
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

Application of Artificial Neural Network for 
Mineral Potential Mapping 

Saro Lee and Hyun-Joo Oh 
Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources 

(KIGAM), 92, Gwahang-no, Yuseong-gu, Daejeon 305-350 
Republic of Korea 

1. Introduction 

Mineral exploration is a multidisciplinary task requiring the simultaneous consideration of 

numerous disparate geophysical, geological, and geochemical datasets (Knox-Robinson, 

2000). The size and complexity of regional exploration data available to geologist are 

increasing rapidly from a variety of sources such as remote sensing, airbone geophysics, 

large commercially available geological and geochemical data (Brown et al., 2000). This 

demands more effective integration and analysis of regional and various of geospatial data 

with different formats and attributes. In addition, this needs spatial modeling techniques 

using observations regarding the association of mineral occurrences with various geological 

features in a qualitative manner. 

Geographic Information System (GIS) methods are very useful for processing and 

combining data within maps in mineral potential mapping. The development of GIS-based 

methods for integration and analysis of regional exploration datasets has an important role 

in assisting the decision-making processes for geologists in selection of exploration area 

(Brown et al., 2000). More recently, the mineral exploration industry has taken this approach 

further and with the help of spatial data modeling in GIS (Partington, 2010).  

The spatial modeling techniques been proposed for mineral potential mapping, such as 

weights of evidence model (Bonham-Carter et al., 1988, 1989; Agterberg et al., 1990; Xu et al., 

1992; Rencz et al., 1994; Pan, 1996; Raines, 1999; Carranza & Hale, 2000; Tangestani & Moore, 

2001; Carranza, 2004; Agterberg & Bonham-Carter, 2005; Jianping et al., 2005; Nykanen & 

Raines, 2006; Porwal et al., 2006; Roy et al., 2006; Nykänen & Ojala, 2007; Raines et al., 2007; 

Oh & Lee, 2008; Harris et al., 2008; Benomar et al., 2009), Bayesian network classifiers 

(Porwal et al., 2006), logistic regression (Chung and Agterberg, 1980; Agterberg, 1988; Oh & 

Lee, 2008), fuzzy logic (An et al., 1991; Bonham-Carter, 1994; Eddy et al., 1995; D’Ercole et 

al., 2000; Knox-Robinson, 2000; Luo & Dimitrakopoulos, 2003; De Quadros et al., 2006; 

Carranza et al., 2008; Nykänen, 2008), artificial neural networks (Singer & Kouda, 1996; 

Harris & Pan, 1999; Brown et al., 2000, 2003; Rigol-Sanchez et al., 2003; Behnia, 2007; Skabar, 

2007; Oh & Lee, 2008), and an evidence theory model (Moon, 1990, 1993; An & Moon, 1993; 

Moon & So, 1995; Porwal et al., 2003; Carranza et al., 2005). Researches using GIS have 

involved comparison of methods (Harris et al., 2003; Oh & Lee, 2008) and resolutions of 

spatial data used for mapping mineral potential, development of advanced methods, 
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improvement of prediction accuracy, and case studies for mineral potential mapping. These 

approaches have been successfully applied to mineral resource appraisal. 

Artificial neural network (ANN), one of the spatial modeling methods, has great potential in 

various fields of application such as pattern recognition, classification, identification, vision, 

speech, and control systems in solving complex problems. The artificial neural network has 

advantage compared with statistical methods. Firstly, the artificial neural network method 

is independent of the statistical distribution of the data and there is no need of specific 

statistical variables. Compared with the statistical methods, neural networks allow the 

target classes to be defined with much consideration to their distribution in the 

corresponding domain of each data source (Zhou, 1999). Mineral potential mapping is an 

example where ANN method can be applied because the deposit occurrence is usually 

controlled by numerous interlocking geological features with non-linear relationship. It is 

difficult to estimate a spatial recognition criteria for appropriate training data in processes of 

various geological factors to form the deposits on the surface (Nykanen, 2008). It is 

important to select the training data such as deposit- and non-deposit locations used as 

input to the ANN’s learning algorithm, which is proposed that minimizes some targeted 

minimal error between the desired and actual outputs of the network (Paola & 

Schowengerdt, 1995, Skabar, 2005).  

 

 

Fig. 1. Study area with tectonic units (GM = Gyeonggi Massif, OB = Ogcheon Belt, YM = 

Yeongnam Massif, GB = Gyeongsang Basin) 
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The objective of this study is to set some cases for selection of training data using 

quantitative mineral potential index by likelihood ratio, weights of evidence and logistic 

regression models, generate gold-silver potential maps using GIS and ANN to the various 

training sets, and estimate the predictive accuracy of those potential maps in the Taebaeksan 

mineralized district, Korea (Fig. 1). The preparation of mineral potential maps using GIS 

(ArcGIS 9.0) was accomplished in five major steps (Fig. 2): (1) Assembly of a spatial 

database. A total of 46 gold-silver mineral deposits were used to create a spatial database 

using GIS. Geological, geochemical and geophysical maps were similarly treated. (2) 

Processing the data from the database. The known mineral deposits were randomly split 

70/ 30 for training/ testing, which used for analyzing and validating mineral potential maps 

using likelihood ratio, weights of evidence, logistic regression and ANN models (Leite & 

Souza Filho, 2009). Training locations (deposit and none-deposit occurrence) for ANN 

analysis were extracted from potential maps based on likelihood ration, weights of evidence 

and logistic regression models. Training dataset and the factors were analyzed and their 

weights were determined quantitatively. Especially, the nine cases for selection of training 

datasets determined from likelihood ratio, weights of evidence and logistic regression 

models were simulated to evaluate the sensitivity of ANN to training data. (3) Application 

of weights to generate a mineral potential map. (4) Validation of the potential map using test 

deposits that were not used directly in the analysis. 

 

 

Fig. 2. Study flow for mineral potential mapping 

2. Study area 

The study area is bounded by latitudes 37°15´24´´–37°30´00´´ N and longitudes 128°30´30´´–

129°02´40´´ E and lies in the Taebaeksan mineralized district at central east part of the 
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Korean Peninsula (Fig. 1). The total study area occupies approximately 1,050 km2. The study 

area was chosen as high mineral potential area after regional gold-silver potential analysis in 

the Taebaeksan mineralized district (Oh & Lee, 2008). This region has many mineral 

deposits and geological, geochemical and geophysical survey data available. 

Geological setting is largely distinguished by five groups of in the study area (Fig. 3). 1) 

Precambrian metamorphic and metasedimentary rocks (the unit Jugr and PCEt) in the 

northeastern part. 2) Cambro-Ordovician Joseon System (the unit CEj, CEm, CEp, CEw, 

Odu, Omg, Od and Oj) largely in the central part. 3) Carboniferous to Early Triassic 

Pyeongan System (the unit Ch, Ps, TRg, TRn3, TRn2, TRn1 and TRn) in the northwestern 

and southern parts. 4) Jurassic plutonic rocks (the unit Jigr) in the northern part and around 

the study area. 5) Cretaceous plutonic rocks (the unit Ksgr) in the southeastern part. Map-

scale faults (~20km) trend mostly NNE-SSW and are of Late Cretaceous to Early Paleocene 

age (Fig. 3).  

 

 

 

Fig. 3. Geological map with mineral deposits of the study area in Tabaeksan mineralized 

distract, Korea (combined geological map of Jeongseon, Imgye, Yemi and Homyeong sheets 

produced by the Korea Institute of Geoscience & Mineral Resources at 1:50,000) 
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Precambrian metamorphic rocks consist largely of banded gneiss, with lesser amounts of 

migmatitic gneiss, schist and quartzite. Additionally, there is abundant orthogenic granitic, 

garnet-bearing granitic, leucocratic and porphyroblastic gneiss incorporated within the 

complex unit. The Cambro-Ordovician Joseon System is mainly shallow marine in origin 

and consists predominantly of carbonates with lesser amounts of sandstone and shale, 

whereas the Carboniferous to Early Triassic Pyeongan System comprises thick clastic 

successions of marginal marine to non-marine environments. The Jurassic plutonic rock, 

Imgye Granite, mainly occurs as a large batholith trend NW-SE and as small stocks along 

the Ogcheon Belt consisting of granite with minor syenite and diorite. The Cretaceous 

plutonic rock, Samhwa Granite, mainly occurs as small stocks composed of granodiorite 

andesite, diorite, granite and granite porphyry (Kim et al., 1996, 2001).  

Igneous rocks related to gold-silver deposits in the Korean Peninsula are Jurassic and 

Cretaceous granites. Gold-silver deposits are distributed in and around those granites. The 

Taebaeksan district is a famous metallogenic area that contains a variety of deposit types, 

including Cu-Fe-Au, W-Mo and Pb-Zn skarns, Pb-Zn-Ag hydrothermal carbonate replacement 

ores, Carlne-like, alakite, pegmatite, greisen and gold-silver vein deposits. Gold-silver bearing 

hydrothermal vein deposits in the study area occur in various host lithologies, consist of 

multiple generations of quartz and/ or carbonates with base metal sulphides, and have NNW, 

NS or NNE strikes, which seem to be related to NE strike-slip faults. Veins generally comprise 

quartz, lesser carbonate and polymetallic minerals including pyrite, sphalerite, galena, 

arsenopyrite, chalcopyrite and pyrrhotite. Electrum is the most common gold bearing ore 

mineral and the common silver-bearing phases are native silver, argentite, pyrargyrite and 

polybasite (Park et al., 1988; Lee & Park, 1996; Koh et al., 2003). 

3. Spatial database 

Data of hydrothermal gold-silver deposits were obtained from mineral deposit maps of the 

Taebaeksan mineralization with mineral variety and type, which were obtained from the 

MIRECO (Mine Reclamation Crop.), NHMRG (Natural Hazard Mitigation Research Group) 

and KIGAM (Korea Institute of Geoscience and Mineral Resources). The available factors 

related to gold-silver mineral occurrence are geophysical data of magnetic anomaly (Chi et 

al., 2001), geological data of geology and fault structure, and geochemical data of Al, As, Ba, 

Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Si, Sr, V, W, Zn, Cl– and F– produced by 

KIGAM (Table 1). All of these factors were used within a spatial database with a pixel size 

of 30m x 30m. Most of the continuous data was classified into 10 equal-area classes. 

Categorical data, such as the geology, was set the unique attribute value to the each class. 

The numbers of rows and columns are, respectively, 986 and 1,183, and the total number of 

cells in the study area is 1,166,438. The number of mineral deposit occurrences is 46 and the 

number of factor is 26.  

