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1. Introduction 

Our continuous perception of the world, our sensations about light, colour, music, speech, 
taste, smell is turned into and coded as binary data by the peripheral sensory systems, and 
sent by the corresponding nerves to the brain where this code is interpreted and coloured 
with emotions. The binary sensory data consists in sequences of identical voltage peaks, 
called action potentials or spikes. Seeing consists in decoding the patterns of these spike 
trains which are sent to the brain, via the optic nerve, by the visual transduction element: the 
retina. The external world object features, such as size, colour, intensity, are transformed by 
the retina in a myriad of parallel spikes sequences, which must describe with precision and 
robustness all the characteristics perceived. Getting insight into this population code is, 
nowadays, a basic question for visual science. 
A considerable number of coding studies have focused on single ganglion cell responses. 
Traditionally, the spiking rate of aisle cells has been used as an information carrier due to the 
close correlation with the stimulus intensity in all sensory systems. There are, however some 
drawbacks when analysing single cell firings. Firstly, the response of a single cell cannot 
unequivocally describe the stimulus since the response from a single cell to the same stimulus 
has a considerable variability for different presentations. Moreover, the timing sequence 
differs not only in the time events but also in the spike rates, producing uncertainty in the 
decoding process. Secondly, the same sequence of neuronal events in an aisle cell may be 
obtained by providing different stimuli, introducing ambiguity in the neuronal response.  
New recording techniques arisen from emerging technologies, allow simultaneous 
recordings from large populations of retinal ganglion cells. At this time, recordings in the 
order of a hundred simultaneous spike trains may be obtained. New tools for analysing this 
huge volume of data must be used and turn out to be critical for proper conclusions. 
FitzHugh used a statistical analyser which, applied to neural data was able to estimate 
stimulus features. Different approaches have been proposed on the construction of such a 
functional population-oriented analizer, including information theory, linear filters, 
discriminant analysis and neural networks. 
Analyzing the neural code, especially when this code is split by clustering algorithms in the 
search of certain levels of organization within it, implies to quantify the amount of 
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information each cell conveys. The goal of this study was to quantify the ganglion cells 
tendency to group themselves in sets of relatives according to their coding performance, 
using functional clustering (FC), information theory (IT) and artificial neural networks 
(ANN) as tools for providing an empirical value for the goodness of a coding capability. 
Therefore, a functional separation, or classification based on behaviour, was accomplished 
and the coding abilities of the subsets and the whole cluster of cells determined. Finally the 
strong relationship between stimulus reconstruction using artificial neural networks and 
mean cell information provided by information theory was proved.    
In this chapter, we analyse the retinal population data looking at behaviour and exploring 
the contribution that single cells or population of cells make to the coding process. Two 
approaches have been used for this purpose: ANNs and IT. Each method required slightly 
different experimental paradigms that will be explained below.  
Firstly, we have tested the ANN performances that small population of ganglion cells 
achieved at predicting stimuli of varying intensity and wavelength. We have compared at 
this point individual and population performances for each of the two experimental setups: 
intensity and wavelength variations. We have also looked at the ANN prediction 
performance of relevant parameters in the code such as firing rate, latency of first spike, 
latency of second spike and inter-spike interval. Two different network architectures were 
studied: Backpropagation and Kohonen Learning Vector Quantization (LVQ). 
Secondly, entire populations of ganglion cells were reorganised in a varying number of 
subsets of cells (subpopulations). The method consisted of creating population subsets using 
the autocorrelograms of the cells and grouping them according to a minimal Euclidian 
distance. These subpopulations share functional properties (periodicity) and may be used 
for data reduction, extracting the relevant information from the code. Information theory 
and artificial neural networks have been used to quantify the coding goodness of every 
subpopulation, showing a strong correlation between both methods. All cells that belonged 
to a certain subpopulation showed very small variances in the information they conveyed 
while these values were significantly different across subpopulations, suggesting that the 
functional separation worked around the capacity of each cell to code different stimuli. 

