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1. Introduction 

This chapter proposal describes some artificial neural network (ANN) neuromodeling 

techniques used in association with powerful optimization tools, such as natural 

optimization algorithms and wavelet transforms, which can be used in a variety of 

applications in Engineering, for example, Electromagnetism (Cruz, 2009), Signal Processing 

(Peixoto et al., 2009b) and Pattern Recognition and Classification (Magalhães et al., 2008). 

The application of ANN models associated with RF/microwave devices (Cruz et al., 2009a, 

2009b; Silva et al., 2010a) and/or pattern recognition (Lopes et al., 2009) becomes usual. In 

this chapter, we present neuromodeling techniques based on one or two hidden layer 

feedforward neural network configurations and modular neural networks − trained with 

efficient algorithms, such as Resilient Backpropagation (RPROP) (Riedmiller & Braun, 1993), 

Levenberg-Marquardt (Hagan & Menhaj, 1999) and other hybrid learning algorithms 

(Magalhães et al., 2008), in order to find the best training algorithm for such investigation, in 

terms of convergence and computational cost. The mathematical formulation and 

implementation details of neural network models, wavelet transforms and natural 

optimization algorithms are also presented. 

Natural optimization algorithms, which are stochastic population-based global search 

methods inspired in nature, such as genetic algorithm (GA) and particle swarm 

optimization (PSO) are effective for optimization problems with a large number of design 

variables and inexpensive cost function evaluation (Kennedy & Eberhart, 1995; R. Haupt & 

S. Haupt, 2004). However, the main computational drawback for optimization of nonlinear 

devices relies on the repetitive evaluation of numerically expensive cost functions (Haupt & 

Werner, 2007; Rahmat-Samii, 2003). Finding a way to shorten the optimization cycle is 

highly desirable. In case of GA, for example, several schemes are available in order to 

improve its performance, such as: the use of fast full-wave methods, micro-genetic 

algorithm, which aims to reduce the population size, and parallel GA using parallel 

computation (R. Haupt & S. Haupt, 2004; Haupt & Werner, 2007). Therefore, this chapter 
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also describes some hybrid EM-optimization methods, using continuous-GA and PSO 

algorithms, blended with multilayer perceptrons (MLP) artificial neural network models. 

These methods are applied to design spatial mesh filters, such as frequency selective 

surfaces (FSSs). Moreover, the MLP model is used for fast and accurate evaluation of cost 

function into continuous GA and PSO simulations, in order to overcome the computational 

requirements associated with full wave numerical simulations. 

Wavelets and artificial neural networks (ANN) have generated enormous interest in recent 

years , both in science and practical applications (Peixoto et al., 2009c). The big advantage of 

using wavelets is the fact of these functions make a local behavior, not only in the frequency 

domain but also in the field space and time. ANNs are capable of learning from a training 

set, which makes it useful in many applications, especially in pattern recognition. The 

purpose of using wavelet transforms is to find an easier way to compress and extract the 

most important features present in images, thereby creating a vector of descriptors that 

should be used to optimize the pattern recognition by a neural network. The array of 

descriptors contains elements whose values accurately describe the image content, and 

should take up less space than a simple pixel by pixel representation. The greatest difficulty 

found in this process is the generation of this vector, where the image content of interest 

should be very well described, in order to show really relevant features. Thus, this chapter 

proposal also shows a way to use a multiresolution technique, such as the wavelet 

transforms, to perform filtering, compression and extraction of image descriptors for a later 

classification by an ANN. 

This chapter is organized in six sections. Section 2 presents the most important 

fundamentals of artificial neural networks and the methodology used for the investigated 

applications. In section 3, artificial neural networks are optimized using wavelet transforms 

for applications in image processing (extraction and compression). Section 4 presents an 

EM-optimization using artificial neural networks and natural optimization algorithms for 

the optimal synthesis of stop-band filters, such as frequency selective surfaces. Section 5 

shows a modular artificial neural network implementation used for pattern recognition and 

classification. Finally, section 6 presents important considerations about the artificial neural 

network models used in association with efficient optimization tools for applications in 

Engineering.    

2. Artificial Neural Networks 

2.1 Fundamentals 

Rosenblatt (1958) perceptron is the most used artificial neuron in neural network 

configurations and is based on the nonlinear model proposed by McCulloch and Pitts 

(1943). In this model, neurons are signal processing units composed by a set of input 

connections (weights), an adder (for summing the input signals, weighted by the respective 

synapses of a neuron, constituting a linear combiner) and an activation function, that can be 

linear or nonlinear, as shown in Fig. 1(a). The input signals are defined as xi, i = 0, 1,…, Ni, 

whose result corresponds to the level of internal activity of a neuron netj, as defined in (1), 

where x0 = +1 is the polarization potential (or bias) of the neurons. The output signal yj is the 

activation function response ϕ(⋅) to the activation potential netj, as shown in (2) (Silva et al., 

2010b). 
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For a feedforward neural network (FNN), the artificial neurons are set into layers. Each 

neuron of a layer is connected to those of the previous layer, as illustrated in Fig. 1(b). Signal 

propagation occurs from input to output layers, passing through the hidden layers of the 

FNN. Hidden neurons represent the input characteristics, while output neurons generate 

the neural network responses (Haykin, 1999). 

