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1. Introduction 

1.1 Artificial neural networks in clinical medicine 

In Medicine, several tools have been developed for the prediction of clinical outcomes 
following drug treatment and other medical interventions. The standard approach for a 
binary outcome is to use logistic regression (LR), however, this method requires formal 
training and a profound knowledge of statistics (Royston, 2000; Harrel et al., 1996). LR is 
used to predict a categorical (usually dichotomous) variable from e set of predictor 
variables; it has been especially popular with medical research in which the dependent 
variable is whether or not a patient has a disease. 
Over the past years, artificial neural networks (ANNs) have increasingly been used as an 
alternative to LR analysis for prognostic and diagnostic classification in clinical medicine 
(Schwarzer et al., 2000). ANNs are composed of simple elements operating in parallel 
inspired by biological nervous systems. As in nature, the network function is determined 
largely by the connections between elements. After training with retrospective data ANNs 
are capable of making intelligent predictions given new, limited information. The growing 
interest in ANNs has mainly been triggered by their ability to mimic the learning processes 
of the human brain. However, the issue remains as to how these ANNs actually succeed in 
recognizing patterns within data that are too complex for the human brain. From here 
derives the so-called “black-box” aspect of ANNs.  The network operates in a feed-forward 
mode from the input layer through the hidden layers (like in a black box) to the output 
layer. Exactly what interactions are modeled in the hidden layers is still a knot that remains 
untied.  Each layer within the network is made up of computing nodes with remarkable 
data processing abilities. Each node is connected to other nodes of a previous layer through 
adaptable inter-neuron connection strengths known as synaptic weights. ANNs are trained 
for specific applications, such as pattern recognition or data classification, through a 
learning process and knowledge is usually retained as a set of connection weights. The 
backpropagation algorithm and its variants are learning algorithms that are widely used in 
neural networks. With backpropagation, the input data is repeatedly presented to the 
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network.  Each time, the output is compared to the desired output and an error is computed. 
The error is then fed back through the network and used to adjust the weights in such a way 
that with each iteration it gradually declines until the neural model produces the desired 
output. ANNs have been successfully applied in the fields of mathematics, engineering, 
medicine, economics, meteorology, psychology, neurology, and many others.  Indeed, in 
medicine, they offer a tantalizing alternative to multivariate analysis, although their role 
remains advisory since no convincing evidence of any real progress in clinical prognosis has 
yet been produced (Linder et al., 2006).  
A systematic review on the use of artificial neural networks in decision support in cancer by 
Lisboa et al. showed that the number of clinical trials (CTs) and randomised controlled trials 
(RCTs) involving the use of ANNs in diagnosis and prognosis has increased from 1 to 38 
over the past decade. However, out of 396 studies involving the use of ANNs in cancer, only 
27 were either CTs or RCTs. Out of these trials, 21 showed an increase in benefit to 
healthcare provision and 6 did not. None of these studies however showed a decrease in 
benefit. Overall, the reviewed publications support the neural network approach but while 
on the one hand they identify trends in areas of clinical promise (particularly diagnosis, 
prognosis and therapeutic guidance for cancer), on the other they highlight the need for 
more extensive application of rigorous methodologies (Lisboa & Taktak, 2006).  
Interesting, a review on the use of ANNs in the field of Gastroenterology over the last 10 
years (their application in the field of gastroenterology has now entered the second decade) 
underlines that the increasing complexity of clinical data requires the use of mathematical 
models that are able to capture the key properties of entire ensembles, including their 
linkages and their hubs, abandoning the traditional statistical reductionistic approach, 
which tends to ‘see’ things individually, to simplify and to look at one single element at a 
time (Pace & Savarino, 2007). Some authors, for example, assessed the performance of 
ANNs in recognizing patients with chronic atrophic gastritis, a state of chronic 
inflammation that can eventually progress to gastric carcinoma, by using only clinical and 
biochemical variables (Annibale & Lahner, 2007). 
In the field of urology, several papers have addressed the predictive efficacy of ANNs. In 
urological cancer, ANNs appear to be accurate and more explorative than traditional 
regression statistics artificial intelligence methods when used to analyze large data cohorts. 
Furthermore, they allow individualized prediction of disease behaviour. Each artificial 
intelligence method has characteristics that make it suitable for different tasks. The lack of 
transparency of ANNs hinders global scientific community acceptance, but this can be 
overcome by neuro-fuzzy modeling systems (Abbod et al., 2007).  
New biomarkers within multivariate models have been analyzed with ANNs to improve 
early detection of prostate cancer (Stephan et al., 2007). Another field of application is the 
management of urolithiasis, a worldwide clinical challenge embracing a multitude of 
difficulties in diagnosis, treatment and prevention of recurrence. Recent reports have 
examined the role of ANNs in prediction of stone presence and composition, spontaneous 
passage, clearance and re-growth after treatment (Rajan & Tolley, 2005). The results suggest 
that ANNs may prove useful in clinician-led decision-making processes.  
ANNs can identify important predictive variables and accurately predict treatment 
outcomes in clinical medicine but although the initial results appear promising, further 
prospective studies of larger patient cohorts will need to be performed in order to determine 
whether this mode of analysis can surpass standard statistical predictive methods, not only 
when solving problems concerning diagnosis and its classification into subtypes but also 
when predicting clinical outcomes of patients affected by diverse pathologies. 
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1.2 Artificial neural networks in hematology and bone marrow transplantation 

