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Ultrasonic Measurement and Imaging
with Lateral Modulation — Echo,
Tissue Motion and Elasticity

Chikayoshi Sumi
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1. Introduction

It is remarkable that the pathological state of human soft tissues highly correlates with static
and low-frequency mechanical properties, particularly shear elasticity (e.g., Sumi, 2005d).
Accordingly, we have been developing ultrasonic (US)-strain-measurement-based one-
dimensional (1D) (Sumi et al., 1993, 1995a, 2010f; Sumi, 1999b, 2005d, 2008a, 2010d; Sumi &
Matsuzawa, 2007b), 2D (Sumi et al., 1993, 1995a; Sumi, 1999¢c, 2005d, 2006b, 2007g, 2008a,
2008¢, 2010d) and 3D (Sumi, 1999c, 2005d, 2006b, 2007g, 2010d) shear or Young modulus
reconstruction/imaging techniques as differential diagnostic tools for deseases of various in
vivo tissues, such as the breast (Sumi, 1999a, 2005b, 2005d; Sumi & Matsuzawa 2007b; Sumi
et al., 1995b(strain), 1996, 1997, 1999b, 2000b) and liver (Sumi et al., 2001a, 2001b; Sumi,
2005d), i.e., cancerous deseases etc. Other soft tissues such as heart or blood vessel are also
our targets, i.e., myocardinal infraction, atherosclerosis etc. After the first report of the
differential type inverse problem of shear modulus by Sumi (1993, 1995a), immediately the
results obtained on agar phantoms [e.g., Sumi et al., 1994a(strain & shear modulus), 1994b,
1995d], in vivo breasts (e.g., Sumi et al., 1995b, 1996, 1997; Sumi, 1999a, 1999b) and in vivo
liver (e.g., Sumi et al., 2000a, 2001a, 2001b; Sumi 2005d) were reported. For such in vivo
tissues, a suitable combination of simple, minimally invasive therapy techniques such as
chemotherapy, cryotherapy, and thermal therapy (e.g., Sumi, 2005d; Sumi et al., 2001a) etc
with our reconstruction techniques would lead to an innovative, new clinical strategy that
would enable differential diagnosis followed by immediate treatment so that overall
medical expenses could be substantially reduced (Sumi, 2005d). This is because our
developed techniques allow non-invasive confirming of a treatment effectiveness in real-
time, i.e., a degeneration. Our early reports on the interstitial rf/micro wave thermal
coagulation thrapy are Sumi et al., 2000a, 2001b; Sumi, 2005d, etc.

In the respective 1D, 2D and 3D techniques, a 1D (axial) displacement field, and 2D and 3D
displacement vector fields generated by compression, vibration, heart motion, radiation
force etc are measured to obtain 1D (axial) strain, and 2D and 3D strain tensor fields by
partial differentiation. Many other researchers are also developing shear modulus
reconstruction methods (e.g., Kallel & Bertrand, 1996; Plewes et al., 2000; Doyley et al., 2005)
based on various displacement/strain measurement methods, e.g., conventional 1D Doppler
method (Wilson & Robinson, 1982) and 1D autocorrelation method (1D AM) (Kasai et al.,
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1985; Loupas et al., 1995) for blood flow measurement, and 1D (Ophir et al., 1991) or
multidimensional (Yagi & Nakayama, 1988; Bohs & Trahey, 1991) crosscorrelation method
(CCM). Now, various tissue motion and elasticity measurement/imaging have been
performed over the world (see also references in Sumi et al., 2008i). In our case, other low
frequency mechanical properties or quantities can also be reconstrcuted or measured, e.g.,
Poisson’s ratio or Bulk modulus (Sumi, 2006b), density or inertia (Sumi, 2006b,2010d),
viscoelasticity (e.g., Sumi, 2005d; Sumi et al., 2005a) and mechanical source (e.g., Sumi &
Suekane, 2009e). Fluid such as blood is also our target (Sumi & Suekane, 2009¢). These
methods will also be used for a non-destructive evaluation, e.g., food engineering etc.
Previosuly, we reported a multidimensional phase matching method (Sumi et al., 1995d;
Sumi, 1999a, 2008b) together with three novel methods of measuring a multidimensional
displacement vector using a US signal phase, i.e., the multidimensional cross-spectrum phase
gradient method (MCSPGM) (Sumi et al., 1995d; Sumi, 1999a, 2008b), multidimensional
autocorrelation method (MAM) (Sumi, 2002¢, 2005c, 2008b) and multidimensional Doppler
method (MDM) (Sumi, 2002c, 2005c, 2008b). These methods can be applied to the
measurement of the tissue strain tensor for above-mentioned shear modulus reconstruction
(breast, liver, heart etc.), blood flow vector, sonar data, and other target motions. That is, the
multidimensional phase matching allows coping with the decorrelation generated by out-of-
motion from a beam or a 2D frame. Although the CCM requires the numerical interpolation
of the crosscorrelation function using cosine, parabolic functions, etc to yield analogue
displacement vector data, our developed multidimensional methods do not require such
interpolation. That is, these methods require only sampled echo data and then do not suffer
any artifact errors due to such interpolation. Specifically, in MCSPGM (Sumi et al., 1995d;
Sumi, 1999a, 2008b), a local displacement vector is estimated using the local echo phase
characteristics, i.e., from the gradient of the phase of the local cross-spectrum evaluated
from the local region echo data. In contrast, the other two methods use an instantaneous US
phase (Sumi, 2002c, 2005¢, 2008b). By performing the multidimensional phase matching
using a coarsely measured displacement data by a multidimensional cross-correlation
method (MCCM) (Sumi et al., 1995d; Sumi, 1999a, 2008b) or MCSPGM using sampled echo
data spatially thinned out (Sumi, 2005d, 2008b), all the methods enable simultaneous axial,
lateral and elevational displacement measurements. The multidimensional phase matching
method can cope with the decorrelation of local echo data and aliasing that occurs due to a
large displacement, i.e., by searching for corresponding local echo data. Significantly, this
phase matching method improves the measurement accuracies of multidimensional
methods. As shown by simulations (Sumi, 2008b), the accuracies of the multidimensional
displacement vector measurement methods are comparable; however, MAM and MDM
require less computational time (particularly, MDM) than MCSPGM.