Modular artificial neural network is based on a principle commonly used: divided to 

conquer. This concept aims to divide a large and complex task in a set of sub-tasks that are 

easier to be solved. The modular artificial neural network could be defined, in summary, as 

a set of learning machines, also called experts, whose decisions are combined to achieve a 

better answer than the answers achieved individually, that is, a machine with a better 

performance. 

In the past few years, one of the main areas of learning machine is the characterization of 

methods capable to design this kind of machines. There are two types of these machines: 

static and dynamic structures. Modular neural networks, as seen in Fig. 1(c), is a dynamic 

type. The input signal is used by the gating network to design the global response. An 

advantage of modular artificial neural networks, when compared with other neural 

networks, is the learning speed. The machine learning process is accelerated in case of 

problems where it is observed a natural decomposition of data at simple functions. To 

develop the modular machine architecture and to implement the experts, it is usual to apply 

multilayer perceptrons (MLP) neural networks. 

2.2 Methodology 

Generally, the design of a neural network is composed by three main steps: configuration − 

how layers are organized and connected; learning – how information is stored; 

generalization − how neural network produces reasonable outputs for inputs not found in 

the training (Haykin, 1999). In this work, we use feedforward and modular neural networks 

associated with supervised learning to develop neural network models. 

In the computational simulation of supervised learning process, a training algorithm is used 

for the adaptation of neural network synaptic weights. The instantaneous error e(n), as 

defined in (3), represents the difference between the desired response, d(n), and the neural 

network output, z(n), at the iteration n, corresponding to the presentation of the nth training 

pattern [x(n);(d(n)] (Silva et al., 2010b). 

 ( ) ( ) ( )e n z n d n= −  (3) 

Supervised learning can be illustrated through the block diagram of Fig. 2(a) and has as 

objective the minimization of the mean square error E(t), given in (4), where the index t 

represents the number of training epochs (one complete presentation of all training 

examples, n = 1, 2,…, N, where N is the total number of examples, called an epoch) (Silva et 

al., 2010b). 
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Currently, there are several algorithms for the training of neural networks that use different 

optimization techniques (Peixoto et al., 2009a). The most popular training algorithms are 

those derived from backpropagation algorithm (Rumelhart et al., 1986). Among the family 

of backpropagation algorithms, the RPROP shows to be very efficient in the solution of 

complex electromagnetic problems. In this work, the stop criteria are defined in terms of the 

maximum number of epochs and/or the minimum error and the activation function used 

was the sigmoid tangent (Haykin, 1999). 

After training, the neural network is submitted to a test, in order to verify its capability of 

generalizing to new values that do not belong to the training dataset, for example, parts of 

the region of interest where there is not enough knowledge about the modeled 

device/circuit. Therefore, the neural network operates like a “black box” model that is 

illustrated in Fig. 2(b) (Silva et al., 2010b). 

Resilient backpropagation algorithm is a first-order local adaptive learning scheme. The 

basic principle of RPROP is to eliminate the harmful influence of the partial derivative size 

in the weight update. Only the sign of the derivative is considered to indicate the direction 

of the weight update, hpwΔ , as given in (5).  
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 (5) 

 

The second step of RPROP algorithm is to determine the new update-values  Δhp(t). This is 

based on a sign-dependent adaptation process, similar to the learning-rate adaptation 

shown by Jacobs (1988). The changes in the weight size are exclusively determined by a 

weight ‘update-value’, Δhp, as given in (6). 
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Here, the following RPROP parameters were employed: η+ = 1.2 and η− = 0.5. The update-

values were restricted to the range 10-6 ≤ Δhp ≤ 50. 
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Fig. 1. (a) Nonlinear model of an artificial neuron; (b) FNN configuration with two hidden 
layers; (c) Extended modular neural network configuration with K experts 

www.intechopen.com



Artificial Neural Networks 

 

50 

 

Fig. 2. (a) Block diagram of supervised learning; (b) neural network “black box” model 

3. Artificial Neural Networks optimization using wavelet transforms 

This section introduces the main concepts about wavelet transforms and some of their most 
important features used to optimize artificial neural networks: the extraction of 
characteristic information descriptors in order to improve training and pattern classification 
mechanisms. Moreover, a model that can be used to solve various problems related to 
pattern recognition is presented and a neural classifier is implemented to validate the 
importance of such optimization. Transforms are widely used mathematical tools to 
understand and analyze different signal behaviors. The objective of this analysis is to extract 
important information (or features) that can essentially represent the signal from some 
decomposition or transformation performed on it. 

3.1 Wavelet transforms 

Wavelet transforms have generated enormous interest from scientists, resulting in the 
development of applications in various areas, such as computer vision (Wang et al., 2009), 
seismology (Parolai et al., 2008), radar (Masnadi-Shirazi et al., 2009), astronomy (Ottensamer 
et al., 2008), image compression (Bhatia et al., 2009), signal filtering (Vimal et al., 2009), 
system optimization (Pinto, 2009) and many others. In general, the major advantage of using 
wavelet transforms is the possibility of applying it to non-stationary signals, which allows 
the study of function local behaviors, in both frequency and time-scale domains. 