2. Methods 

2.1 Experimental procedures 

Extracellular recordings were obtained from ganglion cell populations in isolated 
superfused albino rabbit (Oryctolagus cuniculus) retina using a rectangular array of 100, 1.5 
mm long electrodes, as reported previously (Fernandez et al., 2000; Normann et al., 2001a; 
Ortega et al., 2004; Bonomini et al., 2005). Briefly, after enucleation of the eye, the eyeball 
was hemisected with a razor blade, and the cornea and lens were separated from the 
posterior half. The retinas were then carefully removed from the remaining eyecup with the 
pigment epithelium, mounted on a glass slide ganglion cell side up and covered with a 
Milipore filter. This preparation was then mounted on a recording chamber and superfused 
with bicarbonate-buffered Ames medium at 35ºC. 
For visual stimulation we used a 17” NEC high-resolution RGB monitor. Pictures were 
focused with the help of lens onto the photoreceptor layer. The retinas were flashed 
periodically with full field white light whereas the electrode array was lowered into the 
retina until a significant number of electrodes detected light evoked single and multiunit 
responses. This allowed us to record with 60-70 electrodes on average during each 
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experiment. The electrode array was connected to a 100 channel amplifier (low and high 
corner frequencies of 250 and 7500 Hz) and a digital signal processor based data acquisition 
system. Neural spike events were detected by comparing the instantaneous electrode signal 
to level thresholds set for each data channel using standard procedures described elsewhere 
(Fernandez et al., 2000; Normann et al., 2001a; Shoham et al., 2003). When a supra-threshold 
event occurs, the signal window surrounding the event is time-stamped and stored for later, 
offline analysis. All the selected channels of data as well as the state of the visual stimulus 
were digitized with a commercial multiplexed A/D board data acquisition system (Bionic 
Technologies, Inc) and stored digitally. 
For spike sorting we used a free program, NEV2lkit, which has been recently developed by 
our group (Bongard et al., 2004) and runs under Windows, MacOSX and Linux (source code 
and documentation is freely available at: http://nev2lkit.sourceforge.net/). NEV2kit loads 
multielectrode data files in various formats (ASCII based formats, LabView formats, Neural 
Event Files, etc) and is able to sort extracted spikes from large sets of data. The sorting is 
done using principal component analysis (PCA) and can be performed simultaneously on 
many records from the same experiment. 

2.2 Visual stimulation 

Initially light stimulation was applied using a halogen light lamp, selecting the wavelength 
by means of narrow bandpass interference filters. Intensity was fixed by using neutral 
density filters and a shutter provided the the stimuli flashes to the preparation. In order to 
place the array in the optimum recording situation, the retina was stimulated with full field 
flashes of constant intensity while the array was lowered towards the preparation. The 
multiarray was then fixed at the place of maximum retinal response.  
For the ANN experimental paradigm, stimulation consisted of seven consecutive flashes, 
with 250 msec. length. In this case, the wavelength and the intensity was varied 
separatedely. This is, a first run of flashes with changing intensity was presented and 
afterwards, a second protocol of varying wavelengths showed flashes to the retina. The 
fifteen most responsive units were selected for analysis.  
For the IT experimental paradigm, retinas were randomly stimulated with full field flashes 
with 16 different light intensities within the grey scale. In order to ensure that both the 
number of trials for each intensity and the probabilities of appearance of each intensity was 
equal, a lookup table with 16 light intensities equally distributed, ranging from black (RGB 
values: 0, 0, 0) to white (RGB values: 255, 255, 255), was constructed. Afterwards, the  
 

 

Fig. 1. Visual stimulation. Light intensity trace for 9 seconds of a sample trial containing 30 
flashes, each lasting 0.3 ms. Ordinate axis represent the different intensity values (see 
methods). 
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elements of a list containing 20 repetitions for each of the intensities from the lookup table 
were relocated by changing their indexes according to a random entry chosen from a 
uniform distribution. The list was then loaded by a Python (http://www.python.org) script 
and embedded in VisionEgg (http://www.visionegg.org) for presentation of the flashes. 
Flashes were 300 ms long so that each trial lasted 96 seconds. Figure 1 shows one example of 
the light intensity trace. 