Generally, when using such displacement vector measurement methods, the measurement
accuracy of lateral displacement was lower than that of axial displacement (Sumi et al,
1995d; Sumi, 1999a, 1999¢, 2005¢, 2008b; Sumi & Sato, 2007c; Sumi & Ebisawa, 2009a). Even
if the target dominantly moves or becomes deformed in the lateral direction, our
simultaneous measurements using the multidimensional phase matching result in the
accurate measurement of axial displacement (Sumi, 2007f; Sumi et al., 1995b, 1995c). The
multidimensional phase matching method also enabled us the high accuracy manual axial
strain measurement (e.g., for breast, Sumi, 2005b, 2005d; Sumi & Matsuzawa, 2007b; Sumi et
al., 1995b, 1996, 1997, 1999b, 2000b; liver, Sumi et al., 2001a, 2005d; others). By Sumi (1995b),
the manual strain measurement was made possible by using multidimensional rf-echo
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phase matching (cf. the first reports of shear modulus reconstrcution on in vivo beast, Sumi
et al., 1996 and 1997; liver, Sumi et al., 2001b). Over the world, such an axial strain
measurement/imaging by a manual axial compression using a US transducer has been
clinically used. The modality is called as Elastography as named by Ophir (Ophir et al., 1991;
Cespedes et al., 1993; Garra et al., 1997). Although the mesurement accuracy is significantly
lower, some convetional 1D displacement measurement methods are also used instead of
the multidimensional methods (e.g.,, Sumi 1999¢; Sumi & Ebisawa, 2009a), i.e., ones
originally used only for an axial displacement measurement along the axial direction. (e.g.,
Loupas at al., 1995; AM by Yamakawa & Shiina, 2001).

In our case, the measuement of axial strains generated by the axial compression or an
arbitrary mechanical source are used for a multidimensional imaging of 1D reconstrcution
(Sumi et al., 1993, 1995a, 2010f; Sumi, 1999¢c, 2005d, 2008a, 2010d; Sumi & Matsuzawa,
2007b). On the basis of the calculation of an axial strain ratio, several 1D reconstrcution
methods were developed by Sumi. When the measurement accuracy of the axial strain is
low, e.g., during thermal treatment (Sumi, 2005d; Sumi et al., 2001a), being dependent of the
accuracy at each position, our developed spatially-variant reqularization is performed for the
strain measurement (Sumi & Sato, 2008c) or shear modulus reconstrcution (Sumi, 2008e;
Sumi & Itoh, 2010e), i.e., an application of our developd implicit-integration (Sumi, 1998).
That is, the measurement and reconstruction are stabilized to cope with the echo noise and
strain measurement noise, respectively. For a focal lesion, by properly setting a reference
region of shear modulus for the 1D reconsrcution, the 1D reconstruction allows yielding a
higher contrast-to-noise ratio (CNR) than the axial strain (Sumi, 2005d; Sumi & Matsuzawa,
2007b; Sumi et al.,, 2010f). That is, the reference region should be set in the stress-
concentrated or stress weak region in front of or behind the target stiff or soft lesion such
that the reference region extends in the direction orthogonal to that of the dominant tissue
deformation (Sumi, 2005b; Sumi & Matsuzawa, 2007b; Sumi et al., 1995d, 2010f). In addition,
a mechanical source should be realized such that the target tissue deforms dominantly in a
direction that extends in the direction of much shear-modulus varying (e.g. Sumi et al,,
2010f). For the 1D strain measurement/imaging and 1D reconstruction, strain in the
dominat deformation direction generated should be measured (e.g. Sumi & Ebisawa, 2009a).
Moreover, for the practical imaging of 1D reconstruction, although human perception with
respect to gray (negative or positive) scales and color scales must also be considered
together with actual tissue shear modulus distributions, optimal displaying could be
achieved by determining if the relative shear modulus or the inverse of the relative shear
modulus should be imaged on the basis of their CNRs calculated using a stationary statistics
of measured strains in the focal lesion and the surrounding region (Sumi et al., 2010f).
Although the techniques for shear modulus reconstrcution methods including strain tensor
calculations, multidimensional shear modulus reconstructions and the regularizations
mentioned (Sumi, 1998, 2005d, 2006b, 2007g, 2008a, 2008e; Sumi & Sato, 2008c; Sumi & Itoh,
2010e) cannot be reviewed in detail in this chapter due to the limitation of the space, the
important multidimensional phase matching is reviewed later (section 2.1).