3.1.1 Advantages of use 

Traditional methods of signal analysis based on Fourier transform can determine all the 
frequencies present in the signal, however its relationship to the time domain does not exist. 
To overcome this problem, it was created the Gabor transform (or STFT - Short Time Fourier 
Transform); the main idea of this transform is to introduce a new measure of local frequency 
as the local transformation observed the signal through a narrow window within which the 
signal remains nearly stationary (Oliveira, 2007). The problems in time and frequency 
domain resolution are result of a physical phenomenon known as Heisenberg's uncertainty 
principle (it is impossible to know the exact frequency and time that a signal occurs). This 
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phenomenon is independent of the transformation used (Oliveira, 2007). Therefore, the 
wavelet transform was developed as an alternative to the Gabor transform to solve the 
resolution problem. 
Wavelets are mathematical transformations that separate signals in different components 
and extract each one of them with a resolution apropriated to its corresponding scale. 
According to the transformation characteristics, there is the Continuous Fourier Transform 
(CFT), that can be expressed as: 

 ( )2
( ) ( )

j ft
F w f t e dt

π
+∞

−

−∞

= ∫  (7) 

Knowing the spectrum F(w) of a signal, it is possible to obtain it in time domain, using the 
inverse transform concept, according to (8): 

 ( )21
( ) ( )

2

j ft
f t F w e dw

π

π

+∞
−

−∞

= ∫  (8) 

On the other hand, the Continuous Wavelet Transform (CWT) is given by: 

 ( ) 1
, ( )

t
CWT a f t dt

aa

ττ ψ
+∞

∗

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫  (9) 

and its corresponding inverse can be expressed according to (10): 

 
2

1 1
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∫ ∫  (10) 

where ( )tΨ  is the mother wavelet,  and a are the translation and scale parameters, 

respectively. 

3.1.2 Discrete wavelets 

The continuous wavelet transform is calculated by performing continuous translations and 
scalings of a function over a signal. In practice, this transformation is not feasible because it 
is necessary to make endless translations and scalings, requiring much time, effort and 
computational redundancy. Discrete wavelets were introduced to overcome this problem 
and therefore they are used in this work. They are not translated or scaled continuously but 
in discrete steps, which is achieved from a modification of the continuous wavelet: 

 ,

1
( )s

t
t

ss
τ
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where j and k are integers; 0s  > 1 is a fixed dilation parameter; 0τ  is the translation factor, 
which depends on the dilation factor. 
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Generally, it is chosen s0 = 2 in order to have a sampling frequency called dyadic sampling  

τ0 = 1 is chosen for the temporal sampling, also dyadic This can be shown in (13) (Oliveira, 

2007): 

 ( ), ( ) 2 2j j
j k t t kψ ψ= −  (13) 

When discrete wavelets are used to analyze a signal, the result is a series of wavelet 

coefficients, also called the series of wavelet decomposition (Oliveira, 2007). As a wavelet 

can be viewed as a bandpass filter, the scaled wavelet series can be seen as a set of bandpass 

filters, with a Q factor (set of filters fidelity factor). In practice, there is a discretized wavelet, 

with upper and lower limits for translations and scales. The wavelet discretization, 

associated with the idea of passing the signal through a filter set, results in the well known 

subband coding (Oliveira, 2007). 

3.1.3 Multiresolution analysis 

Mathematical transformations are used in a dataset to obtain additional information not 

available in the primitive data model. For example, it may be necessary to use a 

transformation that detects changes in color tones of a pixel neighborhood and its 

corresponding spatial location, and even that efficiently transposes these changes in a 

multiresolution space (Castleman, 1996). The multiresolution analysis using wavelet 

transforms has become increasingly popular with the release of JPEG-2000 standard (Weeks, 

2007) and consists of a signal processing strategy where it is used a set of specialized filters 

to extract signal information, such as the range of frequencies present in it and their location 

as a function of the signal duration at different resolutions (Castleman, 1996). A brief 

description of the multiresolution analysis enables to display two functions responsible for 

generating the entire wavelet system: the scale function and the primary wavelet (or mother 

wavelet). The term mother comes from the fact that functions with different sizes are used in 

the process of transformation and all of them are originated from a specific or mother 

wavelet. 

Scale function ,j kφ  and the primary wavelets ,j kψ are considered orthogonal to follow the 

condition shown in (14): 

 ( ) ( ), , 0j k j kx x dxφ ψ
+∞

−∞

=∫  (14) 

where j ∈  Z corresponds to the scale function parameter and k ∈  Z corresponds to the 

translation of 
2 j

k
 in relation to the scale function and the primary wavelet, given by j = 0 

and k = 0, respectively. Both scale and wavelet functions are defined in the set of real (R) 
numbers, by scalings and translations of the mentioned functions. The translation parameter 
corresponds to time information in the transform domain and the scaling parameter is the 
process of compression and expansion of the signal (Mallat, 2009). In Fig. 3 is shown an 
example of a scale function and a primary Haar wavelet. 
Therefore, one can say that multiresolution analysis using discrete time wavelets 
corresponds to successive band-pass filtering, through which signals are decomposed at 
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Fig. 3. Scale function and the primary Haar wavelet 

each step, in terms of approximation and details. Fig. 4 illustrates this procedure being 
applied to an input image, where filters are used in successive rows and columns, creating 
the new scales. The reverse process, which performs the sum of subspaces, can reconstruct 
the original image. The dilation equations expressed by h(k) represent the low-pass filters 
that generate the approximations of the original image. However, the translation equations 
g(k) represent the high-pass filters and are responsible for obtaining the details of the 
original image. The decomposition of detail functions consists of details on vertical (high-
pass filter at the rows and low-pass filters at the columns), details on horizontal (low-pass 
filter at the rows and high-pass filters at the columns), details on diagonal (high-pass filter at 
the rows and columns). 
 