2.3 Separation into subpopulations 
In order to identify classes or groups of neurons that behave similarly we used 
DATAMEAns, a free open-source software for the classification and management of neural 
ensemble data (Bonomini et al., 2005) which is freely available from the following URL: 
http://cortivis.umh.es. We tested two spike train analysis methods, namely 
autocorrelations  and post-stimulus time histograms (PSTHs). The outputs of this analysis 
fed then a non supervised clustering method, which used the nearest-neighbour or k-means 
approach for the creation of a varying number of autocorrelograms or PSTH groups. This is 
a simple clustering method that decomposes the data set into a set of disjoint clusters and 
then minimizes the dissimilarity in the samples within each cluster, while maximizes the 
dissimilarity of different clusters. As measure of dissimilarity we used the average squared 
distance of the data items from their nearest cluster centroids. This procedure defined a set 
of implicit decision boundaries for the separation of clusters or groups of units according to 
their periodicity. In this way, we ended up with several clusters or groups of ganglion cells 
that were a subset of the entire population.  
In order to prove that functional clustering produced a reorganization of the cells around 
coding ability, two different control groups were defined as follows. The first control group 
was a set of subpopulations resulted from the clustering of the raw data (spike trains 
without any processing) instead of clustering the functional data (autocorrelograms or 
PSTHs). In the second control group, on the other hand, subpopulations were originated 
from a random arrangement. Each cell response was assigned a number and different 
subpopulations were constructed by picking up the spike train corresponding to a number 
originated from a random process, resembling a lottery process.  

2.4 Neural Networks  

For the analysis stage, 15 electrodes with highest activity (high level to noise ratio) were 
used, while the sixteenth channel was used for storing the original stimulus. For each 
electrode a 4-element vector was constructed using the number of spikes, the relative time of 
the first and second spike, and the interspike interval of these firings, building a 60-element 
vector with the concatenation of the 15 electrode 4-element vectors. 
Two different neural networks were used. The first one was a three layer backpropagation, 
which receive the 60 elements or the four parameters of a single cell, with 20 nodes in the 
hidden layer, and the output layer consisting in the same number of neurons as the classes 
to be recognized. So each neuron just fires by applying a certain stimulus response, and the 
rest of the neurons of the output layer have no activation, acting as a winner-take-all 
network. The activation function used for all neurons, including the output layer was the 
hyperbolic tangent sigmoid transfer function given by: 
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using as initial momentum and adaptive learning rate the values established by default by 

Matlab Neural Network Toolbox, the initial weights randomly initialized and the network 

trained to minimize a sum square error goal of 1, to provide more generality in the 

recognition stage. 

The other network used was the Kohonen Supervised Learning Vector Quantization (LVQ) 
with 16 neurons in the competitive map, and a learning rate of 0.05. This network is a 
competitive network, where the neurons with weights more similar to the input increase 
their strength, decreasing the rest of the nodes except a close neighborhood, establishing in 
this way topological relations in the map. The main advantage of using learning vector 
quantization is that it takes shorter to reach the convergence criteria. 
Once the network has been trained, the recognition stage with extended data was 
accomplished, and the correlation coefficients between the stimulus and its estimation 
computed. It is important to mention that correlation gives a better estimation of the relation 
between the estimation and the known applied intensity or wavelength, than an absolute 
recognition rate, because the difference between two similar stimuli is very small, so the 
network can easily estimates any one of them. Other studies use their own concepts as mutual 
information in order to assess the overall quality of the reconstruction, but there no exist a 
common agreement about the measure that better estimate the goodness of the prediction. 

2.5 Information theory 

Information theory (Shannon, 1948) was used to assess the quality and reliability of the 

subpopulations obtained. This approach allows to answer questions about the relevant 

parameters that transmit information as well as addresses related issues such as the 

redundancy, the minimum number of neurons needed for coding certain group of stimuli, 

the efficiency of the code, the maximum information that a given code is able to transmit 

and the redundancy degree that exists in the population firing pattern (Borst and 

Theunissen, 1999; Amigo et al., 2003; Panzeri et al., 2003; Pola et al., 2003). We analysed the 

information about the stimulus that single cells conveyed, as well as the progression of the 

mutual information values after increasing the number of cells for each subpopulation. For 

it, the population responses of the retina under several repetitions of the stimuli were 

discretized into bins. Then, the firing rates from the cells of the population implemented a 

vector n of spikes counts, with an observed probability P(n). Since the probability of the 

occurrence of different stimuli had a known probability P(s), the joint probability 

distribution can be defined as the probability of a global response n and a stimulus s, P(s,n). 