However, if the lateral and elevational displacements can be measured with the same degree
of an accuracy as that of the axial displacement, manual strain measurement and shear
modulus reconstruction can be performed without considering the direction of the beam
and target motion or mechanical source with the position (Sumi, 1999c, 2002a, 2002b, 2008a;
Sumi et al., 2007e, 2008f, 2008i). That is, for an arbitrary mechanical source, 3D or 2D
measurement/reconstruction with only attachment of the US transducer enables such
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measurement and reconstruction. Clinically, such a measurement will enable the evaluation
of the elasticity of more various tissues, e.g., under normal motion such as the heart, arm
and leg muscles (during exercise) and even for the deep ROIs such as liver tissues, which are
inaccessible from the body surface and normally deformed by heart motion or pulsation.
Various possible configurations will increase the applications of the tissue motion
measurement and mechanical property reconstrcutions.

For the blood flow vector measurement, a high accuracy displacement vector measurement
had been performed (Jensen, 1998, 2001; Anderson, 1998, 2000) using a lateral oscillating
method obtained by using Fraunhofer approximation (Steinberg, 1976; Goodman, 1996)
together with some conventional 1D displacement measurement methods in respective axial
and lateral directions, i.e.,, ones are originally used only for an axial displacement
measurement along the axial direction. The measurement of blood flow in vessels running
parallel to the surface of the body had been achieved. The method enabled the measurement
of the lateral displacement/velocity that was more accurate than the use of the change in
bandwidth (Newhouse, 1987).

The method falls in a category of the lateral modulation (LM) approach Sumi called (Sumi,
2002c, 2005c, 2005d). The LM was resolved by Sumi as the more simple beamforming that
uses a coherent superimposition of steered, crossed beams (Sumi, 2002a, 2008a, 2008b; Sumi
et al., 2008f, 2008i).

In the field of strain tensor measurement, the LM approach was applied first by Sumi (Sumi,
2004). For our tissue shear modulus reconstruction, to realize comparable high measurement
accuracies of axial, lateral and elevational displacements, lateral and elevational modulation
frequencies had to be significantly increased (Sumi, 2004, 2005c) compared with that
observed in the reported application to the blood flow vector (Jensen, 1998, 2001; Anderson,
1998, 2000) and other tissue strain tensor (Liebgott et al., 2005) measurements (modulation
frequency, 2.5 vs 1 mm-?). This is because the strain tensor is obtained by differentiating the
measured displacement vector components using a differential filter (i.e., a kind of high pass
filter), the displacement vector must be measured with a considerable high accuracy. Deeply
situated tissues must also be considered (e.g., liver). By Sumi (2005¢c, 2008b), a spherical
focusing was obtained as a suitable focusing. Moreover, to increase the measurement
accuracy, only a digital processing was used for obtaining plural multidimensional analytic
signals (Sumi, 2002c, 2005c, 2008b). Moreover, it was confirmed that our developed LM
methods are useful for imaging of the spatial difstribution of US reflectivity, i.e., echo
imaging (Sumi, 2008a; Sumi et al., 2008f, 2008i). That is, a high resolution can be achieved in
lateral and elevational directions as almost the same as that in the axial direction. Thus, it is
expected that LM will lead to a next-generation US diagnosis equipped with various new
modes such as displacement/velocity vector, strain tensor measrements and thier
applications.

Although the LM methods developed by other groups (Jensen, 1998, 2001; Anderson, 1998,
2000; Liebgott, 2005) yield band-unlimited, modulated spectra by using infinite-length
apodization functions (e.g., ringing-expressed by sinc functions), our developed lateral
Gaussian envelope cosine modulation (LGECM) method realizes band-limited, modulated
spectra, i.e., by using a finite length (not ringing) apodization function (Sumi, 2005c, 2008b).
This does not cause aliasing. Moreover, for the blood flow vector measurement (Jensen,
1998, 2001; Anderson, 1998, 2000) and other strain tensor measuement (Liebgott et al., 2005),
the respective measurements of axial and lateral displacements are performed using a
conventional 1D displacement measurement method by realizing point spread functions
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(PSF’s) oscillating only in the lateral direction and only in the axial direction through a
demodulation. Although we also developed a new accurate demodulation method only
using digital signal processing (Sumi, 2010g), all the measurements suffer from the
decorrelation of echo signals due to displacement orthogonal to the oscillation direction
(Sumi, 2008b; Sumi & Shimizu, 2011). However, the highest accuracy in measuring target
motions can be achieved by combined use (Sumi, 2002¢c, 2005c, 2008a, 2008b; Sumi et al.,
2008f, 2008i) of the LM approach and our developed displacement vector measurement
methods that enable simultaneous axial and lateral displacement measurements (Sumi et al.,
1995d, 2002c; Sumi, 1999a, 2008b, 2005c). Not only our developed measurement increases
the measurement accuracy of lateral displacements but also that of axial displacement
(Sumi, 2005¢, 2008b).