 

Fig. 4. Wavelet decomposition 

Then, using an input image with scale of (j+1), with m rows and n columns, it is shown in 

Fig. 5 a two level image decomposition example. 

The original image and its approximations are the lighter areas of the picture. The other 

three remaining subpictures correspond to the three detail functions of the original image. 

In the second step, the lightest part of the picture is decomposed again, generating a new 

image approximation and three new detail subpictures. Thus, a twice smaller scale image 
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Fig. 5. Multiresolution representation of an image 

was generated. Fig. 6 shows an initial image and the degree of refinement obtained with the 
wavelet transform. This form of decompose and reconstruct images can be implemented 
quickly and effectively, because of the use of wavelet transforms. 
 

 

Fig. 6. Multiresolution analysis of an image 

3.2 Wavelet pre-processing 
Pre-processing step aims to improve the performance of the next steps. Then, the refinement 
of these data that will be used for training and classification are of fundamental importance. 
Designing a neural classifier consists of choosing architecture, training algorithm, quality of 
training dataset, among other aspects that must be optimized, in order to reduce the time 
used in network training at the same time that the accuracy of the results is increased. This 
optimization can be performed using wavelet transforms. The block diagram described in 
Fig. 7 shows that the data input used by the neural network may be submitted to a wavelet 
pre-processing or not. Here, both the situations are analyzed in parallel. 
 

 

Fig. 7. Block diagram of a neural network system 
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3.3 Neural network implementation 

A simple but effective neural classifier has been implemented at this step, using the classic 
aspects of this type of project. It is important to know that even robust classifiers as SVM 
(Support Vector Machine) can not function properly without a pre-processing. Fig. 8 shows 
a sample training set used in the experiment. This consists of 50 images containing the 
vowels A, E, I, O, U, with slight 2D dislocation and no noise. 
 

 

Fig. 8. Training dataset model 

Fig. 9 shows a sample of the test dataset (composed by 25 images), where there is the 
inclusion of uncorrelated noise to images up to four levels, aiming to difficult the neural 
network generalization. 
 

 

Fig. 9. Test dataset model 

Here, the neural network configuration used the following parameters: a 
multilayernperceptron neural network; the Levenberg-Marquardt training algorithm; 
number of epochs (150) or Error (10e-5) as stop criteria; two hidden layers and the sigmoid 
tangent as activation function.  
The results are shown in Table 01, according to two categories of pre-processing: without 
wavelet - larger training set (designed pixel by pixel) and higher time to neural network 
learning; with wavelet (Daubechies, level 2) - smaller and more efficient training dataset due 
to the choice of better wavelet descriptors (higher intensity), which provides a faster 
network learning. It is important to observe that the stop criterion was the number of epochs 
while the error was kept around 10e-4 and the generalization result was about 92%, which 
enabled to recognize images of the vowels a, e, i, o, u with small  2D dislocation levels (<5%) 
and noise uncorrelated (<50%). 
 

PP CT 
TT 

(min) 
Error 
(e-04) 

 
GE 

 

Without 
wavelet 

4096x50 4.27 1.8120 94% 

With wavelet 1000x50 1.91 7.4728 
96% 

 

Table 1. Results: PP - Pre-processing; TD – Training Dataset; TT –Time of Training; GE - 
Generalization 

The MLP Neural Network was used efficiently in the presented pattern classification, 

generalizing in both cases above 94%. The extraction process of features was simplified and 

improved by the use of wavelet transform at the pre-processing step in order to optimize all 
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the classification step, since the time of training until the generalization of results. It is worth 

to say that not only the method, but also its ability of reducing the matrix of data, preserving 

the meaning of the information, was of extreme importance to reduce the computational 

cost more than twice. 

4. Hybrid EM-optimization method for optimal design of FSS 

4.1 Frequency selective surfaces 

Frequency selective surface (FSS) (Wu, 1995; Munk, 2000; Campos, 2009; Cruz, 2009) is a 

two-dimensional periodic array of elements (patches or apertures) in a conducting screen, 

which could be either freestanding or supported by dielectric substrates, as shown in Fig. 

10(a). FSSs are used for a variety of applications, such as: hybrid radomes (Cruz et al., 2010), 

polarizers and dichroic reflectors (Munk, 2000), waveguide filters (Monorchio, 2005), 

artificial magnetic conductors (Genovesi et al., 2006) and microwave absorbers (Liu et al., 

2004). To provide high-performance filtering properties at microwave bands, 

electromagnetic engineers have investigated various types of FSS devices: reconfigurable 

FSS screens, fractal self-similar geometries (Cruz et al., 2009a), pixelized FSS screens, 

multilayered FSS structures, as well as FSSs on anisotropic substrates (Silva et al., 2007; 

Campos et al., 2001).  