Very few reports on this topic have been published in the field of hematology. The first 
computing devices based on artificial intelligence (AI) have been applied to routine 
laboratory data management whereas new innovative tools, based on neural networks 
trained with data from peripheral blood analysis, have been used for differential diagnosis 
in diseases such as anemias, thalassemias and leukemias. The introduction of the first 
microarray based and bio-informatic approach for molecular diagnosis of hematological 
malignancies can be considered a major step ahead. This approach is based on the 
monitoring of simultaneous expression of thousands of genes using DNA microarray, 
independently of previous biological knowledge, analyzed using AI devices (Zini, 2005).  
In an attempt to create an application for discriminating different types of anemia, simply 
using data from peripheral blood, Zini & d’Onofrio (2003) collected data from peripheral 
blood of 1000 patients diagnosed mainly with hematopoietic disorders in 22 Italian 
Hematology Centers. The ANNs were trained with labeled samples and showed high 
capability of clustering signals according to the predefined normal as well as pathological 
profiles.  
In 2002, Amendolia et al. investigated the use of ANNs for the classification of thalassemic 
pathologies, exclusively using the hematologic parameters resulting from 
hemochromocytometric analysis. Different combinations of ANNs made it possible to 
discriminate thalassemia carriers from normals with 94% classification accuracy, 92% 
sensitivity, and 95% specificity. Based on these results, an automated system for real-time 
support in diagnoses was proposed (Amendolia et al., 2002).  
All these intriguing reports of ANNs in the field of hematology kindled our curiosity to 
discover whether ANNs were capable of predicting the outcome of hematopoietic stem cell 
transplantation (HSCT) after analyzing donor and recipient pre-transplantation clinical and 
immunogenetic variables.  

1.3 The difficult setting of unrelated bone marrow transplantation in thalassemia. 

Patients with chronic non-malignant genetic disorders, such as thalassemia, are faced with a 
dramatic decision: they can either undergo HSCT with a good possibility of cure but a high 
chance of death or continue the more conventional treatment with blood transfusions and 
iron chelation therapy.  The important advances made in conventional treatment now allow 
transfusion-dependent thalassemia patients to live much longer (Caocci et al., 2006; Borgna 
Pignatti et al., 2004) but as a result these patients must cope with complications that occur 
over time. Treatment may be required for heart or liver diseases, infections, osteoporosis 
and other serious health problems.  
On the other hand, although HSCT from an HLA-identical sibling can offer thalassemia 
patients a probability of cure that is close to 90% in children and adults in good clinical 
conditions (Lucarelli et al., 1990), this procedure is associated with a significant risk of 
mortality (Lucarelli et al., 1997), especially in patients with advanced age or poor clinical 
conditions.  Moreover, the chance that any given sibling will be HLA matched with a 
potential recipient is one out of four which means that most patients will need to search for 
a compatible donor in the registries of voluntary donors worldwide. Transplantation from 
unrelated donors (UD) is burdened by an increased risk of acute and chronic graft-versus 
host disease (GVHD) with a consequent negative impact on overall survival (La Nasa et al., 
2006). Therefore, every effort should be made to carefully evaluate the risk of GVHD before 
performing  UD-HSCT (Hansen et al., 1998). 
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Graft-versus-host disease remains the major barrier to the successful outcome of HSCT in 
thalassemia. HLA disparity between the donor and the recipient is clearly the most 
powerful risk factor but also older age, gender mismatch, Pesaro risk class, cytomegalovirus 
(CMV) positivity as well as higher median infused hematopoietic stem cell doses have been 
shown to increase the risk for GVHD (Lucarelli et al., 1996). Evidence emerging from recent 
reports indicates a correlation between certain immunogenetic variables and the occurrence 
of GVHD: donor-recipient HLA-Cw ligand groups for killer immunoglobulin-like receptors 
(KIRs), KIR genotypes, the HLA-G 14-basepair (bp) polymorphism and HLA-DPB1 
disparity (La Nasa et al., 2007; Littera et al., 2010; Fleischhauer et al., 2006). Although this 
information may contribute to our understanding of the pathogenesis of GVHD, it is 
difficult to apply in clinical practice.  What we need is a simple prognostic tool capable of 
analyzing the most relevant predictive variables. 
 