The geological data were derived from 1:50,000 geological maps (Jeongseon, Imgye, Yemi 

and Homyeong sheets). The geology and distance from fault were registered (Fig. 3). The 

geochemical maps were made from IDW (Inverse Distance Weighting) interpolation of 

values of geochemical elements, which were analyzed and collected from a stream water 

and sediment geochemical survey (Fig. A1a-w, Lee et al., 1998). The geophysical data was 

acquired through airborne magnetic surveys (Koo et al., 2001) (Fig. A1x). 
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Category Factors Data type Scale Remarks 

Deposit Au-Ag Point - 46 deposits 

Geochemical 

Data 

Al, As, Ba, Ca, Cd, Cl-, Co,

Cr, Cu, F-, Fe, K, Li, Mg, Mn,

Na, Ni, Pb, Si, Sr, V, W, Zn

Point 1:250,000

IDW 

(Inverse Distance Weight) 

Interpolation 

Geological 

Data 

Geology 

Distance from fault 

Polygon 

Line 
1:50,000

Combination of four 

geological map sheets 

Geophysical 

Data 
Magnetic anomaly Point 1:250,000

IDW 

(Inverse Distance Weight) 

Interpolation 

Table 1. Data layer of study area 

4. Models 

4.1 Artificial neural network model 
An artificial neural network is a “computational mechanism able to acquire, represent, and 

compute a mapping from one multivariate space of information to another, given a set of 

data representing that mapping”  (Garrett, 1994). The purpose of an artificial neural network 

is to build a model of the data-generating process, so that the network can generalize and 

predict outputs from inputs that it has not previously seen. The back-propagation is one of 

the most popular training algorithm used neural network method and is the method used in 

this study. The back-propagation algorithm trains network layer by layer doing forward and 

backward computation and is trained using a set of examples of associated input and output 

values. This learning algorithm is a multi-layered neural network, which consists of three 

layers; input, hidden and output. The hidden and output layer neurons process their inputs 

by multiplying each input by a corresponding weight, summing the product, then 

processing the sum using a log-sigmoid transfer function to produce a result (Fig. 4). An 

artificial neural network learns by adjusting the weights between the neurons in response to 

the errors between the actual output values and the target output values. At the end of this 

training phase, the neural network provides a model that should be able to predict a target 

value from a given input value (Lee et al., 2007). 

There are two stages involved in using neural network for multi-source classification; the 

training stage, in which the internal weights are adjusted; and the classifying stage. 

Typically, the back-propagation algorithm trains the network until some targeted minimal 

error is achieved between the desired and actual output values of the network. Once the 

training is complete, the network is used as a feed-forward structure to produce a 

classification for the entire data (Paola & Schowengerdt, 1995).  

A neural network consists of a number of interconnected nodes. Each node is a simple 

processing element that responds to the weighted inputs it received from other nodes. The 

arrangement of the nodes is referred to as the network architecture (Fig. 4). The receiving 

node sums the weighted signals from all nodes to which it is connected in the preceding 

layer. Formally, the input that a single node j receives is weighted according to Eq. (1): 
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 j ij i
i

net w o= ⋅∑  (1) 

 

 

Fig. 4. The architecture of the artificial neural network 

where wij represents the weight between node i and node j, and oi is the output from node i 

such as Eq. (2): 

 ( )j jo f net=  (2) 

The valued produced by hidden node j, oj, is the activation function, f, evaluated at the sum 

produced within node j, netj, netj, in turn, is a function of the weights between the input and 

hidden layer, wij, and the outputs of the input layer nodes, oi. The function f is usually a non-

linear sigmoid function that is applied to the weighted sum of inputs before the signal 

processes proceeds to the next layer. Advantage of the sigmoid function is that its derivative 

can be expressed in terms of the function itself such as Eq. (3): 

 '( ) ( )(1 ( ))j j jf net f net f net= −  (3) 

The error, E, for one training pattern for input layer, t, is a function of the desired output 

vector, d, and the actual output vector, o, given by Eq. (4): 

 
1

( )
2

k k
k

E d o= −∑  (4) 

The error back propagated through neural network and the error is minimized by changing 

the weight between layers. So, the weight can be expressed by Eq. (5): 

 ( 1) ( )ij j i ijw n o wη δ α+ = ⋅ + Δ  (5) 

where η is the learning rate parameter, δj is an index of the rate of change of the error, and α 

is the momentum parameter. This process of feeding forward signals and back propagating 
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the error is repeated iteratively until the error of the network as a whole is minimized or 

reaches an acceptable magnitude.  

Using the backpropagation, the weight of each factor can be recognized and it can be used to 

weight determination for mineral potential. Zhou (1999) described the method of 

determination of the weight using backpropagation. From Eq. (2), the effect of an output oj 

from a hidden layer node j on the output ok from an output layer node k can be represented 

by the partial derivative of ok with respect to oj such as Eq. (6): 

 
( )

'( ) '( )k k
k k jk

j j

o net
f net f net w

o o

∂ ∂
= ⋅ = ⋅

∂ ∂
 (6) 

 

The Eq. (6) equation can produce values with both positive and negative signs. If only the 

magnitude of the effects is of interest, the importance of node j relative to another node jo in 

the hidden layer can be calculated as the ratio of the absolute values from the Eq. (6): 

 
0 0 0

( )
/

( )

k jk jkk k

j j k j k j k

f net w wo o

o o f net w w

′ ⋅∂ ∂
= =

′∂ ∂ ⋅
 (7) 

 

The Eq. (7) shows that, with respect to a particular node k in the output layer, the relative 

importance of a node j in the hidden layer is proportional to the absolute value of the weight 

on its connection to the node k in the output layer. When more than one node in the output 

layer is concerned, the Eq. (7) equation cannot be used to compare the importance of two 

nodes in the hidden layer. In other words, the relative importance of a node must somehow 

normalized to make it more comparable with that of other nodes. One choice is to let, in (7): 

 0
1

1 J

j k jk
j

w w
J =

= ⋅∑  (8) 

 

to obtain the normalized importance of node j with respect to node k 

 

1 1

1

jk jk

jk J J

jk jk
j j

w J w
t

w w
J = =

⋅
= =

⋅∑ ∑
 (9) 

 

Therefore, with respect to the node k, each node in the hidden layer has a value greater or 

smaller than one, depending on whether it is more or less important than the average, 

respectively. With respect to the same node k, all the nodes in the hidden layer have a total 

importance such as Eq. (10): 

 
1

J

jk
j

t J
=

=∑  (10) 

Consequently, with respect to all nodes in the output layer, to which connected to hidden 

layer, the overall importance of node j can be calculated as Eq. (11): 
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1

1 K

j jk
k

t t
K =

= ⋅∑  (11) 

 

Similar to Eq. (9), with respect to the node j in the hidden layer, the normalized importance 

of the node i in the input layer can be defined as Eq. (12): 

 
∑∑
==

⋅
=

⋅
=

I

i

ij

ij

I

i

ij

ij

ij

w

wI

w
I

w
s

11

1

 (12) 
 

With respect to the hidden layer, the overall importance of node i is done by Eq. (13): 

 
1

1 J

i ij
j

s s
J =

= ⋅∑  (13) 

 

 

Correspondingly, the overall importance of the input node i with respect to the output node 

k is given by Eq. (14): 

 
1

1 J

i ij j
j

st s t
J =

= ⋅ ⋅∑  (14) 

 

 

4.2 Likelihood ratio model 
The likelihood ratio is a simple technique for producing a mineral potential map, and it is 

highly compatible with GIS. The likelihood ratio approach is based on observed 

relationships between the distribution of mineral deposits and each mineral deposit-related 

factor and are used to reveal the correlation between mineral deposit locations and factors in 

the study area. The likelihood ratio is the ratio of occurrence probability to non-occurrence 

probability for specific attributes.   

For a given number of units cells, N(D), containing a mineral deposit, D, and given number 

of total cells, N(T), the prior probability of an occurrence is expressed by  

 
( )

( )
( )

N D
P D

N T
=  (15) 

 

 

Now suppose that a binary predictor pattern, B, occupying N(B) unit cells, occurs in the 

region, and that a number of known mineral deposits occur preferentially within the 

pattern, i.e., N(D∩B), then the probability of locating a deposit given the presence of a 

predictor(B), and the probability of a deposit occurrence in the absence of a pattern( B ) can 

be expressed by the following conditional probabilities, respectively: 

 
( ) ( | )

( | ) ( )
( ) ( )

P D B P B D
P D B P D

P B P B
= =

∩
 (16) 
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( ) ( | )

( | ) ( )
( ) ( )

P D B P B D
P D B P D

P B P B
= =

∩
 (17) 

 

The posterior probability of a deposit occurrence given presence and absence of a favorable 

predictor pattern are denoted by ( | )P D B  and ( | )P D B , respectively. ( | )P B D  and ( | )P B D  

are the posterior probabilities of being inside and outside the predictor pattern B, 

respectively, given the presence of  a deposit D. ( )P B  and ( )P B  are the prior probabilities of 

the presence of a predictor pattern B.  

The odds, O, is defined as the ration of the probability P that an event will occur to the 

probability that the event will not occur; i.e. / (1 )O P P P P= = − . Expressed as odds, Eqs. 18 

and 19 become:  

 
( | )

( | ) ( )
( | )

P B D
O D B O D

P B D
=  (18) 

 

 
( | )

( | ) ( )
( | )

P B D
O D B O D

P B D
=  (19) 

 

where ( | )O D B  and ( | )O D B are the posterior odds of a deposit given the presence and 

absence of a binary predictor pattern B, respectively, and ( )O D is the prior odds of a 

deposit. The likelihood ratios, which are sufficiency ratio (LS) and necessity ratio (LN), are 

quire by the following equation: 

 
( | )

( | )

P B D
LS

P B D
=  (20) 

 

 
( | )

( | )

P B D
LN

P B D
=  (21) 

 

To calculate the likelihood ratio for the class or type of each factor, all scale factors that 

consisted of a raster type were reclassified into 10 classes based on equal areas using GIS 

techniques. The cross tabulation in ArcGIS 9.0 was used to calculate the number of deposit 

occurrences in the class or type of each factor. The likelihood ratio was used to calculate the 

ratio of the cell with deposit occurrence in each class for a reclassified factor or categorical 

factor (i.e., geochemical data and geology), and the ratio was assigned to each factor class 

again. Finally, the likelihood ratios (Table A1)  of each factor type or range were summed to 

calculate the Mineral Potential Index (MPI) (Fig. 5a), as shown in Eq. (22):  

 MPILR = Lr1 + Lr2 + Lr3 + . . . + Lrn (22) 
 

where Lrn = likelihood ratio of each factor type or range. 

The MPILR represents relative potential of mineral deposit occurrence. The greater the value, 

the higher the potential of mineral deposit occurrence and the lower the value, the lower the 
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potential of mineral deposit occurrence. The mineral deposit potential map was made using 

the MPILR and was used for selecting training sites. 