 

 

Fig. 10. (a) The conventional geometry of a FSS; (b) some patch element shapes; (c) thin 
dipole unit cell configuration 
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There is no closed form solution directly from a given desired frequency response to the 
corresponding FSS (Hwang et al, 1990). The analysis of scattering characteristics from FSS 
devices requires the application of rigorous full-wave techniques. Besides that, due to the 
computational complexity of using a full-wave simulator to evaluate the FSS scattering 
variables, many electromagnetic engineers still use a trial-and-error process until to achieve 
a given design criterion. Obviously, this procedure is very laborious and human dependent. 
Therefore, optimization techniques are required to design practical FSSs with desired filter 
specifications. Some authors have employed neural networks, PSO and GA for FSS design 
and optimization (Cruz et al., 2009b; Silva et al., 2010a; 2010b). 

4.2 Natural optimization algorithms 

Natural optimization algorithms are stochastic population-based global search methods that 
start with an initial population of candidate individuals for an optimal solution. Assuming 
an optimization problem with Nvar input variables and Npop individuals, the population at 
the kth iteration is a matrix P(k)Npop×Nvar of floating-point elements, denoted by k

n,mp , with 
each row corresponding to an individual (Cruz, 2009; Silva et al., 2010b). Under GA and 
PSO jargons, for example, individuals are named chromosomes and particles (or agents), 
respectively. The implementation details of these algorithms are described. 

4.2.1 Continuous Genetic Algorithm 

Continuous genetic algorithm is very similar to the binary-GA but works with floating-point 
variables. Continuous-GA chromosomes are defined by (15), where each one corresponds to 
a vector with Nvar floating-point optimization variables. Each chromosome is evaluated by 
means of its associated cost, which is computed through the cost function E given in (4) 
(Cruz, 2009; Silva et al., 2010b). 

 ,1 ,2 , var( , ) , , , , 1,2, ,k k k
m m m Nchromosome k m p p p m Npop⎡ ⎤= =⎣ ⎦… …  (15) 

 ( )cos ( , ) ( , )t k m E chromosome k m=  (16) 

Based on the cost associated to each chromosome, the population evolves through 
generations with the application of genetic operators, such as: selection, crossover and 
mutation. Fig. 11(a) gives a “big picture” overview of continuous-GA. The mating step 
includes roulette wheel selection presented in (Haupt & Werner, 2007; R. Haupt & S. Haupt, 
2004). Population selection is performed after the Npop chromosomes are ranked from lowest 
to highest costs. Then, the Nkeep most-fit chromosomes are selected to form the mating pool 
and the rest are discarded to make room for the new offspring. Mothers and fathers pair in a 
random fashion through the blending crossover method (R. Haupt & S. Haupt, 2004). Each 
pair produces two offspring that contain traits from each parent. In addition, the parents 
survive to be part of the next generation. After mating, a fraction of chromosomes in the 
population will suffer mutation. Then, the chromosome variable selected for real-value 
mutation is added to a normally distributed random number (Cruz, 2009; Silva et al., 2010b). 

4.2.2 Particle Swarm Optimization  

Particle swarm optimization algorithm was first formulated by Kennedy and Eberhart (1995). 
The thought process behind the algorithm was inspired by the social behavior of animals, such 
as bird flocking or fish schooling. PSO algorithm is similar to continuous-GA since it begins 
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with a random population matrix. Unlike GA, PSO has no evolution operators such as 
crossover and mutation. Each particle moves along the cost surface with an individual 
velocity. A flow chart of the PSO algorithm is shown in Fig. 11(b). The implemented PSO 
algorithm updates the velocities and positions of the particles based on the best local and 
global solutions according to (17) and (18), respectively (Cruz, 2009; Silva et al., 2010b). 

 ( ) ( )( ) ( )1
, 0 , 1 1 , , 2 2 , ,

local bes k global best kk k k k
m n m n m n m n m n m nv C r v r p p r p p+ ⎡ ⎤= + Γ ⋅ ⋅ − + Γ ⋅ ⋅ −⎢ ⎥⎣ ⎦

 (17) 

 1 1
, , ,

k k k
m n m n m np p v+ += +  (18) 

Here, vm,n is the particle velocity, pm,n is the particle variables, r0, r1 and r2 are independent 
uniform random numbers; Γ1 and Γ2 are is the cognitive and social parameters, respectively, 

( )
,

localbest k
m np  and ( )

,
globalbest k
m np  are the best local and global solutions, respectively; C is the 

constriction parameter (Kennedy & Eberhart, 1995). If the best local solution has a cost less 
than the best cost of the current global solution, then the best local solution replaces the best 
global solution. PSO is a very simple natural optimization algorithm, easy to implement and 
with few parameters to adjust. 
 