 

Fig. 1. To gaze into a crystal ball for a glimpse of the future has always been the dream of every 

doctor. Reliable assessment of the acute GVHD risk is crucial for making rational treatment 

decisions. During the process of donor selection and before discussing the choice of treatment 

with patients and their relatives, it is essential for physicians to integrate their knowledge with 

statistical or algorithmic tools capable of accurately predicting the likely incidence of GVHD. A 

more accurate prediction of acute and chronic GVHD would not only improve GVHD 

prophylaxis and conditioning regimens, but would also allow physicians to adapt their 

communication practices appropriately and to ensure that patients are supplied with effective 
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and comprehensive information on the pros and cons of transplantation, including the 

possibility of dying. This is particularly relevant for patients with chronic non malignant 

disorders, such as thalassemia. Maybe ANNs represent the crystal ball we are all looking for. 

2. Patients and methods 

2.1 Patients 

We compared the prognostic performance of ANNs versus LR for predicting acute GVHD in a 

group of 78 beta-thalasssemia major patients given UD-HSCT (Caocci et al, 2010).  The 

following clinical and immunogenetic paramenters were considered: recipient gender, 

recipient age, donor gender, donor age, the combination male recipient/female donor versus 

the other possible combinations, recipients and/or donors with positive CMV serology versus 

donor and recipient pairs with negative CMV serology, the Pesaro risk class at transplantation, 

HCV-RNA positivity, median infused CD34 cell dose, Treosulphan-containing conditioning 

regimen versus other regimens, HLA Class I mismatch, presence of HLA-A11, non permissive 

HLA-DPB1 disparity in GVHD direction, presence of the HLA-G 14-basepair 

deletion/deletion polymorphism in recipients, presence of the HLA-G 14-basepair 

deletion/deletion polymorphism in donors, heterozygosity for HLA-Cw ligand groups 1 and 

2 in patients, recipient KIR ligand/donor activating KIR (recipient C1 absent/donor KIR2DS2 

present versus the other 3 combinations; recipient C2 absent/donor KIR2DS1 present versus 

the other 3 combinations), recipient KIR ligand/donor inibitory KIR (patient C1 absent/donor 

KIR2DL2 present versus the other 3 combinations; recipient C1 absent/donor KIR2DL3 

present versus the other 3 combinations; patient C2 absent/donor KIR2DL1 present versus the 

other 3 combinations), donor homozygosity for KIR haplotype A (Uhrberg, 2002; Colonna, 

1995; Bassi, 2007; Cook, 2004; Harrison, 1993).  

2.2 Statistical analysis 

Patient, disease, and transplantation-related variables were expressed as median and range 

or percentage, as appropriate. For the HSCT outcome, patients were censored at the time of 

rejection, death, or last follow-up. Probabilities of overall survival (OS) and survival with 

transfusion independence (thalassemia-free survival) were estimated by the Kaplan-Meier 

method. 