Our developed LM can be performed by superimposition of the simultaneously or
successively transmitted/received, plural steered beams or frames with different steering
angles obtained with the multiple transmission method (MTM, Sumi, 2002a, 2005d; Fox,
1978; Techavipoo, 2004). Alternatively, LM can also be realized from a set of received echo
data (Sumi, 2008b; Sumi et al, 2008f, 2008i) using not a classical synthetic aperture but our
previously developed multidirectional synthetic aperture method (MDSAM, e.g., Sumi,
2002a, 2005d; Tanter, 2002). That is, the aperture is synthesized in multidirections after
receiving US signals. Because MDSAM requires less data acquisition time than MTM using
successive US beam transmissions, if the transmitted US energies are sufficient, the
beamforming suffers the less tissue motion artifact. To obtain high intensity transmitted US
signals, a virtual source can be used (Sumi et al., 2010h). However, if tissue motion artifacts
do not occur, MTM yields more accurate measurements. With this type of beamforming,
multiple transducers can also be used (Sumi, 2008b; Sumi et al, 2008f, 2008i), e.g., when
dealing with heart motion due to the existence of the obstacles such as bones. On the
evaluations of statitics of measured strain tensor components and reconstructed relative
shear modulus in a stiff inclusion of an agar phantom, accurate measurements and
reconstructions were obtained (e.g., see Table I in Sumi, 2008f; Table VIII in Sumi, 2008i).
Alternatively, with MTM (Fox, 1978; Sumi, 2002a, 2005d; Techavipoo, 2004) and MDSAM
(Sumi, 2002a, 2008b; Tanter, 2002), only the most accurately measured axial displacements
from the respective beams obtained was used to obtain a displacement vector (i.e., there is
no superimposition of beams). Although 1D measurement methods can also be used (Fox,
1978; Sumi, 2002a, 2005d; Tanter, 2002; Techavipoo, 2004) in place of the multidimensional
measurement methods (Sumi, 2002a, 2008b), the same decorrelation of local echo signals
(mentioned above) occurs due to target displacement in a direction orthogonal to the beams
(Sumi et al., 1995d; Sumi, 2008b). Thus, the 1D measurement methods will result in a lower
measurement accuracy than the corresponding multidimensional measurement methods,
i.e., the 1D cross-spectrum phase gradient method (1D CSPGM) (Sumi et al., 1995d; Sumi,
1999a), conventional 1D AM (Kasai et al., 1985; Loupas et al., 1995), 1D DM (Sumi, 2008b),
and 1D CCM (Ophir et al., 1991). Thus, not conventional 1D axial displacement
measurement methods (e.g., 1D AM) but multidimensional displacement vector
measurement methods should be used. Also for these beamformings, if necessary, separate
plural transducers are also used simultaneously or successively.

However, under conditions in which motion artifacts do not occur, our previous
comparison (Sumi, 2008b) of LM (or coherent superimposition) and non-superimposition
methods by geometrical evaluations clarifies that the LM has the potential to yield more
accurate measurements of axial and lateral displacements with less computational time.
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However, for practical beamforming applications, the echo SNRs from steered beams must
also be considered, i.e., an overly large steered angle makes the echo SNR low (Sumi et al,,
2008i).

Moreover, LGECM method was improved using parabolic functions or Hanning windows
instead of Gaussian functions in the apodization function. Hereafter, the new methods are
respectively referred to as the parabolic modulation (PAM) method or Hanning modulation
(HAM) method (Sumi, 2008a; Sumi et al., 2008i). Particularly, PAM enables decreases in
effective aperture length (i.e.,, channels) and yield more accurate displacement vector
measurements than LGECM. Although the Fourier transform of a parabolic function results
in ringing effects, the new modulation yields no ringing effects in the spectra. PAM also
yields a high spatial resolution in the reflectivity (echo) imaging with a high echo signal-to-
noise ratio (SNR). Thus, we stop using the Fraunhofer approximation for LM. PAM is
obtained on the basis of the a priori knowledge of the differences in the focusing scheme and
shape between the parabolic function, Hanning window and Gaussian function, and the
effects on the decays of the US signals during the propagation. That is, the US energy of the
feet is lost during the US propagation and the main lobe contributes to echo signals, the
mountains in the apodization functions should have a large full width at half maximum
(FWHM) and short feet. Thus, we suceeded in a breakway from the Fraunhofer
approximation (Sumi et al., 2006a).

Usually, for US imaging, US beam-forming parameters such as frequency, bandwidth, pulse
shape, effective aperture size, and apodization function are designed and set appropriately.
In addition, US transducer parameters such as the size and materials of the US array
element used are also set appropriately. In determining such settings, the US properties of
the target are also be considered (e.g., attenuation and scattering). Thus, all parameters are
set appropriately for the consideration of a system that involves the US properties of the
target. Previously, we proposed to set such parameters in order to realize the required PSF
for LM on the basis of optimization theory by using the minimum norm least-squares
estimation method (Sumi et al., 2006a; Sumi, 2007d, 2010a). The better envelope shape of the
PSF than that of the PA is searched for on the basis of the knowledge of the ideal shape of
PSF, ie., having a large FWHM and short feet (e.g., Sumi et al., 2010c). Nonlinear
optimization is also effective to yield such a proper PSF (Sumi et al., 2009c). Although
conventional US beam-forming parameters are usually set on the basis of the experience of
an engineer, our proposed method realizes the best possible beam-former using optimally
determined parameters. Thus, spatial resolution and echo SNR are improved.