 

Fig. 11. Flow charts of the natural optimization algorithms: (a) GA; (b) PSO 

4.3 EM-optimization method 
The FSS design methodology, which blends MLP models, GA and PSO algorithms, is 
applied for a thin dipole FSS synthesis, considering electromagnetic parameters such as 
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resonant frequency (fr) and –3dB bandwidth (BW) as a function of the substrate thickness (d) 
and the periodicity of elements (t = tx = ty) corresponding to a square unit cell. The 
dimensions of the thin dipole elements used in this work are shown in Fig. 10(c). The width 
(W) and length (L) of the patch remain the same. The region of interest (or search space) 
defined by desired input variables is a rectangle: 15.24 ≤ t ≤ 19.05 mm and 0.1 ≤ d ≤ 2.0 mm. 
The FSS optimization problem consists of obtaining an optimal solution (d*; t*) in the search 
space that results in a minimal thickness FSS with the desired specifications for resonant 
frequency and bandwidth. After the definition of the FSS filter-type, design input variables 
and search space, a parametric analysis is performed in order to observe the FSS EM-

behavior. At this step, the FSS transmission coefficients at 6.0−14.0 GHz band were obtained 
by means of Method of Moments (MoM) simulations considering substrate anisotropy 
(Campos et al., 2001). Representative EM-datasets must be obtained from the parametric 
analysis for supervised learning of FSS synthesis MLP models.  
The second step consists of modeling fr and BW responses by the synthesis MLP network 
using the conventional neuromodeling technique (Zhang & Gupta, 2000). The third step just 
consists of implementing the natural optimization algorithms for FSS optimal synthesis. In 
particular, the continuous-GA and PSO algorithms were used.  
Through the FSS neuromodeling, we avoid the very intensive application of the CPU for 
MoM analysis in GA and PSO simulations. The ANN model was developed for FSS 
synthesis using one hidden layer MLP configuration. The MLP learning processes were 
carried out using the RPROP training algorithm, with standard parameters (Riedmiller & 
Braun, 1993), in order to minimize the mean square error as defined in (4). In this case, the 
RPROP training is performed until the mean square error reaches a minimum pre-
established value. The synthesis MLP network configuration (composed by three inputs: -1, 
d, t; twenty hidden neurons and two outputs: fr, BW) simultaneously approaches both the 
mappings fr(d,t) and BW(d,t). The MLP configuration is similar to that presented in Fig. 1(b). 
To generate the synthesis training dataset were assumed the vectors given in (19) for the 
design input variables d and t, adding up 72 training examples. 

 
[ ]

[ ]
0.1 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.5 1.6 1.8 2.0   mm

15.24 15.87 16.51 17.14 18.41 19.05 mm

d

tx ty t

⎧ =⎪
⎨ = = =⎪⎩

 (19) 

GA and PSO algorithms were implemented in Matlab® for optimal FSS synthesis. The 
assumed design input variables (substrate thickness and periodicity) were symbolized by 

k
md and k

mt  to take into account the m-th individual at the k-th iteration. Given a desired FSS 
filter specification, (frdesired, BWdesired), the aim is the minimization of the quadratic cost 
function as defined in (20) in terms of absolute percent errors. 

 ( ) ( )
2

, ,
cos ( , ) ,

k k k k
desired m m desired m m

desired desired

fr fr d t BW BW d t
t k m

f BW

⎛ ⎞− −⎜ ⎟= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (20) 

m=1,2,…Npop 

To evaluate the cost function shown in (20), the synthesis MLP approach the EM relations 

( ),k k
r m mf d t  and ( ),k k

m mBW d t . When the population evolves, each individual is constrained to 
the region of interest using (21), where the dummy variable ξ can be replaced by d or t. 
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 ( )( )min maxmin max , ,k k
m mξ ξ ξ ξ=  (21) 

The parameters used for continuous-GA and PSO simulations are shown in Table 2. 
 

Continuous-GA PSO 

initial population = 50 initial population = 25 

maximum iteration number = 200 maximum iteration number
(generations) = 500 

constriction parameter C = 0.8 

crossover probability = 0.9 
cognitive parameter, Γ1 = 2 

mutation rate = 0.01 cognitive parameter, Γ2 = 2 

Table 2. GA and PSO parameters used in the simulations 

 

 

Fig. 12. Tranmission coefficients of the thin dipole FSS: (a) first and (b) second examples 
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In this section, examples that use the hybrid EM-optimization technique for the optimal 
synthesis of FSSs are presented. Random values for the resonant frequency and bandwidth 
were chosen within the search space used for the MoM simulations of the synthesis MLP 
network. The first example corresponds to output data (fr; BW) = (10.5; 1.5) GHz and the 
second example corresponds to output data (fr; BW) = (11.0; 2.5) GHz. 
Figs. 12(a) and 12(b) show the transmission coefficients obtained from MoM, GA and PSO 
simulations for the first and second examples, respectively.  
It is observed that although GA algorithm response is closer to MoM simulations, PSO 
algorithm presents the best solutions of resonant frequency and bandwidth, compared to 
the desired values. Table 3 shows the input/output values obtained from both algorithms. 
The cost surface contours, the initial, intermediate, and final populations, as well as the best 
path for both algorithms can be found in (Silva et al., 2010a; 2010b). One can also find a new 
version of GA algorithm called improved GA in (Cruz, 2009). 
 

