesian regularization. 
Typically, training aims to reduce the sum of squared errors F = ED. However, 
regularization adds an additional term; i.e. the objective function becomes F=α⋅ED+β⋅EW, 
where EW is the sum of squares of the network weights, and α and β are objective function 
parameters. The relative size of the objective function parameters dictates the emphasis for 
training. If α << β, then the training algorithm will drive the errors smaller. If α << β 
training will emphasize weight size reduction at the expense of network errors, thus 
producing a smoother network response (Foresee & Hagan, 1997). 
Single multilayer perceptrons (MLPs), consisting of an input layer, a hidden layer and an 
output layer, trained by a back-propagation algorithm (e.g. Levengerg-Marquardt, see Hagan, 
Demuth & Beale 1996, pp. 12-19), have been the conventional method of choice for most 
practical applications over the last decade. However, single MLP, when repeatedly trained on 
the same patterns, tends to reach different minima of the objective function each time and 
hence give a different set of neuron weights, because the solution is not unique for noisy data, 
as in most geotechnical problems. Therefore, a common approach is to train many nets, and 
then select the one that yields the best generalization performance. Nevertheless, selecting the 
single best neural network is likely to result in loss of information. While one network 
reproduces the main patterns, the others may provide the details lost by the first. The aim 
should be to exploit, rather than lose, the information contained in a set of imperfect 
generalizers. This is the motivation for the committee neural network approach, where a 
number of individually trained networks are combined to improve accuracy and increase 
robustness. Reddy & Buch (2003), Das et al. (2001), Gopinath & Reddy (2000), and Reddy et al. 
(1995) developed the concept of committee neural networks in which a large number of 
networks are trained. Based on initial testing with data obtained from subjects not used in 
training, a few networks are recruited into a committee. A final evaluation of the committee is 
conducted with data obtained from subjects not used in training or in initial testing.  
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6.2.2 Overviews of Committee Neural Network (CNN) 

The committee technique for neural networks has been used for engineering problems 
(Reddy & Buch, 2003; Das et al., 2001; Gopinath & Reddy, 2000; Reddy et al., 1995). It was 
observed that the committee provided good estimates by means of averaging the results of 
individual networks in the committee, when the individual errors are uncorrelated. In the 
committee technique, several multiple neural networks (Fig. 16) are constructed and each 
individual neural network is trained independently with different initial synaptic weights 
using the training patterns as 

 ( ){ }1 1 1,TP x t= ,  ( ){ }2 2 2,TP x t= , …, ( ){ },N N NTP x t=  (13) 

where TPi is a training patterns for the ith networks, and xi and ti are an input vector and 
target vector for the ith networks, respectively.  
 

 
Fig. 16. Illustration of committee of networks (Kim & Park, 2011) 

In Fig. 16, yi is an output vector calculated from the ith networks. A mapping function fi(xi) is 
determined from the ith networks based on the training patterns TPi, and the error of this 
function can be calculated as 

 ( ) ( ) ( )i i i i i ie x d x f x= −
 

(14) 

where di(xi) is a desired function for the ith networks and is represented as di(xi) =E[ti|xi] 
The desired function for the committee of networks is determined as 

 ( ) [ | ]d x E T X=  (15) 

where X={(x1, x2, … , xN)} and T={(t1, t2, … , tN)}.  
The committee mapping function can be represented as 

 
1 1 1 1 1

( ) ( )
N N N N N

com i i i i i i i i i i i
i i i i i

f X f d e d e d eα α α α α
= = = = =

= = − = − = −∑ ∑ ∑ ∑ ∑  (16) 

where, αi is a weighting factor for the ith networks, and Σαi=1. Therefore, the committee 
output can be calculated as Eq. (17), where the outputs from different neural networks were 
averaged as 
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= ∑  (17) 

The mean square error (MSE) of fcom can be calculated as 
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∑ ∑ ∑  (18) 

where Cij is a correlation matrix as Cij=E[eiej]. 
The local minima in determining the synaptic weights of a single MLP and the non-
uniqueness of the solution due to the noise and a limited number of measurements may be 
resolved by employing the committee technique, which is a statistical approach averaging 
the outputs in the functional space. 