4.3 Weights of evidence model 
The following application of Bayesian probability known as the likelihood ratio and weighs 

of evidence to mineral potential analysis was synthesized from Bonham-Carter (1994) and 

Bonham-Carter et al. (1989). A detailed description of the formulation of the weights of 

evidence method is available in Bonham-Carter et al. (1989) and Bonham-Carter (1994). The 

weights can be defined as shown in Eqs. 23 and 24:  

 logW LSe
+ =  (23) 

 

 logW LRe
− =  (24) 

 

 C W W+ −= −  (25) 
 

 
)()()(

22 −+ += WSWScS
 (26) 

 

where W+ and W- are the weights of evidence when a binary predictor pattern is present and 

absent, respectively and also shows the level of positive and negative correlation between 

the presence and absence of the predictable variable and the deposit occurrence. The 

difference between the W+ and W- weight is known as the weight contrast, C. The C reflects 

the overall spatial association between the predictable variable and the mineral deposit. The 

S2(W+) and S2(W-) are variances of W+ and W- and S(C) is the standard deviation of the 

contrast. The studentized value of C, calculated as the ratio of C to its standard deviation, 

C/S(C), serves as a guide to the significance of the spatial association, and becomes useful in 

determining cutoff value to convert multiclass evidential data into binary predictor maps 

(Bonham-Carter et al., 1989; Carranza, 2004). In this study the cutoff value within which 

their spatial association with a given pattern is most statistically significant was chosen 

based on the maximum studentized value of contrast(C/ s(C)). 

To calculate the weights of evidence for the class or type of each factor, the same type of 

input factor as the likelihood ratio is used. The cell number of deposit occurrence in each 

class of reclassified or categorical factors was also calculated using cross tabulation function 

in ArcGIS. The binary predictor patterns were also assigned weights (Table A1) and were 

combined according to Eq. (27). The mineral potential map was shown in Fig. 5b. 

 MPIWOE= Woe1 + Woe2 + Woe3 + . . . + Woen (27) 
 

where Woe = W+ and W– of the binary pattern for a range of each factor values or factor 

class.  

The mineral deposit potential map was made using the MPIWOE and was used for selecting 

training sites. 
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4.4 Logistic regression model 
The logistic regression, which is one of the multivariate analysis models, is useful for 

predicting the presence or absence of a characteristic or outcome based on values of a set of 

spatial variables. The advantage of logistic regression is that, through the addition of an 

appropriate link a function to a usual linear regression model, the variables may be either 

continuous or discrete, or any combination of both types (Lee et al, 2007). In this study, the 

dependent variable is binary representing presence or absence of a mineral deposit and 

therefore a logistic link function is applicable (Atkinson & Massari 1998). For this study, the 

dependent variable must be input as either 0 or 1, so the method applies well to mineral 

potential analysis. Logistic regression coefficients can be used to estimate odds ratios for 

each of independent variables in the model. The relationship between the occurrence and its 

dependency on several variables can be expressed as: 

 p=  1 ⁄ (1+e-z ) (28) 

where p is the probability of the event occurring and z is parameter. In this study, the p is 

the estimated probability of mineral deposit occurrence. The probability varies from 0 to 1 

on an S-shaped curve and z is the linear combination. It follows that logistic regression 

involves fitting an equation of the following form to the data: 

 z = b0 + b1x1 + b2x2 + … + bnxn (29) 

where z is parameter, b0 is the y-axis intercept, bi (i = 0, 1, 2, …, n) are the slope coefficients 

of the logistic regression model and the xi (i = 0, 1, 2, …, n) are the independent variables. 

The logistic regression coefficient values are listed in Table A1. The mineral potential map 

was made using Eqs. (28) and (29) and was used for selecting training sites. 

 

 
 

(a) 
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(b) 

 

 
(c) 

Fig. 5. Mineral potential maps based on likelihood ratio (a), weights of evidence (b) and 

logistic regression models (c): reclassification of low 60% (ivory colour), medium 20% (green 

colour), high 10% (sky blue colour), and very high 10% (blue colour) based on mineral 

potential index; training sites including “prone”  (very high 10%) and “non-prone”  (very low 

10%) to deposit occurrence 
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5. Mineral deposit potential analysis using the Artificial Neural Network 

The 26 factors were used as the input data. Nine cases of training sites of mineral deposit-

prone locations and the locations that were not prone to mineral deposits were made (Table 

2). It can be difficult to specifically estimate a criterion for selection of training sites using 

any predictor map because deposits are formed by various geological factors processes. 

Classification of location that is prone and non-prone to mineral deposits from expert’s 

experience can also change and be subjective when more information is available. While 

cells including a known deposit are indubitably mineralized, cells that do not include a 

known deposit may or may not be mineralized. If small deposit and non-deposit training 

data are selected from the known deposit cell and the large corpus of non-deposit cell, 

respectively, the mineral potential map can be highly sensitive to particular choice of 

deposit and non-deposit training data (Skabar, 2005; Harris et al., 2003). Porwal et al., 2003 

and Nykanen (2008) approached the problem of sensitivity of ANN to this non-deposit site 

training data by selecting training data in low mineral potential area modeled previously 

using a weights of evidence method. Skabar (2005) used for replicates of deposit locations. 

For each replicate set, they randomly selected and used 3/ 4 and 1/ 4 of the deposit locations 

for training and testing, respectively. 
 

Models Case Prone area Non-prone area 

Case 1 Deposit occurrence 
10% areas with low mineral 

potential index (MPILR) 

Case 2
5% areas with high mineral 

potential index (MPILR) 

10% areas with low mineral 

potential index (MPILR) 

Likelihood 

ratio 

Case 3
10% areas with high mineral 

potential index (MPILR) 

10% areas with low mineral 

potential index (MPILR) 

Case 4 Deposit occurrence 
10% areas with low mineral 

potential index (MPIWOE) 

Case 5
5% areas with high mineral 

potential index (MPIWOE) 

10% areas with low mineral 

potential index (MPIWOE) 

Weights of 

evidence 

Case 6
10% areas with high mineral 

potential index (MPIWOE) 

10% areas with low mineral 

potential index (MPILO) 

Case 7 Deposit occurrence 
10% areas with low mineral 

potential index (MPIWOE) 

Case 8
5% areas with high mineral 

potential index (MPILO) 

10% areas with low mineral 

potential index (MPILO) 

Logistic regression

Case 9 10% areas with high mineral 10% areas with low mineral 

Table 2. Nine different training cases determined from likelihood ratio, weights of evidence 

and logistic regression models 

To select training sites based on scientific and objective criteria, we used values of MPILR, 

MPIWOE, MPILO (Fig. 5) because they represent relationships of deposit- and non-deposit 

locations with various factors. Pixels from each of the two classes were randomly selected as 

training pixels, with 32 pixels denoting areas where training mineral deposits occurred. 
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  Case 1  2 esaC

 Factors Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 

Al  
As  
Ba  
Ca  
Cd  
Cl - 
Co  
Cr  
Cu  
F -  
Fe  
K  
Li  

Mg  
Mn  
Na  
Ni  
Pb  
Si  
Sr  
V  
W  
Zn  

Mag.  
Fault 

Geology 

0.032 
0.034 
0.042 
0.036 
0.034 
0.041 
0.041 
0.040 
0.037 
0.039 
0.029 
0.037 
0.037 
0.039 
0.033 
0.041 
0.053 
0.040 
0.039 
0.033 
0.040 
0.041 
0.046 
0.039 
0.040 
0.038 

0.042 
0.034 
0.042 
0.035 
0.038 
0.036 
0.034 
0.038 
0.039 
0.044 
0.038 
0.036 
0.037 
0.042 
0.035 
0.031 
0.047 
0.035 
0.039 
0.042 
0.040 
0.031 
0.039 
0.046 
0.045 
0.036 

0.037 
0.036 
0.037 
0.034 
0.040 
0.039 
0.038 
0.035 
0.041 
0.044 
0.035 
0.036 
0.036 
0.044 
0.033 
0.043 
0.039 
0.043 
0.033 
0.038 
0.043 
0.045 
0.046 
0.037 
0.036 
0.035 

0.043 
0.036 
0.040 
0.037 
0.040 
0.030 
0.038 
0.035 
0.035 
0.040 
0.040 
0.033 
0.039 
0.042 
0.043 
0.033 
0.046 
0.036 
0.044 
0.037 
0.034 
0.037 
0.039 
0.040 
0.049 
0.035 

0.046 
0.038 
0.032 
0.038 
0.039 
0.033 
0.039 
0.033 
0.047 
0.036 
0.037 
0.044 
0.038 
0.042 
0.034 
0.035 
0.045 
0.040 
0.040 
0.039 
0.044 
0.034 
0.034 
0.035 
0.043 
0.034 

0.040 
0.036 
0.038 
0.036 
0.038 
0.036 
0.038 
0.036 
0.040 
0.041 
0.036 
0.037 
0.037 
0.042 
0.036 
0.036 
0.046 
0.039 
0.039 
0.038 
0.040 
0.038 
0.041 
0.039 
0.043 
0.035 

0.006 
0.002 
0.004
0.001 
0.002
0.004 
0.003 
0.003 
0.004 
0.004 
0.004 
0.004 
0.001
0.002 
0.004 
0.005 
0.005 
0.003
0.004 
0.003 
0.004
0.005 
0.005
0.004 
0.005 
0.002

1.136
1.011 
1.085 
1.019 
1.080 
1.014 
1.068 
1.027 
1.130
1.148 
1.010
1.047
1.059 
1.191
1.008 
1.026 
1.294 
1.101 
1.101 
1.068 
1.137 
1.066
1.154 
1.111
1.205 
1.000 

0.037 
0.039
0.038 
0.043 
0.040 
0.035 
0.039 
0.042 
0.038 
0.031
0.039 
0.035 
0.042
0.034 
0.038 
0.041 
0.050 
0.043 
0.039 
0.035 
0.044 
0.031 
0.037 
0.034 
0.040 
0.038 

0.037 
0.034
0.037 
0.042 
0.036 
0.038 
0.037 
0.044 
0.045 
0.042
0.039 
0.037 
0.037 
0.041 
0.041
0.038 
0.048 
0.045 
0.035 
0.035 
0.034 
0.031 
0.032
0.038 
0.039 
0.039 

0.038 
0.033 
0.041 
0.036 
0.027 
0.037 
0.035 
0.047 
0.038 
0.045 
0.034 
0.041 
0.041 
0.035 
0.036 
0.045 
0.036 
0.036 
0.038 
0.042 
0.049 
0.044 
0.041 
0.036
0.034 
0.038 

0.041 
0.037 
0.037
0.042 
0.032
0.042
0.037 
0.038
0.035 
0.041 
0.035 
0.036 
0.048
0.044 
0.037 
0.044
0.040 
0.042
0.031
0.037 
0.035 
0.035 
0.036
0.043 
0.032 
0.043

0.046 
0.038 
0.031 
0.040
0.038 
0.032 
0.040 
0.035 
0.048 
0.035 
0.037 
0.043
0.036 
0.039
0.035 
0.036 
0.046 
0.042 
0.040 
0.040
0.043 
0.034
0.035 
0.035
0.043
0.034 

0.040 
0.036
0.037 
0.040 
0.035
0.037 
0.038 
0.041 
0.041 
0.039
0.037 
0.039 
0.041
0.038 
0.038
0.041 
0.044 
0.042 
0.037 
0.038 
0.041 
0.035 
0.036
0.037 
0.037 
0.038