First example investigated - (fr; BW) = (10.5; 1.5) GHz 

Results 
Parameters 

GA PSO 

Thickness of the substrate d (mm) 0.7685 0.5401 

Periodicity of elements t (mm) 18.193 15.283 

obtained fr (GHz) 10.7407 10.4917 

obtained BW (GHz) 1.3827 1.8632 

Second example investigated - (fr; BW) = (11.0; 2.5) GHz

Results 
Parameters 

GA PSO 

Thickness of the substrate d (mm) 0.195 1.9457 

Periodicity of elements t (mm) 15.826 19.006 

obtained fr (GHz) 11.4444 11.1121 

obtained BW (GHz) 2.2716 2.2924 

Table 3. Input/output values obtained from GA and PSO algorithms 

5. Hybrid and high processing pattern classification 

In recent years, literature (Dieterrich, 1998) indicated some development directions in 
machine learning which have a highlight in this research scene, including the committee 
machines and also methods for scaling up supervised learning algorithms. Ensembles 
studies, which deal with aggregation among many learning machines on the resolution of 
others complex problems, had an increased effort with empiric data, formalization and new 
methods (Valentini & Masulli, 2002; Kuncheva, 2004; Dimitrakakis & Bengio, 2005). New 
training methods, such as hierarchy and parallel processing, have been developed and 
evaluated in several aplications. 
This section describes a pattern classification problem that deal with electric power line 
systems. The quality of the energy provided by an electric system is one of the greatest 
points of interest for concessionaires and electric energy consumers. Literature presents 
distinct approches in the acquisition, characterization and classification of disturbs that may 
occur in high potential transmission nets. Some pre-processing methods, like wavelet 
transform, are used for characterization of voltage or current signals.  
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Considering high performance and hybrid architectures neural networks as a develoment 
pespective, this work treats a learning algorithm for extended modular neural networks. 
The motivation is the unsatisfactory results in pattern classifications and function 
approximations commonly used (Jacobs et al, 1991). In such cases, modular neural experts 
are composed by a single linear neuron layer and training process is performed through 
associative gaussian mixture models. 
The architecture proposed for solution of this problem uses multilayer preceptrons experts, 

as shown in Fig. 1(c). The modular neural network has K experts, L layers of q neurons with 

linear or nonlinear activation function and bias, as well as a gating network with similar 

architecture. 

5.1 The hybrid algorithm 

The modified modular artificial neural network is trained with a developed algorithm 

adapted according to (Jacobs et al., 1991), for the model of Gaussian mixing associative and 

also the error backpropagation algorithm, by including the calculation of the descend 

gradient. The main steps of this algorithm is in this section; more details can be found in 

(Magalhães et al., 2008). 

In this description, some conventions are utilized: the stucture has MLP experts (indexed by 

i = 1, ..., k) with LEspi layers (indexed by l = 1, ..., LEspi), with q(l)Espi neurons in each layer 

(indexed by j = 1, ..., q(l)Espi). Also, there is a MLP gating network with LPas layers (indexed by 

l = 1, ..., LPas), with q(l)Pas neurons in each layer (indexed by  j = 1, ..., q(l)Pas). The neurons 

activation functions in all networks can be linear or non-linear. The processing algorithm 

can be divided in three steps. 

5.1.1 First step 

The first step of the algorithm is the calculation of a priori probability associated with the i-th 

output layer of the gating network, as expressed by (22): 

 
( )

( )
( )

( )
1

exp ( )
( )

exp ( )

l
i

i K l
ij

u n
g n

u n=

=
∑

 (22) 

where ui(l)(n) is the i-th output neuron of the l-th layer of the gating network and is giving 

by: 

 ( )( ) ( )( ) ( )l ll
i pi piu n v nϕ=  (23) 

where ( )i
piϕ   is the derivative function from the activation potential ( )i

piυ , from the i-th neuron 

of the l-th layer of the gating network, as shown in (24): 

 
( )

( ) ( ) 1

0

( ) ( )
q l Pas

l l l
ipi ij

j

v n a u n−

=
= ∑  (24) 

where aij is the weight associated to the j-th input neuron i of the l-th layer of the gating 
network. 
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5.1.2 Second step 

The second step of the algorithm is responsible for evaluating the values of posteriori 

probabilities hi(n), associated to the i-th output neuron of the output gating network. The 

posteriori probabilities can be expressed as: 

 
( )

( )

2

2

1

1
( )exp( || ( ) ( )|| )

2( )
1

( )exp( || ( ) ( )|| )
2

K
i

K
i

i e

i K

j e
j

g n d n y n
h n

g n d n y n
=

−
−

=
−

−∑
 (25) 

where d(n) is the desired response and yei(k)(n) is the actual response of the i-th neuron of the 

l-th layer of the K-th expert, as shown in (26): 

 ( ) ( ) ( )

( ) ( ) ( )( ) ( ( ))K K K
i i i

l l l

e e e
y n v nϕ=  (26) 

where φ(l) is the activation potential derivative v(l) from the i-th neuron, l-th layer and k-th 

expert. 

5.1.3 Third step 

The principal point in this algorithm is the incrementation in synaptic weights of the 

modular network, that is done with the multiple layers. The synaptic weights from the 

networks experts are updated according to: 

 
( ) ( ) ( ) ( )nynnwnw l

j

l

e

l

je

l

je K
i

K
i

K
i

)1()()()(
)()()( 1 −+=+ ηδ

 
(27)

 

where η is the learning rate, and the gradient ( )

( )
k

i

ei
δ  for the output layer neurons is obtained 

by: 

 ( ) ( ) ( )

( ) '( ) ( )( )( ) ( ) ( ) ( ( ))K K K
i i i

l l ll
i ie e e

n h n e n v nδ ϕ=  (28) 

where ei is the difference between di and ye(K). The gradient for the neurons of hidden layers 

is computed as: 

 

( 1)