Although the optimized parameter can also be used, in this chapeter, PAM and LGECM are
performed because they can be analytically obtained (Sumi et al., 2008i). As mentioned
above, it was confirmed through simulations that when echo SNR is high (SNR ~ 20 dB),
MAM yields a higher accuracy measurement than MDM and vice versa (Sumi, 2008b). Here,
the 2D demonstrations are shown on agar phantom that was statically compressed
dominantly in a lateral direction (Sumi et al., 2008f), displacement of which cannot be
accurately measured by a conventional beamforming. In addition, 2D shear modulus
reconstrcutions are also shown together with strain tensor measurements.

In this chapeter, after reviewing our developed phase matching, PAM and LGECM, and MAM
and MDM (section 2), the images and measurements obtained on an agar phantom are shown
(section 3). Comparisons of the spatial resolution of the US images are made and the accuracies
of the measured displacement vectors and elasticity (i.e., strain, shear modulus) are
determined. Finally, discussions and future problems are provided with conclusions.
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2. Brief reviews

2.1 Phase matching

To cope with the occurrence of decorrelation due to target motion and echo noise, we
proposed the iterative phase matching method (Sumi et al., 1995d, 1999a, 2008b), i.e., the
iterative search method for corresponding local region echo data. The search can be realized
in spatial and spatial frequency domains using the estimate of the displacement vector
obtained by a displacement vector measurement method or using a priori data of
compression/stretching etc., i.e., by shifting echo data in a spatial domain or by multiplying
a complex exponential by echo data in a spatial frequency domain using the estimate. First,
this search method was used to increase the measurement accuracy of MCSPGM (e.g., Sumi
et al., 1995d; Sumi, 1999a) using the estimate obtained by MCSPGM or MCCM. Here, we
note that, strict echo compression/stretching can also be realized in the phase matching by
setting a corresponding echo data in the local region using measured displacements and
strains (Sumi, 2008b), whereas the effectiveness of the local echo compression/stretching is
reported by Srinivasan et al. (2002). In the first phase matching, the estimate obtained at the
adjacent point can be used to reduce the number of iterations of phase matching.

This phase matching method can also be used for MAM and MDM to increase measurement
accuracy (Sumi, 2008b). That is, for MAM, this method enables the increase in the accuracy
of instantaneous phase change and instantaneous spatial frequencies by improving the
correlation of the local complex correlation function, whereas for MDM, this method enables
the increase in their accuracy by increasing that of the temporal derivative in the Taylor
expansion of the instantaneous phase of the complex signal. During the iterative phase
matching, the moving-average width decreases as the local region size of MCSPGM
decreases (Sumi, 1999a). This enables the increase in spatial resolution. Moreover, this
increases the accuracy of strain measurement because the estimation accuracies of the
instantaneous phase change and instantaneous spatial frequencies are improved due to their
being not constant. If there exists no noise in echo data, the moving averaging is not needed
and only phase matching should be performed. LM increases the convergence speed of the
phase matching (Sumi, 2008b).

Thus, various applications of the actual axial strain measurements have been reported using
axial (Cespedes et al., 1993; Garra et al., 1997) and multidimensional (Sumi et al., 1995b)
displacement measurements, e.g., diagnosis of cancers of human in vivo breasts (Cespedes et
al., 1993; Sumi et al., 1995b; Garra et al., 1997) and monitoring various low-invasive treatments
such as interstitial rf/micro wave coagulation therapies of an in vivo liver carcinoma (Sumi et
al., 2000a, 2001a, 2001b, 2005a, Sumi, 2002b, 2005d, 2007a). By Sumi (1995b), the manual strain
measurement was made possible by using multidimensional rf-echo phase matching (Sumi et
al., 1995d). These were achieved without any regularizations nor LMs.

However, reports of actual shear modulus reconstruction using measured strain tensor
distributions are few with the exception of our reports (e.g., Sumi, 2007a, 2008a, 2008e; Sumi
& Sato, 2008c; Sumi & Itoh, 2010e using the regularizations for strain measurement or shear
modulus reconstrcution; Sumi, 2008a; Sumi et al., 2008f, 2008i using LM) and the
reconstruction using a measured axial displacement distribution (e.g., Doyley et al., 2005
using another regularization for Young modulus). Specifically, we reported 2D direct shear
modulus reconstruction using regularized strain tensor measurement (Sumi & Sato, 2008c;
Sumi & Itoh, 2009b) as well as regularized direct 1D shear modulus reconstruction (Sumi,
2008e; Sumi & Itoh, 2010e; Sumi, 2007a) using raw strain tensor measurement. These
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reconstructions were stably performed for agar phantoms by using our developed
regularization, i.e., spatially variant reqularization being dependent of the accuracies at each
position of the measured strain tensor components. Because the measurement accuracy
depends on the direction of the displacement, according to the accuracies of the respective
displacements, they are also properly regularized, i.e., referred to as displacement component-
dependent regularization or directional-dependent regularization (Sumi & Sato, 2008c; Sumi &
Itoh, 2009b). As briefly reviewed in section 1, various 1D reconstructions using the axial
strain were also obtained by Sumi for human in vivo tissues when the targets become
deformed in the axial and lateral directions, respectively. By Sumi, in addition to the report
(2008e), the regularizations were also performed (2005d; 2007a) for the strain measurement
or shear modulus reconstrcution before, during and after the in vivo thermal coagulation
treatment. However, simulations revealed that the 1D reconstrcutions such as strain ratio,
implicit-integration etc lead to the inaccurate value of reconstrcution and geometrical
artifact even if there exists no noise in the axial strain data used (Sumi, 2005d; Sumi &
Matsuzawa, 2007b). Moreover, when the target deforms in the lateral direction, the 1D
reconstruction further decreases the accuracy in reconstrcution (Sumi, 2007f). Moreover, for
the 2D reconstruction, the use of only the regularizations still yields an inaccurate
reconstruction (Sumi & Sato, 2008c; Sumi & Itoh, 2009b). Thus, LM was also used later
(Sumi, 2008a; Sumi et al., 2008£, 20081).