0.004 
0.003
0.004 
0.003 
0.005 
0.004 
0.002 
0.005 
0.005 
0.006
0.002 
0.003 
0.005 
0.004 
0.002
0.004 
0.006 
0.003 
0.004 
0.003 
0.006 
0.005 
0.003
0.004 
0.004 
0.003 

1.149 
1.045 
1.067 
1.170 
1.000 
1.066 
1.084 
1.190 
1.173 
1.120 
1.061 
1.115 
1.178 
1.110 
1.086 
1.176 
1.270 
1.204 
1.058 
1.101 
1.184 
1.005 
1.038 
1.076 
1.083 
1.109 

0.037 
0.037 
0.043 
0.037 
0.041 
0.045 
0.040 
0.032 
0.045 
0.043 
0.037 
0.033 
0.041 
0.036 
0.046 
0.031 
0.036 
0.037 
0.039 
0.040 
0.035 
0.039 
0.039 
0.039 
0.036 
0.038 

0.038 
0.042 
0.037 
0.033 
0.042 
0.038 
0.034 
0.038 
0.033 
0.036 
0.042 
0.031 
0.038 
0.040 
0.036 
0.038 
0.042 
0.042 
0.037 
0.046 
0.036 
0.046 
0.034 
0.044 
0.038 
0.040 

 Case 4  5 esaC

 Factors Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 

Al  
As  
Ba  
Ca  
Cd  
Cl - 

0.031 
0.033 
0.041 
0.037 
0.033 
0.041 

0.047 
0.043 
0.038 
0.041 
0.037 
0.034 

0.037 
0.039 
0.033 
0.040 
0.042 
0.041 

0.033 
0.039 
0.037 
0.043 
0.036 
0.040 

0.043 
0.044 
0.043 
0.039 
0.034 
0.035 

0.038 
0.040 
0.038 
0.040 
0.036 
0.038 

0.007 
0.004
0.004 
0.002 
0.004
0.003 

1.144
1.186 
1.150
1.198 
1.090 
1.144

0.038 
0.042
0.038 
0.036 
0.036 
0.033 

0.031 
0.037
0.036 
0.041 
0.040
0.042 

0.038 
0.033 
0.039
0.036 
0.039 
0.039 

0.038
0.042
0.042 
0.039 
0.036
0.042 

0.042
0.036 
0.039
0.036
0.040 
0.035

0.037 
0.038
0.039 
0.038 
0.038
0.038 

0.004 
0.004
0.002 
0.003 
0.002 
0.004 

1.078 
1.106 
1.118 
1.088 
1.108 
1.104 

0.038 
0.042 
0.041 
0.033 
0.038 
0.042 

0.041 
0.034 
0.042 
0.037 
0.038 
0.035 
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Co  
Cr  
Cu  
F -  
Fe  
K  
Li  

Mg  
Mn  
Na  
Ni  
Pb  
Si  
Sr  
V  
W  
Zn  

Mag.  
Fault 

Geology 

0.039 
0.039 
0.036 
0.038 
0.029 
0.037 
0.038 
0.037 
0.033 
0.041 
0.053 
0.041 
0.038 
0.033 
0.039 
0.045 
0.046 
0.044 
0.039 
0.038 

0.036 
0.039 
0.045 
0.040 
0.034 
0.031 
0.041 
0.036 
0.044 
0.037 
0.033 
0.040 
0.037 
0.037 
0.034 
0.046 
0.037 
0.037 
0.038 
0.039 

0.039 
0.040 
0.033 
0.035 
0.033 
0.041 
0.039 
0.043 
0.039 
0.048 
0.039 
0.038 
0.031 
0.041 
0.036 
0.047 
0.031 
0.040 
0.037 
0.037 

0.040 
0.035 
0.039 
0.043 
0.033 
0.043 
0.034 
0.039 
0.039 
0.046 
0.042 
0.034 
0.030 
0.036 
0.033 
0.047 
0.036 
0.049 
0.035 
0.040 

0.037 
0.042 
0.049 
0.040 
0.038 
0.036 
0.037 
0.032 
0.041 
0.041 
0.040 
0.032 
0.031 
0.035 
0.038 
0.038 
0.037 
0.043 
0.036 
0.040 

0.038 
0.039 
0.040 
0.039 
0.033 
0.038 
0.038 
0.037 
0.039 
0.043 
0.041 
0.037 
0.033 
0.036 
0.036 
0.045 
0.037 
0.043 
0.037 
0.039 

0.002 
0.003 
0.007 
0.003 
0.003 
0.005 
0.003
0.004 
0.004
0.004 
0.007 
0.004
0.004 
0.003 
0.003 
0.004 
0.005
0.005 
0.002 
0.001

1.144 
1.168
1.210
1.174 
1.000
1.126 
1.132 
1.120 
1.174 
1.275
1.240 
1.108 
1.000
1.090 
1.078
1.335 
1.120 
1.275
1.108 
1.162 

0.037
0.037 
0.041 
0.036 
0.044 
0.040 
0.045 
0.041 
0.046 
0.036 
0.044 
0.042 
0.028 
0.046
0.037 
0.036 
0.034 
0.047 
0.036 
0.030 

0.040
0.033 
0.034 
0.039 
0.039 
0.034 
0.038 
0.038 
0.047 
0.034 
0.035 
0.039 
0.037 
0.039 
0.045 
0.039 
0.041
0.046 
0.038 
0.038 

0.037 
0.034 
0.042 
0.042 
0.035 
0.036 
0.040 
0.042 
0.033 
0.042 
0.041 
0.042 
0.033 
0.037 
0.041 
0.045 
0.047 
0.038 
0.035 
0.035 

0.033 
0.043 
0.037 
0.037 
0.035 
0.035 
0.044
0.037 
0.036
0.038 
0.050 
0.031
0.036 
0.035 
0.043 
0.038 
0.039
0.038 
0.044 
0.033

0.044 
0.036 
0.034 
0.035 
0.043 
0.037
0.037 
0.041
0.043 
0.042 
0.040 
0.037 
0.044 
0.037 
0.030 
0.037
0.039 
0.040
0.040 
0.037 

0.038
0.036
0.037 
0.038
0.039 
0.036 
0.041 
0.040 
0.041 
0.038
0.042 
0.038 
0.036 
0.039
0.039 
0.039 
0.040 
0.042 
0.039 
0.035 

0.004
0.004 
0.004 
0.003
0.004 
0.002 
0.003 
0.002 
0.006 
0.004 
0.006 
0.004 
0.006 
0.004
0.006 
0.004 
0.005 
0.004 
0.004 
0.003 

1.110 
1.054 
1.085 
1.096 
1.144 
1.053 
1.182 
1.148 
1.182 
1.109 
1.212 
1.104 
1.035 
1.123 
1.133 
1.129 
1.158 
1.208 
1.117 
1.000 

0.030 
0.038 
0.038 
0.043 
0.036 
0.041 
0.036 
0.033 
0.043 
0.045 
0.040 
0.037 
0.042 
0.036 
0.041 
0.045 
0.033 
0.040 
0.038 
0.033 

0.034 
0.037 
0.038 
0.045 
0.038 
0.035 
0.039 
0.039 
0.035 
0.031 
0.049 
0.035 
0.039 
0.042 
0.041 
0.034 
0.039 
0.045 
0.045 
0.035 

 Case 7  8 esaC

 Factors Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 Run 3 Run 4 Run 5 Mean S. D.   N. V. Run 1 Run 2 

Al  
As  
Ba  
Ca  
Cd  
Cl - 
Co  
Cr  
Cu  
F -  
Fe  
K  
Li  

Mg  

0.038 
0.035 
0.040 
0.044 
0.036 
0.041 
0.041 
0.040 
0.041 
0.040 
0.039 
0.038 
0.043 
0.041 

0.034 
0.048 
0.032 
0.039 
0.039 
0.038 
0.042 
0.038 
0.035 
0.040 
0.036 
0.039 
0.040 
0.037 

0.040 
0.042 
0.033 
0.038 
0.036 
0.043 
0.040 
0.041 
0.037 
0.040 
0.039 
0.032 
0.040 
0.037 

0.038 
0.042 
0.034 
0.036 
0.039 
0.042 
0.038 
0.042 
0.046 
0.034 
0.032 
0.039 
0.036 
0.040 

0.037 
0.040 
0.035 
0.041 
0.038 
0.036 
0.037 
0.043 
0.038 
0.030 
0.040 
0.036 
0.041 
0.034 

0.037 
0.041 
0.035 
0.040 
0.037 
0.040 
0.040 
0.041 
0.039 
0.037 
0.037 
0.037 
0.040 
0.038 

0.002 
0.005
0.003 
0.003 
0.002
0.003 
0.002 
0.002
0.004 
0.005 
0.003 
0.003
0.003 
0.003 

1.081
1.192 
1.000
1.144 
1.084 
1.150
1.150 
1.178 
1.136 
1.059 
1.073
1.064 
1.160
1.093

0.034 
0.042 
0.038 
0.032 
0.034 
0.041 
0.042 
0.037 
0.035 
0.042 
0.037 
0.038
0.041 
0.037 

0.036 
0.042
0.034 
0.038 
0.034 
0.039 
0.042 
0.036 
0.036 
0.045 
0.034 
0.039 
0.041 
0.039 

0.038 
0.047 
0.046
0.034 
0.034 
0.038 
0.044 
0.036 
0.040 
0.037 
0.036
0.037 
0.041 
0.041 

0.041 
0.051
0.037 
0.035 
0.038
0.037 
0.038 
0.041 
0.039 
0.041
0.036 
0.036
0.031
0.040 

0.039
0.042 
0.040
0.036
0.039 
0.041
0.041
0.036 
0.038 
0.045 
0.041
0.037 
0.033
0.034

0.038 
0.045
0.039 
0.035 
0.036
0.039 
0.041 
0.037 
0.037 
0.042 
0.037 
0.037
0.037 
0.038 

0.002 
0.004
0.004 
0.002 
0.002 
0.002 
0.002 
0.002 
0.002 
0.003 
0.002 
0.001
0.005 
0.003 

1.180 
1.413 
1.227 
1.095 
1.133 
1.232 
1.296 
1.168 
1.173 
1.309 
1.159 
1.173 
1.172 
1.196 

0.038 
0.040 
0.040 
0.033 
0.042 
0.041 
0.037 
0.036 
0.036 
0.045 
0.039 
0.036 
0.030 
0.037 

0.033 
0.040 
0.041 
0.044 
0.039 
0.043 
0.038 
0.047 
0.026 
0.031 
0.036 
0.041 
0.036 
0.038 
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Mn  
Na  
Ni  
Pb  
Si  
Sr  
V  
W  
Zn  

Mag.  
Fault 

Geology 

0.037 
0.042 
0.030 
0.041 
0.038 
0.040 
0.034 
0.030 
0.039 
0.038 
0.039 
0.036 

0.039 
0.041 
0.038 
0.034 
0.041 
0.045 
0.034 
0.044 
0.040 
0.044 
0.033 
0.033 

0.040 
0.041 
0.038 
0.034 
0.033 
0.042 
0.040 
0.033 
0.043 
0.035 
0.043 
0.041 