The following 24 independent variables were analyzed for their potential impact on 

aGVHD: recipient gender, recipient age, donor gender, donor age, the combination male 

recipient/female donor versus the other possible combinations, recipients and/or donors 

with positive CMV serology versus donor and recipient pairs with negative CMV serology, 

the Pesaro risk class at HSCT, HCV-RNA positivity, median infused CD34 cell dose, 

Treosulphan conditioning regimen versus other regimens, HLA Class I mismatch, presence 

of HLA-A11, non permissive HLA-DPB1 disparity in GVHD direction, presence of the HLA-

G 14-basepair deletion/deletion polymorphism in recipients, presence of the HLA-G 14-

basepair deletion/deletion polymorphism in donors, heterozygosity for HLA-Cw ligand 

groups 1 and 2 in patients, recipient KIR ligand/donor activatory KIR (recipient C1 

absent/donor KIR2DS2 present versus the other 3 combinations; recipient C2 absent/donor 

KIR2DS1 present versus the other 3 combinations), recipient KIR ligand/donor inibitory 

KIR (patient C1 absent/donor KIR2DL2 present versus the other 3 combinations; recipient 
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C1 absent/donor KIR2DL3 present versus the other 3 combinations; patient C2 

absent/donor KIR2DL1 present versus the other 3 combinations), donor homozygosity for 

KIR haplotype A. 

2.3 Logistic regression 

A binomial LR model with 24 independent variables (3 continuous and 21 categorical) was 
developed (Table 2). Acute GVHD was considered as a dichotomous dependent variable. 
Five consecutive random extractions were performed. For each extraction, patients were 
split into a learning data set (68 patients) and a test data set (10 patients). The independent 
variables were fitted into LR models via forward likelihood ratio test (chi-square difference) 
and stepwise selection. The chi-square test proposed by Hosmer and Lemeshow was used to 
analyze the goodness of fit: a finding of non-significance corresponds to the conclusion that 
the model adequately fits the data. Variables were retained only if their resulting p-value 
was ≤0.05. The final equation, developed through parameter estimates with standard errors, 
odds ratios and asymptotic 95% confidence intervals for all significant variables calculated, 
was applied to each case of the data test. A cut-off value of 0.5 was established for assigning 
the probability of GVHD: “GVHD yes” (1) or “GVHD no” (0). Sensitivity and specificity 
were determined in the learning and test data sets of each random extraction, sensitivity 
being the ratio between true positive and true negative plus false negative and specificity 
the ratio between true negative and true negative plus false positive. Mean sensitivity and 
specificity of LR obtained in five consecutive extractions were compared to ANN, using the 
chi-square test with Yate’s correction. Statistical analysis was performed using SPSS® 
software, version 12 (SPSS Inc., Chicago, IL, USA) 

2.4 Artificial neural networks 

ANNs are capable of learning from observed data or examples and under certain conditions 
are able to approximate nonlinear functions with arbitrary precision. The technique was 
originally inspired by perceptions of how the human brain learns and processes information 
and since then has successfully been applied in many different fields, including 
mathematics, engineering, medicine, economics, meteorology, psychology, neurology, and 
many others. Although the predictive power of ANNs is often superior to that of other more 
traditional methods, they are still regarded as black-boxes where it is difficult for the user to 
gain insight into the influence of the independent variables in the prediction process.  While 
ANNs are capable of learning the relationship between the input parameters and the 
controlled and uncontrolled variables, they do not generate information on the causal 
relationship between the input and output patterns.  Several studies are currently underway 
to overcome this problem. 
The structure of ANN usually consists of three layers (Fig. 2). The input layer accepts data 

sets from an external source that constitute inputs to the next layer of neurons. The next 

layer is called the hidden layer because its neuron values are not visible outside the net.  The 

use of one or more hidden layers increases the net’s learning abilities. The final layer is the 

output layer. Each single neuron is connected to the neurons of the previous layer through 

adaptable synaptic weights.  Knowledge is generally stored as distributed patterns of 

activation in weight matrices. 