2.2 Complex signals with different single-octant and different single-quadrant spectra
Both the multidimensional autocorrelation method (MAM) and multidimensional Doppler
method (MDM) use the instantaneous US signal phase (Sumi, 2002c, 2005c, 2008b). To
measure a three-dimensional (3D) displacement vector (uy,uy,u;), three or four 3D complex
signals with different single-octant spectra (Fig. 1la reported by Sumi, 2008b) that extend
analytic signals are calculated for respective echo data r1(x,y,z) and rz(x,y,z) obtained before
and after a pulse repetition interval At, i.e., rai(x,y,z) and roi(x,y,z) [i = 1,..3 or 1,..,4]. The
multidimensional complex signal having single-orthant spectra was introduced by Hahn
(1992) [1D complex signal phase and instantaneous frequency are specifically described in a
literature by Bracewell (1986)].

Each 3D complex signal obtained has three instantaneous spatial frequencies, i.e., US
frequency fx, lateral frequency fy and elevational frequency fz. Hereafter, (fx(fyfz) is
referred to as a frequency vector. When lateral and elevational modulations are performed,
fy and fz are respectively the lateral and elevational modulation frequencies, whereas when
lateral and elevational modulations are not performed (i.e., beam-steering is not performed),
fy and fz are respectively yielded by synthesizing the lateral (Sumi 2002a, 2002c; Chen et al.,
2004) and elevational phases (but, the frequencies are low and then the measurement
accuracy is lower than that of LM [Sumi et al., 2010g; Sumi et al., 2010i; 2006c; Sumi &
Shimizu, 20011]). Thus, as described next, an equation regarding with the unknown
displacement vector (uuy,u,) is derived from each pair of complex signals r1.i(x,y,z) and
r2.i(X,y,z) having a same frequency vector (fxfyfz) [i = 1,.,3 or 1,..4], and then the
displacement vector (uuy,u,) can be obtained by simultaneously solving the three or four
independent equations having the independent vectors (fx,fy,fz) as the coefficients. The
three equations can be arbitrary chosen from the four equations. To mitigate the calculation
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errors of the instantaneous phases and frequencies, the least-squares method can also be
used to solve all the four equations simultaneously.

Measuring a 2D displacement vector requires calculating two 2D complex signals with
different single-quadrant spectra (Hahn, 1992) (Fig. 1b reported by Sumi, 2008i) and then
solving two correspondingly derived simultaneous equations.

2.3 LCMs (Lateral Cosine Modulation Methods) using PAM, HAM and LGECM and
optimizations

For respective PAM (Sumi, 2007d, 2008a, Sumi et al., 2008f, 2008i) and LGECM (Sumi, 2005c,
2008a, 2008b; Sumi et al., 2008f, 2008i) using a one-dimensional (1D) linear array-type
transducer (lateral direction, y), the following apodization functions are used for the
transmission or reception of US, i.e.,

Pt fy+ fPCLY P f = f L

-lexpl- . I+ expl- . Q)
and
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The apodization functions are superimpositions of two Gaussian functions and two
parabolic functions. The apodization obtained for 20, 30, 60 and 100 mm depths are shown
in Fig. 2 in the report by Sumi (2008b). HAM is also described by Sumi (2008i). These
apodization functions are obtained using the Fraunhofer approximation such that the
transmitted US energy used are same when realizing the Gaussian-type lateral PSF at a
depth x for US with a wavelength 3, i.e,,

2
exp(-—)cos(27f,y). ()

20,
Here, f, is the lateral modulation frequency and oy corresponds to the lateral beam width
for LGECM. f;, and a are parameters introduced to regulate lateral modulation frequency
and bandwidth, respectively. For comparisons of FWHM and feet length, the Guassian and
parabolic functions that have the same area are shown in Fig. 1c in the report by Sumi et al.

(2008i).

The apodization functions for two-dimensional (2D) modulation (i.e., modulations in two
directions y and z) using a 2D array-type transducer are also obtained for PAM and LGECM
in a similar fashion (Sumi, 2005c; Sumi et al., 2008f, 2008i). According to the type of
transducer (e.g., convex), other arbitrary orthogonal coordinates can also be used. When
steered beams cannot be transmitted symmetrically in a lateral direction due to the existence
of the obstacles such as a bone (for heart, liver etc), the original coordinate can be rotated
such that the steered beams become laterally symmetric. However, our developed
MCSPGM, MAM and MDM can yield measurement results even if the coordinate is not set
in such a way, and the measurement accuracy in a displacement vector will be increased by
the fact that the measurement accuracy of a lateral displacement can be significantly
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improved (Sumi, 2010g; 2010i). Such a rotation also allows the use of our developed
demodulation method with one of conventional 1D displacement measurement methods.
When carrying out PAM, HAM or LGECM, Methods 1 and 2 developed for
transmission/reception focussing are used (Sumi, 2005c, 2007d, 2008a, 2008b; Sumi et al.,
2008i, 2008f). The Methods used for LCM are also reviewed in this section. Both Methods 1 and
2 yield twofold lateral modulation frequency (Sumi, 2004, 2008b) compared with a method
that performs only a receiving modulation, i.e., the method using a non-steered plane wave for
a transmission with a rectangular window, Bingham window, Hanning window or Gaussian
function as the apodization function (Jensen et al., 1998; Anderson, 1998. Also both Methods 1
and 2 enable decreases in effective aperture length (i.e., channels). When using LGECM
method together with Method 1, the following PSF would be realized, i.e.,