0.039 
0.040 
0.039 
0.041 
0.030 
0.039 
0.041 
0.038 
0.040 
0.039 
0.045 
0.032 

0.041 
0.041 
0.047 
0.044 
0.038 
0.035 
0.044 
0.029 
0.039 
0.033 
0.045 
0.039 

0.039 
0.041 
0.038 
0.039 
0.036 
0.040 
0.038 
0.035 
0.040 
0.038 
0.041 
0.036 

0.001 
0.001 
0.006 
0.004 
0.004 
0.004 
0.004
0.006 
0.002
0.004 
0.005 
0.004

1.134 
1.189
1.110
1.120 
1.039
1.164 
1.112 
1.010 
1.161 
1.092
1.182 
1.040 

0.035
0.044 
0.044 
0.041 
0.033 
0.040 
0.044 
0.043 
0.037 
0.034 
0.035 
0.041 

0.036
0.043 
0.035 
0.041 
0.040 
0.047 
0.043 
0.038 
0.037 
0.039 
0.032 
0.034 

0.038 
0.040 
0.040 
0.041 
0.037 
0.036 
0.039 
0.033 
0.027 
0.034 
0.044 
0.043 

0.039 
0.042 
0.038 
0.036 
0.038 
0.044 
0.036
0.033 
0.027
0.038 
0.044 
0.046

0.040 
0.037 
0.039 
0.043 
0.040 
0.049
0.030 
0.035
0.031 
0.042 
0.036 
0.037 

0.037
0.041
0.039 
0.041
0.038 
0.043 
0.038 
0.036 
0.032 
0.037
0.038 
0.040 

0.002
0.003 
0.003 
0.003
0.003 
0.005 
0.006 
0.004 
0.005 
0.003 
0.005 
0.005 

1.176 
1.298 
1.228 
1.274 
1.178 
1.354 
1.200 
1.142 
1.000 
1.173 
1.202 
1.258 

0.040 
0.036 
0.042 
0.042 
0.038 
0.043 
0.042 
0.048 
0.037 
0.028 
0.034 
0.041 

0.
0.
0.036 
0.036 
0.
0.039 
0.038 
0.039 
0.043 
0.
0.
0.044 
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The back-propagation algorithm was then applied to calculate the weights between the 

input layer and the hidden layer, and between the hidden layer and the output layer, by 

modifying the number of hidden node and the learning rate. A three-layered feed-forward 

network was implemented using the MATLAB software package based on the framework 

provided by Hines (1997). Here, “ feed-forward” denotes that the interconnections between 

the layers propagate forward to the next layer. The number of hidden layers and the 

number of nodes in a hidden layer required for a particular classification problem are not 

easy to deduce. In this study, a 26 x 52 x 2 structure was selected for the network, with input 

data normalized in the range 0.0-1.0. The nominal and interval class group data were 

converted to continuous values ranging between 0.0 and 1.0. Therefore, the continuous 

values were not ordinal data, but nominal data, and the numbers denote the classification of 

the input data. The learning rate was set to 0.01, and the initial weights were randomly 

selected to values between 0.1 and 0.3. The weights calculated from 5 test cases were 

compared to determine whether the variation in the final weights was dependent on the 

selection of the initial weights (Table 3). 

The results show that the initial weights did not have an influence on the final weight under 

the conditions used. The back-propagation algorithm was used to minimize the error 

between the predicted output values and the calculated output values. The algorithm 

propagated the error backwards, and iteratively adjusted the weights. The number of 

epochs was set to 5,000, and the root mean square error (RMSE) value used for the stopping 

criterion was set to 0.01. Most of the training data sets met the 0.01 RMSE goal. However, if 

the RMSE value was not achieved, then the maximum number of iterations was terminated 

at 5,000 epochs. When the latter case occurred, then the maximum RMSE value was <0.2. 

The final weights between layers acquired during training of the neural network and the 

contribution or importance of each of the 26 factors used to predict mineral deposit potential 

are shown in Table 3. The results were not the same, as the initial weights were assigned 

random values. Therefore, in this study, the calculations were repeated 5 times, to allow the 

results to achieve similar values. For easy interpretation, the average values were calculated, 

and these values were divided by the average of the weights of the some factor that had a 

minimum value. For Case 1, the geology value was the minimum value, 1.00, and the Ni 

was the maximum value, 1.294. For Case 2, the Cd value was the minimum value, 1.00, and 

the Ni was the maximum value, 1.270. For Case 3, the K value was the minimum value, 1.00, 

and the Cl- was the maximum value, 1.254. For Case 4, the Fe value was the minimum 

value, 1.00, and the W was the maximum value, 1.335. For Case 5, the geology value was the 

minimum value, 1.00, and the Ni was the maximum value, 1.212. For Case 6, the Pb value 

was the minimum value, 1.00, and the F- was the maximum value, 1.197. For Case 7, the Ba 

value was the minimum value, 1.00, and the As was the maximum value, 1.192. For Case 8, 

the Zn value was the minimum value, 1.00, and the As was the maximum value, 1.413. For 

Case 9, the magnetic value was the minimum value, 1.00, and the Pb was the maximum 

value, 1.317. The standard deviations of the results for all cases were in the range 0.001–

0.008, and therefore, the random sampling did not have a large effect on the results. As the 

result, the As value was the minimum value, 1.00, and the Si was the maximum value, 

1.1829. Finally, the weights were applied to the entire study area, and the mineral deposit 

potential maps were created for each training cases (Fig. 6). 
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(a) Case 1 

 

 

 
 

(b) Case 2 
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(c) Case 3 

 

 

 
 

(d) Case 4 
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(e) Case 5 

 

 

 
 

(f) Case 6 
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(g) Case 7 

 

 

 
 

(h) Case 8 
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(i) Case 9 

Fig. 6. Predictive gold-silver mineral potential map generated by reclassification of low 60% 

(ivory colour), medium 20% (green colour), high 10% (sky blue colour), and very high 10% 

(blue colour) based on mineral potential index; Case 1 (a), Case 2 (b), Case 3 (c), Case 4 (d) 

Case 5 (e), Case 6 (f), Case 7 (g), Case 8 (h) and Case 9 (i) 

6. Validation 

The mineral potential maps were validated by comparison with known mineral deposit 

locations (test set: 30% of total deposit) which were not used during the training of the 

artificial neural network model. For this, the success rate curves were calculated for 

quantitative prediction and area of under the curves was calculated. The rate shows how 

well the model and factors predict the mineral deposit occurrence. Thus, the area beneath 

the curve qualitatively assesses the prediction accuracy. To obtain the relative ranking for 

each prediction pattern, the calculated index values of all the pixels in the study area were 

sorted in descending order. The ordered pixel values were then divided into 100 classes 

with accumulated 1% intervals. The validation rate appears as a graph (Fig. 7).  

For Case 1, Case 2, Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9, the 80–100% 

class (20%) in which the mineral potential index had a high rank could explain 56%, 50%, 

56%, 56%, 56%, 50%, 44%, 25% and 44% of all the mineral deposit occurrences, respectively. 

The graphs shown are the best prediction accuracy among the five running. 

To compare the result quantitatively, the areas under the curve were re-calculated as if the 

total area were one, which indicates perfect prediction accuracy. The area beneath a curve 

can therefore be used to assess the prediction accuracy qualitatively. For Case 1, Case 2, 

Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9, the area ratio was 0.7406, 0.7459,  
 

www.intechopen.com



Artificial Neural Networks - Application 

 

90 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 7. Illustration of cumulative frequency diagram showing rank (%) of mineral potential 

index (x-axis) occurring in cumulative percent of mineral deposit occurrence (y-axis) 
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0.7409, 0.7140, 0.7269, 0.7072, 0.7347, 0.6140 and 0.6155 meaning a prediction accuracy of 

74.06%, 74.59%, 74.09%, 71.40%, 72.69%, 70.72%, 73.47%, 61.40% and 61.55%. 

7. Conclusion 

Training sites were extracted from mineral potential maps based on likelihood ratio, weights 

of evidence and logistic regression methods, which showed 72.98%, 64.71% and 66.48% 

prediction accuracy validated by the test set. In the study, the mineral potential map of gold-

silver were made using the artificial neural network and nine cases of training sites, each of 

which consist of 32 locations randomly selected among known mineral occurrences in 5% 

and 10% of areas with the high mineral potential index values and 32 non-deposit locations 

randomly selected in 10% of areas with low mineral potential index. The validation result of 

Case 1, Case 2, Case 3, Case 4, Case 5, Case 6, Case 7, Case 8 and Case 9 showed, 

respectively, the 74.06%, 74.59%, 74.09%, 71.40%, 72.69%, 70.72%, 73.47%, 61.40% and 

61.55% prediction accuracy using 14 test mineral deposits not used directly for the analysis. 

All training cases exhibited accuracies of over 70% but Cases 8 and 9, slightly higher or 

lower than likelihood ratio and very higher than weights of evidence and logistic regression 

models. Overall, training cases based on likelihood ratio model, gave higher accuracies than 

training cases based on weights of evidence and logistic regression models. This result 

shows that some of the testing deposits plotted in non-prone area to deposit occurrence 

(Figs. 5b and 5c), and the weights of evidence and logistic regression represented the low 

accuracy among the methods. However, the analysis result of some training sets shows 

more sensitive to training data by logistic regression than weighs of evidence.  

Some researches approached a degree of sensitivity by selecting non-deposit site training 

data in low-probability area of previously generated potential maps made using weights of 

evidence or/ and logistic regression (Porwal et al., 2003; Behnia, 2007; Nykanen & 

Salmirinne, 2007; Nykanen, 2008). Using larger training data reduces the variance of initial 

weight in the ANN and improves accuracy of the resulting potential map (Skabar, 2005; 

Nykanen, 2008). In the study, 32 deposit and non-deposit cells were represented equally in 

the training set, although, the network to training data was repeated five times to reduce 

sensitive to initial weights of factors related to gold-silver mineral.  