The key feature of neural networks is that they learn the input/output relationship through 

training. The training data set includes a number of cases, each containing values for a range 
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Fig. 2. The three layers structure of ANN  

of well-matched input and output variables. The weighted connections between neurons in 
each layer are adjusted by a training algorithm to minimize error and provide accurate 
predictions on the training set. The outputs are the dependent variables that the network 
produces for the corresponding input. It is important that all learning data is supplied to the 
network as a data set. Once the input is propagated to the output neuron, this neuron 
compares its activation with the expected training output.  If there is an error, the output 
neuron adjusts the connection weights to compensate the error by going backwards through 
the network. This step by step process is called backpropagation. The backpropagation (BP) 
algorithm and its variants are the most powerful learning algorithms in neural networks. By 
calculating the gradient vector of the error surface, the error gradually declines until all the 
expected outputs are correctly displayed. 
The Neural Network ToolboxTM 6 of the software Matlab® 2008, version 7.6 (MathWorks, 
inc.) was used to develop a three layer feed forward neural network with the default tan-
sigmoid transfer function in the hidden layer and linear transfer function in the output layer 
(Schwarzer et al., Demuth, 2008). The input layer of 24 neurons receives data that are 
processed in the hidden layer (30 neurons) and output layer (1 neuron). The output neuron 
predicts a number between 1 and 0 (goal), representing the event “GVHD yes” (1) or “GVHD 
no” (0), respectively. A cut-off value of 0.5 was established for assigning probability 1 or 0.  
The architecture of ANN is schematized in Fig. 3. Input neurons receive data represented by 
the values of 24 independent variables processed in the hidden layer. The meaning of this 
process is to calculate interconnection weights between variables with the purpose of 
predicting an outcome and to calculate an error value by comparing this output value with the 
known outcome. The ANN attempts to minimize the error by adjusting the weights according 
to a learning algorithm (Linder et al., 2006). For the training procedure, we applied the ‘on-line 
back-propagation’ method on the same 5 sets of 68 patients previously analyzed by LR. 
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The 5 test phases utilized 10 patients randomly extracted from the entire cohort and not 

used in the training phase. A standard error of less than 10-2 was required. Mean sensitivity 

and specificity of the 5 consecutive data sets were determined in the data test and compared 

to LR. Because sensitivity and specificity in the 5 learning tests always resulted to be 100%, 

they were considered not comparable to LR.  

 

 

 

Fig. 3. Architecture of the three-layer artificial neural network. The input layer of 24 neurons 

(independent variables) receives data that are processed in the hidden layer and output 

layer (1 neuron). The output neuron predicts a number between 1 and 0 (goal), representing 

the event “GVHD yes” (1) or “GVHD no” (0), respectively. 

3. Results 

Three-year Kaplan-Meier estimates for the 78 patients studied were 89.7% for survival, 

76.9% for thalassemia-free survival, 11.5% for the cumulative incidence of rejection and 

10.3% for TRM. Nine patients rejected the allograft and 7 died of transplantation-related 

complications (Figure 4).  

Twenty-six patients (33.3%) developed grade II-IV acute GVHD (Figure 5).  

In multivariate analysis, only donor KIR AA haplotypes were independently significantly 

correlated to acute GVHD in our cohort of 78 patients (p=0.037). However, we found a 
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positive trend for donor age (p=0.51), patient heterozygosity (C1/C2) for the HLA-Cw KIR 

ligands (p=0.56) and donor homozygosity (deletion/deletion) for the HLA-G 14-bp 

polymorphism (p=0.57) (Table 2). 

 

 

 

Fig. 4. Kaplan-Meier probabilities of overall survival, thalassemia-free survival, cumulative 

incidence of mortality and rejection in 78 thalassemia patients transplanted from an 

unrelated donor. 

Table 3 shows the prognostic performance of LR and ANN in predicting acute GVHD in 5 

consecutive randomly extracted training and test data sets. Sensitivity and specificity were 

determined in the learning and test data sets of each random extraction. Comparisons 

between LR and ANN on training data sets (5 consecutive extractions each composed of 68 

patients) were not considered since ANN was able to recognize 100% of correct events by 
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means of its peculiar learning algorithm, whereas LR showed a mean value of 88.5% for 

specificity and 36.4% for sensitivity.  