6.2.3 Case study for CNN 

Kim and Park (2010) examined the feasibility of committee neural network theory for the 
improvement of accuracy and consistency of the neural network model on the estimation of 
preconsolidation pressure from the field piezocone measurements. The validity of the 
committee technique was also examined through the comparison with a single NN model, 
an empirical and a theoretical model.  
The case records from Chen (1994) are evaluated using neural network. A total of 119 case 
records are used for the training phase and 28 (randomly selected) for the testing phase. The 
proposed neural network model has four nodes in the input layer, seven nodes in the 
hidden layer, and one node in the output layer. In input layer, the total and effective 
overburden pressures σvo, σ’vo, the cone tip resistance qT, and pore pressure measurement 
behind the cone tip u2 were selected as input variables.  
In their study, twenty single neural networks were trained from the different initial weights 
and biases but with the same training patterns. Fig. 17(a) and (b) show the coefficients of 
determination between measured and predicted preconsolidation pressure using the 
piezocone test result from each of the 20 single NNs for the training data and testing data, 
respectively. As shown in Fig. 17(a), coefficients of determination for training data from 
each NN model show very similar accuracy i.e., coefficients of determination R2 are almost 
around 0.93. However, the prediction results for testing data from each NN model aren’t as 
accurate as those of the training data. They significantly fluctuates i.e., they range from 0.84 
to 0.94, even though they have the same structural characteristics. Therefore, if a single NN 
is to be used, the best model must be selected which gives the relatively highest coefficient 
of determination among various models, e.g., second NN among 20 neural networks, which 
gives the coefficients of determination of 0.93 and 0.94 in the training and testing phase, 
respectively. However, in reality, it is quite difficult to choose the best model among a 
number of candidate NNs. 
Several committees of 20 NNs were constructed by changing the accumulated number n of 
NN in the committee to the equal weighting factor (αi=1/n). Prediction results of each 
committee are plotted in Fig. 18(a) and 18 (b) with respect to the increase of the accumulated 
number of NN for training data and testing data, respectively. As can be seen in Fig. 18 (a), 
the coefficients of determination of the committee neural network still increase with an 
increase of the number of accumulated NN in the committee for training data. Furthermore,  
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                             (a) training stage                                                  (b) testing stage 

Fig. 17. Prediction performance of 20 MLPs which are optimized with different initial 
weights and biases by trial-and-error method (Kim & Park, 2010) 

as shown in Fig. 18 (b) for testing data, even though the R2 value of each single NN model 
shows severe variation, the R2 values of CNNs don‘t show such a dramatic variation after 
accumulating two NN models in the committee. From these figures, it can be concluded that 
any single NN model still cannot avoid the variation on the prediction due to initial 
dependency of weight and bias. However, such variation can be eliminated by connecting 
those NNs with an appropriate weighting factor αi 

as a committee neural network. Besides, 
by introducing Committee methodology, the conventional trial-and-error method for the 
optimization of the structure of a neural network can be used without any consideration of 
initial weight dependency and structural optimization. The authors observed that a 
committee neural network system is able to provide improved performance compared with 
a single optimal neural network. The committee technique has been found to be a very 
effective technique to improve the accuracy of the estimation of the preconsolidation 
pressure σ‘p. 
The performance of NN has suffered because of its variation on the prediction of target 
value due to the localization of weight and bias during the optimization process on the 
structure. To overcome such problems of the single NN, in this study, structural 
optimization was carefully carried out by the trial-and-error method. Nevertheless, a single 
MLP, although it has successfully optimized structures, still cannot avoid the large variation 
on the prediction of preconsolidation pressure due to its initial weight dependency. 
Therefore, CNN is introduced to overcome the initial weight dependency of the single 
neural network model. Various committees of the single MLP were tested. It was found that 
if 8 single NNs, which have the same structure but have been trained with a different initial 
weight and bias, are accumulated in the committee with the same weighting factor iα , any 
variation on the prediction of the preconsolidation pressure from the piezocone test result 
can be simply and successfully eliminated. A comparison of the prediction results of CNN 
with the theoretical and empirical method shows that CNN is significantly more precise and 
consistent than conventional statistical and theoretical methods.  
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                                (a) training stage                                               (b) testing stage 

Fig. 18. Improvement of estimation accuracy by accumulating the optimized single NNs in 
the committee (Kim & Park, 2010) 

7. Conclusions 

Artificial neural networks (ANNs) have been applied to various problem in geotechnical 
engineering. This include dams, earth retaining structures, environmental geotechnics,  
ground anchors, liquefaction, pile foundations, shallow foundations, slope stability, soil 
properties and behavior, site characterization, tunnels, underground openings, and other 
areas. In mathematical modeling to solve problem of above the geotechnical engineering 
area, the lack of understanding for complicated physical behavior is easily supplemented by 
either over-simplifying the problem or incorporating several assumptions into the model. 
Consequently, many mathematical models are apt to fail to simulate the complex behavior 
of geotechnical problems. In contrast, ANN methodology is based on the data alone in 
which the model can be trained on data sets to find the relationship between inputs and out 
values. There is no need to simplify the problem nor incorporate an any assumption. As 
geotechnical engineering exhibits extreme variability, ANNs are particularly amenable to 
modelling the complex behaviour of these materials and have generally demonstrated 
superior predictive performance when compared with traditional methods.  
In science and engineering problems, there is still no clear procedure to design NN 
architecture. Therefore, this often causes over design or inefficient network structures 
especially in the case of complex problems. Although considerable research has been 
accounted in NN and GA applications, their use in optimal NN design is quite recent. 
Nevertheless, it is seen that GA enables to consider NN as an effective and efficient 
technique for the computationally complex type problems since it reduces the 
computational complexity and enhances the search performance.  
In training of ANN model, over-fitting problem or poor generalization capability happens 
frequently when a neural network over learns during the training period. As a result, such a 
too well-trained model may not perform well on unseen data set due to its lack of 
generalization capability. Several approaches have been suggested in literature to overcome 
this problem. The author introduced the feasibility of committee neural network theory for 
the improvement of accuracy and consistency of the neural network model on the 
geotechnical probleme. 
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