The resulting map by ANN can be possible to show better prediction accuracy if training 

dataset are selected from MPM with more high accuracy than MPM by likelihood ratio in 

the study. A Geographic Information System (GIS), in concert with artificial neural network 

software was used to compile, manipulate, analyze and visualize a large geological, 

geochemical and geophysical dataset collected from the Taebaeksan mineralized district of 

Eastern Korea. The GIS is not only capable of routine display, but also offer great potential 

by providing a range of tools to query, manipulate, visualize and analyze geological, 

geochemical and geophysical data in mineral exploration applications. The artificial neural 

network that was applied to the logistic sigmoid transfer function proved useful for 

predicting and evaluating the mineral potential map produced in this study. The models are 

useful for providing a quantitative measure of the weights among the factors for gold-silver 

prospects. Furthermore, the maps generated by the models, not only predict known areas of 

gold-silver occurrence, but also identify areas of potential mineralization where no known 

deposit occurs. Several areas within the study area are identified as having high gold-silver 

potential. Many of these areas coincide with areas of known deposits.  
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8. Appendixes 

 

 
(a) Al       (b) As    (c) Ba 

 

 
(d) Ca        (e) Cd   (f) Cl- 

 

 
(g) Co          (h) Cr    (i) Cu 

 

 
(j) F-       (k) Fe    (l) K 
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(m) Li       (n) Mg    (o) Mn 

 

 
(p) Na       (q) Ni    (r) Pb 

 

 
(s) Si       (t) Sr     (u) V 

 

 
(v) W       (w) Zn  (x) Magnetic anomaly 

 

Fig. A1. Geochemical (Lee et al., 1998) and magnetic anomaly (Koo et al., 2001) maps 
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regression 
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%Area

Mineral

occ. 
%occ. LS b W+ W- C C/ S(c) Coefficient c 

Al 

(ppb) 

26.00-44.15

44.16-84.54

84.55-103.39

103.40-112.87

112.88-119.29

119.30-124.97

124.98-133.04

133.05-164.69

164.70-231.11

231.12-499.99

116666

116651

116737

116716

116695

116601

116613

116594

116586

116579

10.00 

10.00 

10.01 

10.01 

10.00 

10.00 

10.00 

10.00 

10.00 

9.99 

3

3

4

2

7

7

1

3

2

0

9.38

9.38

12.50

6.25

21.88

21.88

3.13

9.38

6.25

0.00

0.94

0.94

1.25

0.62

2.19

2.19

0.31

0.94

0.63

0.00

-0.06

-0.06

0.22

-0.47

0.78

0.78

-1.16

-0.06

-0.47

NaN

0.01

0.01

-0.03

0.04

-0.14

-0.14

0.07

0.01

0.04

0.11

-0.07

-0.07

0.25

-0.51

0.92

0.92

-1.24

-0.07

-0.51

NaN

-0.12 

-0.12 

0.47 

-0.70 

2.16 

2.16 

-1.22 

-0.12 

-0.70 

NaN 

0.00806 

As 

(ppm) 

1.01-14.58

14.59-21.78

21.79-27.56

27.57-35.09

35.10-43.43

43.44-47.59

47.60-49.47

49.48-49.99

50.00

116689

116779

116734

116702

116782

116901

116516

65606

283729

10.00 

10.01 

10.01 

10.00 

10.01 

10.02 

9.99 

5.62 

24.32 

0

8

0

3

1

4

0

3

13

0.00

25.00

0.00

9.38

3.13

12.50

0.00

9.38

40.63

0.00

2.50

0.00

0.94

0.31

1.25

0.00

1.67

1.67

NaN

0.92

NaN

-0.07

-1.16

0.22

NaN

0.51

0.51

0.11

-0.18

0.11

0.01

0.07

-0.03

0.11

-0.04

-0.24

NaN

1.10

NaN

-0.07

-1.24

0.25

NaN

0.55

0.76 

NaN 

2.69 

NaN 

-0.12 

-1.22 

0.47 

NaN 

0.91 

2.10 

0.03186 

Ba 

(ppb) 

2.00-3.99

4.00-5.96

5.97-7.04

7.05-7.86

7.87-8.55

8.56-9.61

9.62 -10.87

10.88-13.28

13.29-17.38

17.39-200.97

117477

116734

117258

116532

116787

116822

116583

116120

116242

115883

10.07 

10.01 

10.05 

9.99 

10.01 

10.02 

9.99 

9.96 

9.97 

9.93 

0

8

2

3

5

4

3

1

3

3

0.00 

25.00 

6.25 

9.38 

15.63 

12.50 

9.38 

3.13 

9.38 

9.38 

0.00 

2.50 

0.62 

0.94 

1.56 

1.25 

0.94 

0.31 

0.94 

0.94 

NaN

0.92 

-0.48 

-0.06 

0.45 

0.22 

-0.06 

-1.16 

-0.06 

-0.06 

0.11 

-0.18 

0.04 

0.01 

-0.06 

-0.03 

0.01 

0.07 

0.01 

0.01 

NaN

1.10 

-0.52 

-0.07 

0.51 

0.25 

-0.07 

-1.23 

-0.07 

-0.06 

NaN 

0.41  

0.73  

0.61  

0.49  

0.53  

0.61  

1.02  

0.61  

0.61  

0.04983 

Ca 

(ppm) 

1.53-6.24

6.25-18.99

19.00-28.24

28.25-35.41

35.42-40.44

40.45-43.42

43.43-46.01

46.02-48.04

48.05-49.16

49.17-50.00

116712

116637

116714

116742

116662

116679

116621

117223

116647

115801

10.01 

10.00 

10.01 

10.01 

10.00 

10.00 

10.00 

10.05 

10.00 

9.93 

2

5

1

3

2

2

3

4

5

5

6.25 

15.63 

3.13 

9.38 

6.25 

6.25 

9.38 

12.50 

15.63 

15.63 

0.62 

1.56 

0.31 

0.94 

0.62 

0.62 

0.94 

1.24 

1.56 

1.57 

-0.47 

0.45 

-1.16 

-0.07 

-0.47 

-0.47 

-0.06 

0.22 

0.45 

0.45 

0.04 

-0.06 

0.07 

0.01 

0.04 

0.04 

0.01 

-0.03 

-0.06 

-0.07 

-0.51 

0.51 

-1.24 

-0.07 

-0.51 

-0.51 

-0.07 

0.25 

0.51 

0.52 

0.73  

0.49  

1.02  

0.61  

0.73  

0.73  

0.61  

0.53  

0.49  

0.49  

-0.00001 

Cd 

(ppm) 

1.0000-1.1008

1.1009-1.2239

1.2240-1.3473

116740

116647

116690

10.01 

10.00 

10.00 

3

3

2

9.38 

9.38 

6.25 

0.94 

0.94 

0.62 

-0.07 

-0.06 

-0.47 

0.01 

0.01 

0.04 

-0.07 

-0.07 

-0.51 

0.61  

0.61  

0.73  

-0.12562 
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1.3474-1.4928

1.4929-1.6538

1.6539-1.8480

1.8481-1.9829

1.9830-2.2506

2.2507-3.2164

3.2165-9.9992

116699

116626

116640

116621

116610

116585

116580

10.00 

10.00 

10.00 

10.00 

10.00 

9.99 

9.99 

3

5

4

2

5

1

4

9.38 

15.63 

12.50 

6.25 

15.63 

3.13 

12.50 

0.94 

1.56 

1.25 

0.63 

1.56 

0.31 

1.25 

-0.07 

0.45 

0.22 

-0.47 

0.45 

-1.16 

0.22 

0.01 

-0.06 

-0.03 

0.04 

-0.06 

0.07 

-0.03 

-0.07 

0.51 

0.25 

-0.51 

0.51 

-1.24 

0.25 

0.61  

0.49  

0.53  

0.73  

0.49  

1.02  

0.53  

Cl- 

(ppm) 

1.0106-2.2074

2.2075-2.4546

2.4547-2.7386

2.7387-2.9874

2.9875-3.2353

3.2354-3.4804

3.4805-3.8803

3.8804-4.7479

4.7480-5.9843

5.9844-27.6669

116644

116681

116654

116642

116647

116642

116637

116635

116628

116628

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

1

0

3

4

1

7

5

5

2

4

3.13 

0.00 

9.38 

12.50 

3.13 

21.88 

15.63 

15.63 

6.25 

12.50 

0.31 

0.00 

0.94 

1.25 

0.31 

2.19 

1.56 

1.56 

0.63 

1.25 

-1.16 

NaN

-0.06 

0.22 

-1.16 

0.78 

0.45 

0.45 

-0.47 

0.22 

0.07 

0.11 

0.01 

-0.03 

0.07 

-0.14 

-0.06 

-0.06 

0.04 

-0.03 

-1.24 

NaN

-0.07 

0.25 

-1.24 

0.92 

0.51 

0.51 

-0.51 

0.25 

1.02  

NaN 

0.61  

0.53  

1.02  

0.43  

0.49  

0.49  

0.73  

0.53  

0.00005 

Co 

(ppb) 

1.0000-1.5665

1.5666-2.5807

2.5808-1.9789

1.9790-3.1012

3.1013-3.3506

3.3507-3.6660

3.6661-3.9952

3.9953-4.4250

4.4251-5.0758

5.0759-9.9999

116648

116657

116722

116636

116651

116656

116621

116620

116620

116607

10.00 

10.00 

10.01 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

4

1

6

1

3

2

5

7

2

1

12.50 

3.13 

18.75 

3.13 

9.38 

6.25 

15.63 

21.88 

6.25 

3.13 

1.25 

0.31 

1.87 

0.31 

0.94 

0.62 

1.56 

2.19 

0.63 

0.31 

0.22 

-1.16 

0.63 

-1.16 

-0.06 

-0.47 

0.45 

0.78 

-0.47 

-1.16 

-0.03 

0.07 

-0.10 

0.07 

0.01 

0.04 

-0.06 

-0.14 

0.04 

0.07 

0.25 

-1.24 

0.73 

-1.24 

-0.07 

-0.51 

0.51 

0.92 

-0.51 

-1.24 

0.53  

1.02  

0.45  

1.02  

0.61  

0.73  

0.49  

0.43  

0.73  

1.02  

-0.51670 

Cr 

(ppb) 

1.0000-1.1958 

1.1959-1.3244 

1.3245-1.4319 

1.4320-1.5656 

1.5657-1.8305 

1.8306-2.0343 

2.0344-2.3185 

2.3186-2.7629 

2.7630-3.2865 

3.2866-9.9987 

116649

116645

116772

116663

116650

116653

116625

116602

116601

116578

10.00 

10.00 

10.01 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

9.99 

6

0

2

6

4

3

4

1

6

0

18.75 

0.00 

6.25 

18.75 

12.50 

9.38 

12.50 

3.13 

18.75 

0.00 

1.87 

0.00 

0.62 

1.87 

1.25 

0.94 

1.25 

0.31 

1.88 

0.00 

0.63 

NaN

-0.47 

0.63 

0.22 

-0.06 

0.22 

-1.16 

0.63 

NaN

-0.10 

0.11 

0.04 

-0.10 

-0.03 

0.01 

-0.03 

0.07 

-0.10 

0.11 

0.73 

NaN

-0.51 

0.73 

0.25 

-0.07 

0.25 

-1.24 

0.73 

NaN

0.45  

NaN 

0.73  

0.45  

0.53  

0.61  

0.53  

1.02  

0.45  

NaN 

-0.01601 

Cu 

(ppb) 

1.000-2.034

2.035-2.450

2.451-2.744

2.745-2.994

2.995-3.262

3.263-3.669

3.670-3.977

3.978-4.710

4.711-7.695

7.696-2.9999

116889

116787

116603

117174

116784

116566

116422

116412

116407

116394

10.02 

10.01 

10.00 

10.05 

10.01 

9.99 

9.98 

9.98 

9.98 

9.98 

1

4

5

6

6

2

4

2

1

1

3.13 

12.50 

15.63 

18.75 

18.75 

6.25 

12.50 

6.25 

3.13 

3.13 

0.31 

1.25 

1.56 

1.87 

1.87 

0.63 

1.25 

0.63 

0.31 

0.31 

-1.17 

0.22 

0.45 

0.62 

0.63 

-0.47 

0.23 

-0.47 

-1.16 

-1.16 

0.07 

-0.03 

-0.06 

-0.10 

-0.10 

0.04 

-0.03 

0.04 

0.07 

0.07 

-1.24 

0.25 

0.51 

0.73 

0.73 

-0.51 

0.25 

-0.51 

-1.23 

-1.23 

1.02  

0.53  

0.49  

0.45  

0.45  

0.73  

0.53  

0.73  

1.02  

1.02  

-0.50809 
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F- 

(ppm) 