 

 

 

 

 

 

Fig. 5. Kaplan-Meier probabilities of cumulative incidence of acute GVHD in 78 thalassemia 
patients transplanted from an unrelated donor 

In test data sets (5 extractions each composed of 10 patients), the mean specificity of LR was 

80.5% compared to 90.1% of ANN (capability of predicting the absence of acute GVHD in 

patients who did not experience acute GVHD); this difference was not statistically 

significant. The mean sensitivity of LR was 21.7% compared to 83.3% of ANN (capability of 

predicting acute GVHD in patients who developed acute GVHD after HSCT). This 

difference was statistically significant (p<0.001). 
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Variables p value

Patient sex .787 

Patient age .110 

Donor sex .496 

Donor age .051 

Male recipient/female donor .157 

CMV serology, positivity .834 

Pesaro risk class 1 .907 

Pesaro risk class 2 .721 

Pesaro risk class 3 .799 

HCV RNA positivity .955 

Median CD34 cell dose infused .315 

Conditioning regimen with ATG .512 

HLA class I mismatching 1.000 

Presence of patient HLA-11 positivity .067 

HLA-DPB1 nonpermissive mismatch ⇒GVH .510 

Patient KIR ligands C1/C2 .056 

Recipient C1 absent/donor KIR2DS2 present .844 

Recipient C2 absent/donor KIR2DS1 present .127 

Recipient C1 absent/donor KIR2DL2 present .844 

Recipient C1 absent/donor KIR2DL3 present .799 

Recipient C2 absent/donor KIR2DL1 present .098 

Donor homozygosity for KIR A haplotype .037 

Patient HLA-G 14-basepair del/del .116 

Donor HLA-G 14-basepair del/del .057 

Table 2. Multivariate analysis of 24 independent variables and onset of acute GVHD in 78 

thalassemia patients transplanted from an unrelated donor. 

4. Conclusion and future research 

Artificial intelligence (AI) is a field in which computers or software perform complex tasks 
by means of programming techniques or programs called expert systems that allow 
computers to “make decisions” by interpreting data and selecting among alternatives. 
ANNs are considered to be a branch of AI but what distinguishes them from classical AI are 
their learning and adaptive capabilities. ANNs first emerged as a collection of small 
individual interconnected artificial neurons or nodes constructed to mimic the processing 
properties of the biological neurons of the human brain. The information flows through the 
network in one direction, from the input nodes, through the hidden layers, to the output 
nodes.  ANNs operate like a “black box” model, requiring no detailed information about the 
system. In neural net architectures, the connection strengths between nodes are the 
storehouses of knowledge and the learning process is primarily a process of adjusting these 
connection strengths. The network learns by adjusting its weights until it identifies a set of 
weights that produce the correct output for every sample input. ANNs have been applied 
with success in many different sectors and recent years have registered a growing interest 
also in the field of medicine.  
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Acute 
GVHD 

Observed
Cases 

LR 
Expected
cases (%)

ANN 
Expected 
cases (%) 

No 48 43 (89.6) Training
N=68 Yes 20 8 (40) 

n.a.* 

No 6 5 (83.3) 5 (83.3) 

Extraction_1 

Test 
N=10 Yes 4 1 (25) 2 (50) 

No 48 44 (91.7) Training
N=68 Yes 20 6 (30) 

n.a* 

No 6 2 (66.7) 6 (100) 

Extraction_2 

Test 
N=10 Yes 4 2 (50) 4 (100) 

No 45 40 (88.9) Training
N=68 Yes 23 6 (26.1) 

n.a.* 

No 9 3 (66.7) 9 (100) 

Extraction_3 

Test 
N=10 Yes 1 0 (0) 1 (100) 

No 47 41 (87.2) Training
N=68 Yes 21 9 (42.9) 

n.a.* 

No 7 6 (85.7) 5 (71.4) 

Extraction_4 

Test 
N=10 Yes 3 0 (0) 3 (100) 

No 47 40 (85.1) Training
N=68 Yes 21 9 (42.9) 

n.a.* 

No 7 7 (100) 7 (100) 

Extraction_5 

Test 
N=10 Yes 3 1 (33.3) 2 (66.7) 

Training  88.5 n.a.* Specificity % 
(mean) 

No 
aGVHD Test  80.5 90.1 (NS) 

Training  36.4 n.a.* Sensitivity %
(mean) 

YES 
aGVHD Test  21.7 83.3 (p<0.001) 

Table 3. Classification table and correct percentage of acute GVHD prediction for LR and 
ANN in five consecutive random extractions, splitting 78 thalassemia patients into a 
learning data set (68 patients) and a test data set (10 patients);  

*n.a. = not applicable: comparisons between LR and ANN on training data sets were not considered 
since ANN was able to recognize 100% of correct events. 