exp{—z(ayy/—\/_z)z}os[Zn(ny)y} 4)

Different from Method 2, Method 1 also enables an increase in lateral bandwidth compared
with the method that performs only a receiving modulation. For both methods, a low-
frequency envelope signal must also be removed. By Basarab (2007), a twofold frequency
sine modulation (i.e., not LCM) is carried out. However, the modulation is not appropriate
for US imaging and measurement of displacement. This can be easily understood by
assuming the existence of a point reflection target in the region of interest (ROI).

Method 1: (i) When a point of interest is dealt with, twofold frequency modulation can be
performed using the same lateral modulation apodization (i.e., PAM) and spherical focusing in
transmitting/receiving beam-forming as in conventional beam-forming (Sumi, 2004, 2008b).
For 2D displacement vector measurement, two steered beams are used, whereas for 3D
displacement vector measurement, three or four steered beams are used. These beams can be
simulataneously transmitted. Alternatively, they can be superimposed after transmitting and
receiving the respective beams successively. To obtain the steered beams, mechanical scans can
also be performed. Plural transducers can also be used. When a finite ROI is dealt with,
multiple transmitting modulations may also be useful for so-called multiple transmitting
focusing. (ii) When performing a twofold frequency modulation over a finite RO, the classical
synthesis of an aperture (i.e., a monostatic or multistatic synthetic aperture) can also be carried
out. However, if the target motion is rapid, a motional artifact may occur due to the low US
energy transmitted from an element. In such a case, low-SNR echo modulation may be
achieved. To increase the echo SNR, virtual sources can be used (e.g., Sumi and Uga, 2010h).
By performing a modulation using (i) or (ii), LGECM theoretically yields 2 times as wide a
lateral bandwidth as that yielded by a method that performs only a receiving modulation
(theoretically, the beam width becomes O y/.2). Similarly, when performing other
modulations such as PAM and HAM, an increase in lateral bandwidth is also achieved.
Thus, using the same effective aperture width (i.e., the same number of channels), Method 1
realizes twofold lateral modulation frequency and a wide lateral bandwidth. The same
lateral modulation frequency and lateral bandwidth can also be obtained by using a small
effective aperture width (i.e., fewer channels).

Method 2: When dealing with a finite ROI, transmissions of steered two laterally wide plane
waves that are realized simultaneously or successively with the same steering angles as
those used in the receiving modulation can also be performed, of which apodizations are
also properly performed. Although Method 2 cannot increase the lateral bandwidth, it is
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useful because the measurement accuracies of MCSPGM, MAM, and MDM are more
sensitive to US and modulation frequencies than the axial and lateral bandwidths,
particularly when measuring a rigid motion (Sumi, 2008b). Method 2 realizes a more rapid
echo modulation than Method 1. Thus, Method 2 is also robust against tissue motion during
echo data acquisition. Similarly to Method 1, plural transducers can be used.

The combinations of PAM, HAM, and LGECM with Methods 1 and 2 are examined in
reports by Sumi, 2007d, 2008a; Sumi et al.,, 2008i by simulations and agar phantom
experiments. For all the combinations, by increasing the lateral modulation frequency (i.e.,
steering angles) to some extent, the echo SNR decreases due to improper beam-forming. For
instance, when using a transducer for an agar phantom as that used in section 3, a
modulation with the same frequency as that of US has a low echo SNR. The highest effective
modulation frequency is determined by the US frequency and the transducer (e.g., element
size). For the combinations, the echo SNRs were evaluated using the US echos, PSF values
(see appendicies in reports by Sumi et al., 2008f, 2008i), or PSF energy (i.e., within a
bandwidth). When using MAM for the phantom, the modulations at half the US frequency
enabled accurate measurements of displacement vectors and elasticity, i.e., strain tensor and
shear modulus. In addition, Methods 1 and 2 (i.e., twofold frequency modulations) yielded
higher echo SNRs than the method that performs only receiving modulation, even if the
same modulation frequency was realized by using a large effective aperture size and large
steering angles.