0.03-0.14

0.15-0.15

0.16-0.16

0.17-0.17

0.18-0.18

0.19-0.20

0.21-0.22

0.23-0.24

0.25-0.28

0.29-1.99

117101

116775

117073

117348

117148

116558

116117

116151

116321

115846

10.04 

10.01 

10.04 

10.06 

10.04 

9.99 

9.95 

9.96 

9.97 

9.93 

6

2

3

3

2

5

4

3

3

1

18.75 

6.25 

9.38 

9.38 

6.25 

15.63 

12.50 

9.38 

9.38 

3.13 

1.87 

0.62 

0.93 

0.93 

0.62 

1.56 

1.26 

0.94 

0.94 

0.31 

0.62 

-0.47 

-0.07 

-0.07 

-0.47 

0.45 

0.23 

-0.06 

-0.06 

-1.16 

-0.10 

0.04 

0.01 

0.01 

0.04 

-0.06 

-0.03 

0.01 

0.01 

0.07 

0.73 

-0.51 

-0.08 

-0.08 

-0.52 

0.51 

0.26 

-0.07 

-0.07 

-1.23 

0.45  

0.73  

0.61  

0.61  

0.73  

0.49  

0.53  

0.61  

0.61  

1.02  

-0.01003 

Fe 

(ppm) 

2.00-6.77  

6.78-7.86  

7.87-8.88  

8.89-9.91  

9.92-11.12 

11.13-12.99 

13.00-15.76 

15.77-21.24 

21.25-35.77 

35.78-99.99 

117031

116771

116611

117384

116592

116876

116535

116233

116234

116171

10.03 

10.01 

10.00 

10.06 

10.00 

10.02 

9.99 

9.96 

9.96 

9.96 

2

5

5

4

6

1

2

3

3

1

6.25 

15.63 

15.63 

12.50 

18.75 

3.13 

6.25 

9.38 

9.38 

3.13 

0.62 

1.56 

1.56 

1.24 

1.88 

0.31 

0.63 

0.94 

0.94 

0.31 

-0.47 

0.45 

0.45 

0.22 

0.63 

-1.17 

-0.47 

-0.06 

-0.06 

-1.16 

0.04 

-0.06 

-0.06 

-0.03 

-0.10 

0.07 

0.04 

0.01 

0.01 

0.07 

-0.51 

0.51 

0.51 

0.24 

0.73 

-1.24 

-0.51 

-0.07 

-0.07 

-1.23 

0.73  

0.49  

0.49  

0.53  

0.45  

1.02  

0.73  

0.61  

0.61  

1.02  

0.00002 

K 

(ppm) 

0.1201-0.3403

0.3404-0.4005

0.4006-0.4634

0.4635-0.5461

0.5462-0.6365

0.6366-0.7389

0.7390-0.8133

0.8134-0.9078

0.9079-1.0807

10.808-4.7295

116712

116798

116644

116707

116600

116663

116604

116604

116575

116531

10.01 

10.01 

10.00 

10.01 

10.00 

10.00 

10.00 

10.00 

9.99 

9.99 

2

1

5

2

5

4

5

3

2

3

6.25 

3.13 

15.63 

6.25 

15.63 

12.50 

15.63 

9.38 

6.25 

9.38 

0.62 

0.31 

1.56 

0.62 

1.56 

1.25 

1.56 

0.94 

0.63 

0.94 

-0.47 

-1.16 

0.45 

-0.47 

0.45 

0.22 

0.45 

-0.06 

-0.47 

-0.06 

0.04 

0.07 

-0.06 

0.04 

-0.06 

-0.03 

-0.06 

0.01 

0.04 

0.01 

-0.51 

-1.24 

0.51 

-0.51 

0.51 

0.25 

0.51 

-0.07 

-0.51 

-0.07 

0.73  

1.02  

0.49  

0.73  

0.49  

0.53  

0.49  

0.61  

0.73  

0.61  

-0.00053 

Li 

(ppb) 

1.0000-1.0041

1.0042-1.1144

1.1145-1.2670

1.2671-1.4984

1.4985-1.9352

1.9353-2.6544

2.6545-3.5996

3.5997-4.7935

4.7936-6.6524

6.6525-9.9999

116661

116662

116704

116661

116631

116633

116624

116622

116623

116617

10.00 

10.00 

10.01 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

6

10

4

0

2

3

3

2

1

1

18.75 

31.25 

12.50 

0.00 

6.25 

9.38 

9.38 

6.25 

3.13 

3.13 

1.87 

3.12 

1.25 

0.00 

0.63 

0.94 

0.94 

0.63 

0.31 

0.31 

0.63 

1.14 

0.22 

NaN

-0.47 

-0.06 

-0.06 

-0.47 

-1.16 

-1.16 

-0.10 

-0.27 

-0.03 

0.11 

0.04 

0.01 

0.01 

0.04 

0.07 

0.07 

0.73 

1.41 

0.25 

NaN

-0.51 

-0.07 

-0.07 

-0.51 

-1.24 

-1.24 

0.45  

0.38  

0.53  

NaN 

0.73  

0.61  

0.61  

0.73  

1.02  

1.02  

-0.22232 

Mg 

(ppm) 

0.36-1.12

1.13-2.50

2.51-3.04

3.05-3.64

3.65-4.41

4.42-5.26

5.27-6.18

116873

117756

118493

117481

116189

116652

116279

10.02 

10.10 

10.16 

10.07 

9.96 

10.00 

9.97 

0

8

4

3

1

5

4

0.00 

25.00 

12.50 

9.38 

3.13 

15.63 

12.50 

0.00 

2.48 

1.23 

0.93 

0.31 

1.56 

1.25 

NaN

0.91 

0.21 

-0.07 

-1.16 

0.45 

0.23 

0.11 

-0.18 

-0.03 

0.01 

0.07 

-0.06 

-0.03 

NaN

1.09 

0.23 

-0.08 

-1.23 

0.51 

0.25 

NaN 

0.41  

0.53  

0.61  

1.02  

0.49  

0.53  

-0.00001 
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6.19-7.30

7.31-9.32

9.33-49.99

115792

115912

115011

9.93 

9.94 

9.86 

5

1

1

15.63 

3.13 

3.13 

1.57 

0.31 

0.32 

0.45 

-1.16 

-1.15 

-0.07 

0.07 

0.07 

0.52 

-1.23 

-1.22 

0.49  

1.02  

1.02  

Mn 

(ppb) 

1.00-1.26

1.27-1.60

1.61-1.90

1.91-2.38

2.39-3.54

3.55-6.19

6.20-11.26

11.27-25.24

25.25-67.60

67.61-199.99

118658

117500

117854

118036

115883

115970

115651

115647

115630

115609

10.17 

10.07 

10.10 

10.12 

9.93 

9.94 

9.91 

9.91 

9.91 

9.91 

4

2

7

4

2

5

1

2

4

1

12.50 

6.25 

21.88 

12.50 

6.25 

15.63 

3.13 

6.25 

12.50 

3.13 

1.23 

0.62 

2.17 

1.24 

0.63 

1.57 

0.32 

0.63 

1.26 

0.32 

0.21 

-0.48 

0.77 

0.21 

-0.46 

0.45 

-1.15 

-0.46 

0.23 

-1.15 

-0.03 

0.04 

-0.14 

-0.03 

0.04 

-0.07 

0.07 

0.04 

-0.03 

0.07 

0.23 

-0.52 

0.91 

0.24 

-0.50 

0.52 

-1.23 

-0.50 

0.26 

-1.23 

0.53  

0.73  

0.43  

0.53  

0.73  

0.49  

1.02  

0.73  

0.53  

1.02  

0.02688 

Na 

(ppm) 

0.2200-0.5790

0.5791-0.6504

0.6505-0.6959

0.6960-0.7287

0.7288-0.7844

0.7845-0.8366

0.8367-0.8943

0.8944-0.9611

0.9612-1.1210

1.1211-4.1488

116685

116721

116839

116664

116629

116622

116676

116614

116524

116464

10.00 

10.01 

10.02 

10.00 

10.00 

10.00 

10.00 

10.00 

9.99 

9.98 

0

1

3

3

8

2

3

5

3

4

0.00 

3.13 

9.38 

9.38 

25.00 

6.25 

9.38 

15.63 

9.38 

12.50 

0.00 

0.31 

0.94 

0.94 

2.50 

0.63 

0.94 

1.56 

0.94 

1.25 

NaN

-1.16 

-0.07 

-0.06 

0.92 

-0.47 

-0.06 

0.45 

-0.06 

0.22 

0.11 

0.07 

0.01 

0.01 

-0.18 

0.04 

0.01 

-0.06 

0.01 

-0.03 

NaN

-1.24 

-0.07 

-0.07 

1.10 

-0.51 

-0.07 

0.51 

-0.07 

0.25 

NaN 

1.02  

0.61  

0.61  

0.41  

0.73  

0.61  

0.49  

0.61  

0.53  

-0.00046 

Ni 

(ppb) 

1.0001-5.3709

5.3710-8.8292

8.8293-10.4420

10.4421-11.6711

11.6712-12.7538

12.7539-13.9820

13.9821-14.9556

14.9557-15.9219

15.9220-16.7251

16.7252-19.9999

116644

116646

116644

116651

116655

116648

116644

116646

116633

116627

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

2

4

3

6

1

2

1

1

7

5

6.25 

12.50 

9.38 

18.75 

3.13 

6.25 

3.13 

3.13 

21.88 

15.63 

0.62 

1.25 

0.94 

1.87 

0.31 

0.62 

0.31 

0.31 

2.19 

1.56 

-0.47 

0.22 

-0.06 

0.63 

-1.16 

-0.47 

-1.16 

-1.16 

0.78 

0.45 

0.04 

-0.03 

0.01 

-0.10 

0.07 

0.04 

0.07 

0.07 

-0.14 

-0.06 

-0.51 

0.25 

-0.07 

0.73 

-1.24 

-0.51 

-1.24 

-1.24 

0.92 

0.51 

0.73  

0.53  

0.61  

0.45  

1.02  

0.73  

1.02  

1.02  

0.43  

0.49  

-0.63794 

Pb 

(ppb) 