The process of clinical decision making that surrounds the choice of unrelated HSCT in a 
thalassemia patient is particularly difficult. The life span of patients with thalassemia is 
increasing, mainly attributable to a better control of iron overload.   
HSCT is the only definitive curative approach to thalassemia. When the donor is an HLA-
identical sibling, the probability of disease-free survival is between 80% and 90%. The worst 
results are obtained in the highest-risk category, particularly adult thalassemia patients, and 
in unrelated transplantation. Acute GVHD is the main cause of transplantation-related 
mortality in the setting of unrelated HSCT for thalassemia. Therefore, it becomes of 
fundamental importance to carefully evaluate the risk for the development of aGVHD 
before performing  transplantation.  
Several studies of unrelated HSCT in thalassemia patients have recently investigated a 
relatively large number of variables for their possible influence on the outcome and the 
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onset of acute GVHD. One of our recent reports shows that the HLA-G 14-bp polymorphism 
could be an important predictive factor for aGvHD; the HLA-CwAsn80 and HLA-CwLys80 
molecules expressed by donor/recipient pairs as well as donor homozygosity for KIR 
haplotype A (AA) also seem to have a significant impact on transplantation outcome and 
acute GVHD incidence (Littera et al., 2010). In this study, multivariate analysis confirmed 
the impact of donor KIR haplotype AA on the incidence of acute GVHD (p=0.037). We also 
found a positive trend for donor age (p=0.51), patient heterozygosity (C1/C2), the HLA-Cw 
KIR ligands (p=0.56) and donor homozygosity (deletion/deletion) for the HLA-G 14-bp 
polymorphism (p=0.57). 
 

 

Fig. 6. Researchers are currently involved in the study of several variables that seem to have 
a role in GVHD onset.  Unfortunately, a simple prognostic tool capable of analyzing the 
most relevant predictive variables and predicting GVHD is still missing. ANNs could 
represent this tool, capable of providing us with a more holistic vision of GVHD-
phenomena. 

In the field of medicine, several prognostic models have been developed for the prediction 

of outcome. The complicated clinical scenario of HSCT for chronic non malignant diseases 

would certainly benefit from a prognostic model based on a set of specific variables relevant 

to the development of GVHD. This report compared ANNs to LR in a cohort of 78 

thalassemia patients transplanted from an unrelated donor. When comparing the prognostic 

performance of LR to ANN, the ability of predicting acute GVHD when the patient 

experienced acute GVHD (sensitivity) was 21.7% for LR versus 83.3% for ANN. This 
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difference was statistically significant (p<0.001). Moreover, the mean specificity of LR was 

80.5% compared to 90.1% of ANN (capability of predicting the absence of acute GVHD in 

patients who did not experience acute GVHD) but this difference was not significant. 

The advantage of ANNs can theoretically be explained by their ability to recognize complex  
relationships that possibly exist between independent and dependent variables, a typical 
challenge when dealing with medical data. By contrast, ANNs are considered as “black 
boxes” because of their hidden layer, which remains an obstacle to their acceptance.  
Moreover, ANNs are unable to calculate the weight of a single variable on the outcome, 
while LR determines a relative risk for each variable, building a complex equation of 
outcome prediction. And finally, LR is a widely used statistical method while ANNs are still 
being developed in the medical field.  
There are some limitations to this study: the results are based on a series of information 
obtained from a relatively small, albeit homogeneous group of patients, selected according 
to the diagnosis, clinical characteristics and transplantation procedure.  Moreover, data were 
analyzed retrospectively and could have been biased by the small number of cases assigned 
to the test data set, despite the 5 consecutive random extractions performed to increase this 
number.  Therefore, the results obtained here need to be verified in larger prospective 
studies of transplanted patients.  It should be of major interest to extend the application of 
neural networks to patients transplanted for pathologies other than talassemia and to 
include ulterior clinical parameters.   Studies are currently underway to setup a neural 
network model capable of handling missing data in patient samplings.   
In conclusion, ANN had a better prognostic performance than LR in predicting acute GVHD 
in our cohort of patients.  This result is particularly important if we consider that GVHD is 
the major causative factor for TRM. Nevertheless, LR remains the “gold standard” of 
statistical predicting models in clinical settings.  
A combination of the two approaches so that each method complements the other has the 
potential to significantly improve the clinical decision-making process and the overall 
outcome of HSCT.  
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