Thus, the information provided by the population of neurons about the stimulus is given by: 

 2

( , )
( ) ( , )log

( ) ( )s S n

P s n
I t P s n

P s P n∈
= ∑∑  (2) 

From the above mentioned data, two informational indicators were constructed: the mean 
cell information (MCI), calculated as the sum of the mutual information of each isolated cell 
divided by the total number of cells in a particular subpopulation, and the subpopulation 
information (SI), defined as the overall mutual information for a given subpopulation (all the 
cells that belong to the subpopulation are taken into account). Note that these indicators are 
conceptually separated, since one points out to individual coding abilities (MCI) while the 
other refers to synergic coding abilities (SI).  
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3. Results 

3.1 Population coding and ANNs 

The fifteen electrodes with highest activities were selected for the analysis stage. Temporal 

coding or population coding are possible candidates for representing the stimuli. Another 

firing characteristic is that for a given cell, no unique response is obtained to the same 

stimulus. It can be observed that different presentations for the same stimuli evoke different 

responses, not only on the number of spikes but also on the relative timing of the firings, 

manifesting variability in their spiking behavior. This variability produces uncertainty for 

recognizing the right stimuli just using the spiking parameters, because there no exists an 

unequivocal function that associates the firing variables with the provided visual 

information in an aisle cell. 

Ambiguity is another aspect noticed, a single cell can respond exactly the same to different 

stimuli, making more difficult, as for variability, their recognition. We point to a population 

coding as a candidate strategy for representing information in the visual system. The overall 

contribution of an aisle cell was compared with the recognition correlation scores for 

discriminating different intensities obtained using the fifteen cells. The firing parameters 

used were the number of spikes, the time of the first and the second spike during the ON 

stimulus, and the interspike interval. Figure 2 shows the correlation between the output of a 

trained backpropagation neural network and the correct stimuli, which consisted in 8 

different intensities. The stimuli wavelength was fixed to 633, 546 and 450 nm. respectively 

in order to not influence the intensity transmitted. It can be seen that the scores show 

variability depending on the wavelength provided. The cells with higher recognition scores 

are cells 8, 10, 11 and 12 for all stimuli. While these cells had registered the maximum 

number of spikes, and there is a close relation between the number of spikes and the 

intensity, it seems reasonable that these cells obtain the higher scores. However using all 

cells the recognition index overpass 0.95 for all wavelengths.  

 

 

Fig. 2. Intensity recognition scores for aisle cells and the whole population using a BP 
network 

Color recognition is more complex, and the recognition rates for aisle cell are much lower. 

Intensities were fixed to 1, 1.5 and 2 log units, and nine wavelengths had to be discriminated. 

Again the scores are variable according with the intensity. The population score, which lies in 

the range of 0.95, clearly surpass all the individual indexes for all kind of stimuli.  
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Fig. 3. Color recognition scores for aisle cells and the whole population using a BP network 

For validating the prior results, the same data was presented to another kind of neural 
network, a supervised learning vector quantization (LVQ) with 20 nodes in the competitive 
layer. This network took lower time to converge than the prior one, and again, the correlation 
indexes between the correct stimulus and the estimation provided by the network were 
computed. The cells with higher recognition scores, cells 8, 10, 11 and 12, were the most 
successful in their estimations alone, and the population index was nearly the same that the 
one obtained using back-propagation networks for all kind of wavelength (633, 546 and 450 
nm.), in the range of 0.95, confirming the recognizing capabilities of the population code. 
 

 

Fig. 4. Intensity recognition scores for aisle cells and the whole population using a LVQ 
network 

The wavelength discrimination using competitive networks behaves similar to the prior 
feedfoward network. Lower recognition scores are obtained, even for the neural population, 
(this may be due to the network difficulty to fix a decision border which divides the different 
clusters) however this value is clearly higher that the correlation rates obtained by the cells 
alone. Using different neural networks does not affect to the obtained results, in respect to the 
most discriminating cells, and the higher scores obtained by the population parameters.  
Once the population code has been noted as the most discriminant element in the neural 
firing, it still remain to define which are the parameters embedded in the neural signal that 
are used by cells for transmitting the data. A backpropagation network with 20 nodes in the 
hidden layer was used, and the input to this layer consists in the 15 population cells aisle 
parameters in contrast to the whole set of parameters. Figure 6 shows the correlation 
indexes between the correct stimuli and the network estimations. It can be seen that using 
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Fig. 5. Color recognition scores for aisle cells and the whole population using a LVQ network 

 