1.00-8.76

8.77-17.68

17.69-21.65

21.66-24.56

24.57-27.30

27.31-30.38

30.39-33.10

33.11-36.51

36.52-39.37

39.38-49.99

116772

116678

116889

117006

116743

116786

116634

116709

116345

115876

10.01 

10.00 

10.02 

10.03 

10.01 

10.01 

10.00 

10.01 

9.97 

9.93 

2

5

0

4

4

2

1

4

5

5

6.25 

15.63 

0.00 

12.50 

12.50 

6.25 

3.13 

12.50 

15.63 

15.63 

0.62 

1.56 

0.00 

1.25 

1.25 

0.62 

0.31 

1.25 

1.57 

1.57 

-0.47 

0.45 

NaN

0.22 

0.22 

-0.47 

-1.16 

0.22 

0.45 

0.45 

0.04 

-0.06 

0.11 

-0.03 

-0.03 

0.04 

0.07 

-0.03 

-0.06 

-0.07 

-0.51 

0.51 

NaN

0.25 

0.25 

-0.51 

-1.24 

0.25 

0.51 

0.52 

0.73  

0.49  

NaN 

0.53  

0.53  

0.73  

1.02  

0.53  

0.49  

0.49  

0.27793 

Si 

(ppm) 

10.801-16.979

16.980-18.317

18.318-19.271

19.272-20.521

116655

116728

116675

116693

10.00 

10.01 

10.00 

10.00 

3

0

2

5

9.38 

0.00 

6.25 

15.63 

0.94 

0.00 

0.62 

1.56 

-0.06 

NaN

-0.47 

0.45 

0.01 

0.11 

0.04 

-0.06 

-0.07 

NaN

-0.51 

0.51 

0.61  

NaN 

0.73  

0.49  

0.00165 
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20.522-21.914

21.915-23.443

23.444-25.021

25.022-27.559

27.560-31.012

31.013-96.079

116619

116686

116607

116627

116583

116565

10.00 

10.00 

10.00 

10.00 

9.99 

9.99 

5

3

1

4

3

6

15.63 

9.38 

3.13 

12.50 

9.38 

18.75 

1.56 

0.94 

0.31 

1.25 

0.94 

1.88 

0.45 

-0.06 

-1.16 

0.22 

-0.06 

0.63 

-0.06 

0.01 

0.07 

-0.03 

0.01 

-0.10 

0.51 

-0.07 

-1.24 

0.25 

-0.07 

0.73 

0.49  

0.61  

1.02  

0.53  

0.61  

0.45  

Sr 

(ppb) 

8.00-20.48

20.49-42.65

42.66-57.42

57.43-66.48

66.49-71.81

71.82-76.94

76.95-84.38

84.39-96.47

96.48-134.78

134.79-499.92

116702

116644

116749

116649

116821

116630

116686

116540

116509

116508

10.00 

10.00 

10.01 

10.00 

10.02 

10.00 

10.00 

9.99 

9.99 

9.99 

3

6

1

2

2

3

7

4

4

0

9.38 

18.75 

3.13 

6.25 

6.25 

9.38 

21.88 

12.50 

12.50 

0.00 

0.94 

1.87 

0.31 

0.62 

0.62 

0.94 

2.19 

1.25 

1.25 

0.00 

-0.07 

0.63 

-1.16 

-0.47 

-0.47 

-0.06 

0.78 

0.22 

0.22 

NaN

0.01 

-0.10 

0.07 

0.04 

0.04 

0.01 

-0.14 

-0.03 

-0.03 

0.11 

-0.07 

0.73 

-1.24 

-0.51 

-0.51 

-0.07 

0.92 

0.25 

0.25 

NaN

0.61  

0.45  

1.02  

0.73  

0.73  

0.61  

0.43  

0.53  

0.53  

NaN 

-0.01602 

V 

(ppb) 

10.000-10.001

10.002-10.320

10.321-10.744

10.745-11.616

11.617-12.435

12.436-14.190

14.191-15.335

15.336-17.900

17.901-20.623

20.624-99.985

116806

116672

116623

116648

116656

116633

116625

116593

116598

116584

10.01 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

10.00 

9.99 

4

5

4

1

4

4

1

5

4

0

12.50 

15.63 

12.50 

3.13 

12.50 

12.50 

3.13 

15.63 

12.50 

0.00 

1.25 

1.56 

1.25 

0.31 

1.25 

1.25 

0.31 

1.56 

1.25 

0.00 

0.22 

0.45 

0.22 

-1.16 

0.22 

0.22 

-1.16 

0.45 

0.22 

NaN

-0.03 

-0.06 

-0.03 

0.07 

-0.03 

-0.03 

0.07 

-0.06 

-0.03 

0.11 

0.25 

0.51 

0.25 

-1.24 

0.25 

0.25 

-1.24 

0.51 

0.25 

NaN

0.53  

0.49  

0.53  

1.02  

0.53  

0.53  

1.02  

0.49  

0.53  

NaN 

0.53038 

W 

(ppb) 

1.000-2.152

2.153-2.458

2.459-2.683

2.684-2.988

2.989-3.363

3.364-4.015

4.016-4.478

4.479-4.946

4.947-6.530

6.531-49.994

116858

116646

116776

116706

116762

116577

116788

116606

116366

116353

10.02 

10.00 

10.01 

10.01 

10.01 

9.99 

10.01 

10.00 

9.98 

9.98 

1

2

5

5

0

5

4

6

4

0

3.13 

6.25 

15.63 

15.63 

0.00 

15.63 

12.50 

18.75 

12.50 

0.00 

0.31 

0.62 

1.56 

1.56 

0.00 

1.56 

1.25 

1.88 

1.25 

0.00 

-1.16 

-0.47 

0.45 

0.45 

NaN

0.45 

0.22 

0.63 

0.23 

NaN

0.07 

0.04 

-0.06 

-0.06 

0.11 

-0.06 

-0.03 

-0.10 

-0.03 

0.11 

-1.24 

-0.51 

0.51 

0.51 

NaN

0.51 

0.25 

0.73 

0.25 

NaN

1.02  

0.73  

0.49  

0.49  

NaN 

0.49  

0.53  

0.45  

0.53  

NaN 

-0.10819 

Zn 

(ppb) 

1.00-3.28

3.29-4.34

4.35-5.21

5.22-6.13

6.14-7.22

7.23-8.81

8.82-11.02

11.03-13.62

13.63-21.96

21.97-49.99

117143

117519

117200

116683

116931

116420

116562

116052

115998

115930

10.04 

10.08 

10.05 

10.00 

10.02 

9.98 

9.99 

9.95 

9.94 

9.94 

4

3

1

3

3

3

2

3

4

6

12.50 

9.38 

3.13 

9.38 

9.38 

9.38 

6.25 

9.38 

12.50 

18.75 

1.24 

0.93 

0.31 

0.94 

0.94 

0.94 

0.63 

0.94 

1.26 

1.89 

0.22 

-0.07 

-1.17 

-0.06 

-0.07 

-0.06 

-0.47 

-0.06 

0.23 

0.63 

-0.03 

0.01 

0.07 

0.01 

0.01 
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0.04 

0.01 

-0.03 

-0.10 
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0.61  
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0.61  

0.61  
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3

4

6

4

3

4

0

4

2

2
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12.50 
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1.20 

1.84 

1.11 
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1.26 

0.00 

1.32 

0.69 

0.73 

-0.16 

0.18 

0.61 

0.10 

-0.08 

0.23 
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0.28 

-0.37 

-0.32 

0.02 

-0.02 

-0.10 

-0.01 

0.01 

-0.03 

0.10 

-0.03 

0.03 

0.03 

-0.18 

0.21 

0.71 

0.12 

-0.09 

0.26 

NaN

0.32 

-0.40 

-0.34 

0.61  

0.53  

0.45  

0.53  

0.61  

0.53  

NaN 

0.53  

0.73  

0.73  

-0.00657 

Distance 

from fault 

(m) 
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258-408

416-577

579-771
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1271-1632
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115764
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115220

10.21 

10.16 

10.18 
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9.92 

9.92 
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9.88 

0

4

3

7

5

2

3

6

0

2

0.00 

12.50 

9.38 
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6.25 

9.38 

18.75 

0.00 

6.25 

0.00 

1.23 

0.92 

2.18 

1.57 

0.63 

0.95 

1.90 

0.00 

0.63 

NaN

0.21 
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0.78 

0.45 

-0.46 
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0.11 
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0.01 

-0.14 

-0.07 

0.04 
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0.10 
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0.23 
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0.92 

0.52 
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0.53  

0.61  

0.43  

0.49  
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0.61  
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Ch
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4841
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3
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12158

6944
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0.09
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0.00

0.02
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0.07
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1.65
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0

0

0

0

2

0

2

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
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3.13 
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0.00 
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0.00 
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1.47 

0.00 
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0.00 
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0.00 
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0.00 

0.00 
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0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.47 

NaN

NaN

NaN

NaN

3.46 

NaN

0.38 

NaN

NaN

3.72 

NaN

NaN

NaN

NaN

NaN
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NaN

-0.76 

0.00 

0.00 

0.00 

0.00 

-0.06 

0.00 

-0.02 

0.00 

0.00 

-0.03 

0.00 

0.00 

0.00 

0.00 

0.00 

0.01 

0.02 

0.00 

0.00 

0.00 

0.02 

0.02 

0.01 

0.01 

0.05 

0.02 

0.06 

0.04 

NaN

NaN

NaN

NaN

3.53 

NaN

0.40 

NaN

NaN

3.75 

NaN

NaN
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NaN
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NaN
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NaN 
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NaN 
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NaN 
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-0.79  

-1.54617 

-2.63001 

-2.82522 

-3.00918 

10.46756 

-1.30763 

8.51705 

-0.77791 

-2.43856 

12.86849 

-2.66456 

-0.74304 

0.00000 

-1.41765 

-1.78021 

-2.19213 

-3.80720 

-1.49119 

-1.66856 

-1.74379 

-0.32642 

-1.21220 

-0.83909 

-1.12328 

-1.18890 

-1.79743 

-2.32484 

8.10235 
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Omg

Odu

Od

CEw

CEp

CEm

CEj

PCEt

Jugr

215666

89243

6794

129104

112818

58514

17535

103955

52597

18.49

7.65

0.58

11.07

9.67

5.02

1.50

8.91

4.51

8

4

0

3

5

2

0

2

2

25.00 

12.50 

0.00 

9.38 

15.63 

6.25 

0.00 

6.25 

6.25 

1.35 

1.63 

0.00 

0.85 

1.62 

1.25 

0.00 

0.70 

1.39 

0.30 

0.49 

NaN

-0.17 

0.48 

0.22 

NaN

-0.35 

0.33 

-0.08 

-0.05 

0.01 

0.02 

-0.07 

-0.01 

0.02 

0.03 

-0.02 

0.38 

0.54 

NaN

-0.18 

0.55 

0.23 

NaN

-0.38 

0.34 

0.94  

1.02  

NaN 

-0.30  

1.13  

0.32  

NaN 

-0.53  

0.47  

9.80276 

9.55816 

-1.58241 

8.72195 

8.86861 

7.71460 

-3.25116 

7.64571 

7.53975 

a Using the quantile classification method 
b Likelihood ratio 

c Constant value : - 19.07087 

Table A1. Spatial relationship between mineral deposits and some related factors 
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