( ) ( ) ( ) ( )
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1

( ) ( ( )) ( ) ( )

l Espi

K K K K
i i i i

q
l l l ll

me e e me
m

n v n n w nδ ϕ δ
+

++

=
= ∑  (29) 

The synaptic weight update of the gating network is accomplished according to (30): 

 
( ) ( ) ( ) ( )nynnana l

j

l

p

l

jp

l

jp iii

)1()()()( 1 −+=+ ηδ
 (30) 

where the output layer gradient is obtained by: 

 [ ]( ) '( ) ( )( ) ( ) ( ) ( ( ))l l l
i ipi pi pin h n g n v nδ ϕ= −  (31) 

The error is the difference between hi and gi. The gradient of hidden layers is calculated by: 
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( 1)

( ) '( ) ( ) ( 1)( 1)

1

( ) ( ( ) ( ))

l Pasq
l l l ll

mpi pi mpi
m

n v n a nδ ϕ δ
+

++

=
= ∑  (32) 

Thus, the error backpropagates from the gating network to its hidden layers. 

5.2 The application and results 

As mentioned before, the application implemented was a pattern classification for power 

line disturbances. The implementation methodology, data files and information were the 

same presented in (Medeiros et al., 2007). The application evaluated the performance of an 

intelligent system classifier, in this case, a modular artificial neural network, in electric 

disturbances classification. The approach is performed into four main steps: getting the 

signal, pre-processing, definition and classification of descriptors. 

First, the electrical signals were obtained using the oscillograph network of São Francisco 

Hydro Electric Company (CHESF) and also from the simulation via Transient Alternative 

Program (ATP). The electric network consists of 370 oscillographs operation with a 

sampling rate ranging between 20 and 256 samples/cycle. Here, the signals were collected 

in voltage line levels of 69, 230 and 500 kV, with a rate of 128 samples/cycle during 14 

cycles. The pre-processing stage aimed to suggest descriptors that characterize the signal 

variations when diverted from a certain standard. The third step, which deals with the 

descriptor definitions, is performed by the decomposition of signals from the previous step. 

Once obtained the descriptors, four disturbances classes were defined as:  Voltage Sag, 

Voltage Swell, Harmonics and Transitories.  The last step (classification) is performed by the 

application of classifiers based on modular artificial neural networks. Several different 

architectures were tested, as shown in Table 4. 

 

Net MOD-0 MOD-1 MOD-2 MOD-3 

Number of 
Experts 

3 3 3 3 

Expert 
Architecture 

10:3:4 10:5:4 10:10:4 10:15:4 

Gating 
Architecture 

10:5:4 10:5:4 10:10:4 10:15:4 

Classification (%) 98,46 99,48 100 
100 

 

Table 4. Modular Neural Network Architecture 

The classification step used two datasets, one for the training at computer, and the other for 

validation at multiprocessor on chip, utilizing a FPGA system architecture. The training set 

consisted of 800 patterns formed by 4 output classes. To validate the modular neural 

network, 344 input patterns were used with their respective expected responses, consisting 

only of data obtained from the oscillographs. 

Table 4 shows that the modular neural network with the proposed algorithm reaches a high 

amount of accuracy, approximately 100%. Besides, the utilization of two processors on a 

FPGA system increased the optimization speed-up by 47%, while using four processors, the 

speed-up was increased by 87%. 
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6. Conclusion 

This chapter described some of the neuromodeling methodology used for applications in 
various areas of Engineering, in particular, EM-optimization, Signal Processing and Pattern 
Classification and Recognition. Some original contributions were shown, such as the hybrid 
EM-optimization for optimal design of FSS, the artificial neural network optimization using 
wavelet transforms and the modular neural network used to pattern classification and 
recognition. 
The choice of the activation function of a FNN or a modular neural network strongly 
influences the neural model performance. However, there is not an universal activation 
function that can be used to solve any kind of nonlinear modeling problem. Using 
additional information from the hybrid neural models, as well as sharing the training 
process with modular neural networks, increased the efficiency and therefore the 
generalization ability and model reliability of the resulting neural models.  
The fast and accurate obtained results for all the applications demonstrated the 
improvements with the utilization of these models, and proved that the MLP network 
global approximations are able to generalize. In addition, the idea of blending artificial 
neural networks and natural optimization algorithms, as well as mathematical transforms 
(for EM-optimization and pattern recognition, respectively) shows to be very interesting. 
PSO algorithm needs less individuals and reaches the best solution at a few iterations, 
compared to GA algorithm. The PSO implementation is simpler than GA, since it is not 
required the presence of genetic operatiors such as crossover and mutation. Therefore, PSO 
algorithm has proved to be an interesting EM-optimization tool, with few parameters to 
adjust and low computational cost. 
 The characteristics of ANN models (precision, CPU efficiency and flexibility) can be 
perfectly used in association with these optimization techniques in order to develop 
powerful soft computing tools. A good point in combining these complementary tools is the 
possibilty of multiprocessing application, using parallel processors and computers, not only 
to increase performance and execution speed, but also to enable an improved type of 
competition and collaboration. Each individual tool allows solving the problem or part of 
the problem and, at the same time, they can collaborate one each other to improve the 
solution in a higher level. This is the intelligent computing that this chapter wants to apply 
in efficient engineering. 
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