Fig. 6. Intensity recognition scores for the population using the parameters alone and the 

whole set in a BP network 

only the number of spikes of the population is enough for recognizing successfully a given 
intensity (it has been described in literature the relation between the intensity level and the 
number of firing rate evoked), but also using only the exact timing of the first spike in all 
cells is enough for recognizing the stimuli for all wavelengths (lower intensities show longer 
delays). The second spike timing carries less information, and the interspike data is also a 
poor coding element. 
The relative relevance of the aisle population parameters on recognizing colors was also 
computed. A backpropagation network was again used, showing similar results that the 
ones obtained for recognizing intensities. Just using the number of spikes of the whole 
population is enough for determining the provided color, and the time first spike occurs  
 

 

Fig. 7. Color recognition scores for the population using the parameters alone and the whole 
set in a BP network. 
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also discriminate between the different provided wavelengths for all kind of intensities 
used. The time of the second spike during the ON period or the interspike interval show 
lower recognizing scores than previous parameters. 

3.2 Entire population and subpopulations obtained 
The classification algorithm worked around the coding abilities of the cells. This is, the 
subsets emerged from the original population with very different MCI values. The clearest 
clustering strategy showed up when separating autocorrelograms. Although PSTHs 
performed well, the MCI separation across subpopulations suffered a little bit. Figure 8 
illustrates this fact, and the fact that subpopulations originated randomly (first control 
group) did not evidence this feature. Neither did the second control group, the clustering of 
raw data, since no useful subpopulations were even generated. Notice that most of the 
points in the bottom-right panel are coloured green. 
The generation of subpopulations using the autocorrelogram approach is illustrated in 
Figure 9 with an example where the maximum number of clusters was fixed to three. Top 
panel displays the raster plot of the whole population of ganglion cells while bottom panels 
show the raster plots of different subpopulations (named s1, s2 and s3) obtained by 
applying a bin size of 10 ms and a maximum shift of 900 lags. Subpopulations are reordered 
so that s1 is the subpopulation with fewer cells and subsequent subpopulations (s2 and s3) 
contain an increasing number of cells. Clear differences among the different subpopulations 
can be perceived. These differences were related mainly to the firing patterns and to the 
number of cells in each subpopulation. For instance s1, contained very few cells that fired 
almost constantly during the presentation of the stimuli, s2 contained a considerable 
number of cells with apparent temporal patterns and s3 was integrated by a higher number 
of cells which showed a more randomised activity. 

 

Fig. 8. Firing rate (Y axis) and MCI levels (X axis). Firing rates against MCI values for a 
collection of cells grouped into three subpopulations. Classes are indicated on different 
colours. Top left: autocorrelation approach. Top right: PSTH approach. Bottom left: random 
subpopulations. Bottom right: raw data.  
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Fig. 9. Top panel. Example of simultaneously recorded extracellular responses from a 
population of rabbit ganglion cells to a trial of random full field flashes with 16 different 
intensities (see methods). (A) Original population raster plot. Each dot represents a single 
spike. (B) Mutual information values for each cell in the recording (bars) and for the whole 
population (last gray bar). The overall mean cell information is shown as a dashed line. (C) 
Accumulative mutual information for an increased number of cells. In this example the 
number of cluster was fixed to three. Bottom panel, left. Raster plots for each subpopulation 
(named s1, s2 and s3). Bottom panel, right. Information about the stimulus for the 
subpopulations. Mutual information values for each cell in the recording (bars) and for the 
whole subpopulation (last gray bar). The overall mean cell information in each case is shown 
as a dashed line. Bellow each bar graph it is displayed the accumulative mutual information 
for an increasing number of cells. Note the relationship between number of cells and mean 
cell information. 
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3.3 Quality of the subpopulations: information theory approach 

Using the autocorrelogram approach the subpopulation information (SI), kept similar across 
classes (one-way ANOVA; p=0.82) while the informative value of the individual cells, 
summarised by the mean cell information (MCI) varied significantly (one-way ANOVA; 
p<0.0005). The PSTH approach was less effective at grouping subpopulations on an 
informational basis, even though the above trend was evident in the subpopulations 
separation. 
Figure 9 (bottom panel, right) shows the information that each cell conveyed about the 

stimulus (black bars), their mean value (MCI, dashed line) and the SI value (grey bar) for 

different subpopulations arisen for k set to 3. Notice the difference in the MCI and SI values. 

As expected, s1, formed by the very few continuously firing cells gave the lowest mean cell 

information (1.48±0.10 bits; M±SE), clearly above the overall value of the whole population 

(2.42±0.08 bits; M±SE) whereas s2, kept the moderately informative cells (1.88±0.07 bits; M ±SE) 

and s3 grouped the worst cells on a mean information basis (1.33±0.02 bits; M±SE). On top of 

each raster plot there is a pattern of the autocorrelogram representative of the subpopulation.  

Taking apart the noisy cells, a particular relation between number of cells and MCI was found. 

Although the number of cells did not affect the subpopulation information, this measure was 

inversely correlated with the mean cell information. Therefore, the subpopulations with fewer 

cells tended to have higher mean cell information values. Figure 10 illustrates this fact. Here, 

MCI values obtained with k ranging from 2 to 5 are collected and plotted versus the number of 

cells, n. It can be observed that the mean cell information decreases as the number of cells in a 

certain subpopulation increases, fitting this relationship to a linear equation, with square r 

going from major to minor through autocorrelograms, PSTHs and control group (raw data), 

respectively. It is important to notice that the latter behaviour does not hold for the 

subpopulation information, which keeps invariant for any cell number. Note the strength of this 

observation for the autocorrelogram approach (upper panel), and how this behaviour suffers 

with the PSTH approach (middle panel) until is completely faded when raw data, where no 

temporal feature was taken into account before the clustering procedure. 

We also found out that there is a natural number of subpopulations which optimise the 

clustering strategy. Such critical value for the number of groups (k) can be appreciated on 

Figure 11, where the clustering is shown on an informational basis. MCI and SI values for 

subpopulations obtained by processing ten original populations by means of the 

autocorrelogram approach are collected and displayed for an increasing number of classes 

(k). In this figure, subpopulations belonging to a certain class are represented with the same 

marker through different values of k. On the x-axis are displayed the MCI values and on the 

y-axis the SI values. Note that although for k=4 the two central clusters start to overlap, this 

is, subpopulations start to share MCI levels, the goodness in the group separation when 

taking the autocorrelogram approach is still evident. However, for five sets of relatives, the 

clustering behaviour becomes totally blurred and redundant subpopulations start to 

generate. Left panels contain data obtained with the autocorrelogram approach while right 

ones display data from the PSTH approach. Unlike the autocorrelograms, the PSTH 

approach fails to produce a robust separation according to information features for k greater 

than two. Thus, for 3 classes on, clusters start to spread and overlap. This could imply that 

PSTHs have a natural k much lower than autocorrelograms, since they could tell less (extract 

less information) about the experimental paradigm proposed here. The k value is the 
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maximum number of predefined classes, but the algorithm finds the optimal number, lower 

or equal than this predefined value.  

 

 

Fig. 10. Cell number versus coding quality. Mean cell information (MCI) against number of 
cells (n). Note that MCI decreases as the number of cells in a certain subpopulation 
increases. Upper panel: data obtained from the autocorrelogram approach. Middle panel: 
data obtained from the PSTH approach. Bottom panel: data obtained from raw data. 

3.4 Correlations 

We also looked for concerted activity within each subpopulation. In order to do so, a bin of 

0.5 ms was used to be able to see peaks of concerted activity of 1 ms. Figure 12 describes 

how the method produces subpopulations with different levels of synchrony. Up to three 

main correlations widths were found: a narrow 5 ms peak, a 10 ms peak and a broad 30 ms 

peak. Subpopulations with highest MCI values showed either intermediate or broad 

correlation peaks and a smaller number of correlated cells. Continuously firing cells 

belonged to this latter group. Subpopulations containing the greatest number of correlated 

cells showed concerted activity around 5 ms but, surprisingly, the MCI values for these 

subpopulations were not the highest ones.  This inverse relationship between synchronicity 

and individual informative value (MCI) is not surprising when looking at the overall 

information (SI), which kept constant across the different subpopulations, which in turn, 

presented SI values similar to the original population. This would suggest the coexistence of 

elements of both strategies, individual and population coding.  
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Raw data did not show any significant correlation. PSTH data, on the other hand, presented 
a weak separation of correlated cells with a narrow and a broad peak. Finally, 
autocorrelogram data, displayed a clear separation of the concerted activity giving place to a 
different peak for each subpopulation. Here, subpopulations were grouped according to 
their synchrony windows, from infinity (subpopulation with no correlation at all) to 30 ms. 
 

 

Fig. 11. Relationships between number of clusters and mean cell information values. 
Different trials are represented with different markers. Note that the individual components 
of each subpopulation have similar subpopulation information values and that there is a 
maximum number of clusters which optimise the classification strategy. Thus for k=4 
although the two central clusters start to overlap, the group separation it is still apparent. 
For k=5, the clustering behaviour becomes totally blurred. 

www.intechopen.com



Artificial Neural Networks - Methodological Advances and Biomedical Applications 

 

246 

 

Fig. 12. Concerted activity of subpopulations. Each row represents the correlation signal of 

each subpopulation. Correlation were computed as the average of the correlation signals 

among all the cells belonging to that subpopulation in a pair wise process. Firing rate 

against MCI values. A), Data obtained from raw data. B), Data obtained from the PSTH 

approach. C), Data obtained from the autocorrelogram approach.  

3.5 Artificial Neural Networks and information theory 

In order to address quality differences across subpopulations, we used a feed-forward back-

propagation neural network to study the contribution of the mean cell information indicator 

to group cells that are better encoders than others with respect to the stimulus applied.   

Interestingly, the neural network performance obtained with the different sets of cells 

within each subpopulation was found to be related to the mean cell information. With the 

aim of quantifying this relationship, ANN performance percentages were transformed to 

arcsin values and the mean cell information values underwent a logarithmic transformation 

in order to study the linearity of its relationship. Afterwards, correlation coefficient and 

regression analysis was applied to the data. Fixing k=5 (see methods), a highly significant 

positive correlation was found for s1 (r=0.9436, df=4), s2 (r=0.9785, df=4) and s3 (r=0.9261, 

df=4). Figure 13 shows the lines fitted by means of regression analysis on each of the 

subpopulations generated from the population shown on Figure 9. Dots represent the 

samples from which regression analysis was calculated. Equations for the respective line 

fittings and square r are included in the figures. Here, it is clearly shown the strong 

relationship between stimulus reconstruction and mean cell information. 
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Fig. 13. ANN performance against mean cell information.  Line fitting for s1 (squares), s2 
(triangles) and s3 (rhombus). Notice that the best correlation coefficient belongs to the 
subpopulations with the best defined time patterns.  

4. Discussion 

The issue of classification has long been a central topic in the analysis of multielectrode data, 
either for spike sorting or for getting insight into interactions among ensembles of neurons 
(Fernandez et al., 2000; Nicolelis, 2003; Shoham et al., 2003; Carmena et al., 2005; Fernandez 
et al., 2005; Nicolelis, 2005; Suner et al., 2005; Hochberg et al., 2006). 
A major challenge in this context is to acquire meaningful data from different functional types 
of neurons, but there is not a standard way for addressing how many neuronal types are in a 
given multielectrode recording. In this work we have introduced a new approach to facilitate 
this task which is easy to implement and has proved to be useful for defining subsets of retinal 
ganglion cells which share similar temporal responses and coding capabilities. 
The fact that reliable separation of clusters was achieved does not mean that finer separation 
utilizing additional variables is not possible, but a clear trend in the clustering strategy was 
present for all the generated subpopulations. This might be explained from a functional 
point of view. Thus, we speculate with a natural number of retinal ganglion cell classes, 
where every class contributes to coding different elements of the visual scenario such as 
intensity, colour, texture, orientation, shape, etc (Kang et al., 2004). If the number of classes 
is increased the coding process could lose effectiveness, starting to turn up redundant 
classes or subpopulations. In other words, the classes would enclose different kind of cells 
with similar coding behaviour, like the intensity coders, colour coders and so on. Taking 
into account that the stimulus applied was intensity variation of full field flashes, the best 
coder subsets would effectively code intensity in these particular cases. However, this 
should be addressed in future works by repeating the visual stimuli with other varying 
parameters, for instance using different colours, moving bars, and even natural scenes to 
confirm such a functional separation. Additionally more sophisticated unsupervised 
clustering algorithms, particularly on the crucial issue of assessing the proper number of 
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clusters, are required and should be developed. Finally, some degree of controversy can 
accompany any classification scheme but we should take into account that the controversy is 
not concerned with whether the groups exist, or whether they are important; rather it is 
related to the number of groups to be present and the functional semantics attributed to 
them.  
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