Specifically, the order of echo SNRs obtained was PAM > LGECM when using Method 1
(Sumi, 2007d, 2008a; Sumi et al., 2008i). Moreover, PAM yields a wider lateral bandwidth
than LGECM for the same effective aperture size. HAM yields almost the same results as
LGECM, although the effective aperture size can be substantially decreased. As revealed in
reports by Sumi, 2007d, 2008a, 2008b; Sumi et al., 2008i, compared with spherical focusing
(Sumi, 2004), the use of plane waves decreases the achievable modulation frequency (Sumi,
2008b) and the echo SNR (Sumi, 2007d, 2008a; Sumi et al., 2008i). In addition, the use of
plane waves also makes it difficult to deal with a deeply situated ROI. Thus, Method 1
yielded higher echo SNRs than Method 2 that uses two plane waves for transmission of US.
However, in Method 2, the order of echo SNRs was inverted, i.e., LGECM > PAM (Sumi,
2007d, 2008a; Sumi et al., 2008i). This can be understood by considering the shapes of the
apodization functions. The shape of the parabolic function is more similar to the rectangular
function than to the Gaussian function (i.e., the Gaussian function has long feet, whereas the
parabolic function has a wide main lobe).

To obtain a higher quality US image (i.e., an image with a high echo SNR and high or
uniform spatial resolution) and to realize more accurate measurements of blood vector flow
and elasticity, we have also conducted the determination of optimal beam-forming
parameters as mentioned in section 1 (e.g., Sumi et al, 2006a, 2009¢, 2010c; Sumi, 2007d,
2010a). For the optimization, the beam property of one element must be obtained in
advance, analytically, numerically, or experimentally, as a function of the parameters.
Because the synthesized US beam can be considered as a linear-weighted superimposition of
the beams transmitted widely or received at the respective elements with suitable delays for
focusing, we obtain simultaneous linear equations involving the unknown apodization
function vector x, a matrix A comprising the US beam values transmitted to an ROI from the
respective elements of the US array, and a vector b comprising the designed PSF values in
the ROI (i.e., Ax = b). However, because the independence of the rows of matrix A is low,
the vector x must be determined stably by obtaining the inverse of A using singular-value
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decomposition (SVD: Sumi, 2008d), a weighted minimum-norm least-squares solution
(WMNLSQ: Sumi, 2007d, 2010a), regularization (Sumi, 2007d, 2010a) or nonlinear
optimization (Sumi et al., 2009¢). As far, a new analytic function that is expressed using a
direct current and a power function divided has been obtained as the better PSF (Sumi et al.,
2008g, 2009d, 2010c). The uses of the optimally determined apodization functions are
beyond the scope of this paper.

2.4 MAM and MDM

Both the multidimensional autocorrelation method (MAM) and multidimensional Doppler
method (MDM) use the instantaneous US signal phase (Sumi, 2002c, 2005c, 2008b). To
measure a three-dimensional (3D) displacement vector (uy,uy,u,), three or four 3D complex
signals with different single-octant spectra that extend 1D analytic signal are calculated for
echo data obtained before and after a pulse repetition interval At . The displacement vector
(uxuy,u) is obtained by solving the simultaneous equations (i.e., four or three independent
equations) derived from the complex signals.

In MAM, an equation holds for the phase @ of each autocorrelation signal obtained from a
pair of complex signals, i.e.,

6(0,0,0) + ie(x,y,z)ux + i49(x,y,z)u -+ i@(x,y,z)uz =0. )
ox oy Yoz

Here, 6(0,0,0) equals the phase of the temporally or spatially moving-averaged lag one
autocorrelation of the slow-time-axis signal sampled at the pulse repetition interval At [i.e,,
6(0,0,0) is the moving-averaged instantaneous phase change that occurs during the pulse
repetition interval At ]. Moreover, 0 /0x €, 0 /0y 8, and 0/0z € are the instantaneous
spatial frequencies of the 3D echo signal, i.e., the US frequency fx (instantaneous frequency
of the fast-time-axis signal sampled at the sampling interval of the AD converter), lateral
frequency fy, and elevational frequency fz. The instantaneous spatial frequencies are
estimated from the moving-averaged phase with spatial lags (x,y,z) by finite-difference
approximation or differentiation using a differential filter with a cutoff frequency.

In MDM, an equation holds for the phase 6 of each complex signal, i.e.,

%ﬁ(x,y, Z)At + %H(x,y,z)ux 4 %H(x,y,z)uy -+ %ﬁ(x,y, z)u, =0. (6)

Here, 0 / 0t OAt is the temporally or spatially moving-averaged instantaneous phase change
that occurred during the pulse repetition interval At, and 0/0x 8, 0 /0y 6 and 0 /0z 6
are the instantaneous spatial frequencies of the 3D echo signal. The spatial and temporal
derivatives can be obtained from the temporally or spatially moving-averaged
instantaneous phase using the finite-difference approximation or a differential filter.
0/0t GAt can also be obtained as the phase of the autocorrelation signal. Large
displacements are dealt with by combining MCSPGM or MCCM.

When measuring a 2D displacement vector, two 2D complex signals with different single
quadrant spectra are calculated, and the correspondingly derived simultaneous equations
(i.e., two independent equations) are solved.
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For respective MAM and MDM, by assuming a rigid motion locally, egs. (5) and (6) can also
be made simultaneously in the local region windowed to measure the motion as a local
displacement vector (Sumi, 2002¢c, 2008b). The method obtained falls in a category of a block
matching method such as MCSPGM and MCCM etc, these are respectively referred to as
MAMb and MDMb (Sumi, 2002c, 2010g). However, through the simulations, their
accuracies are significantly lower than those of the corresponding original methods. Then,
these are not used now.

By Sumi (2008b), it was clarified by simulations that, for rigid motions, the order of the
measurement accuracies of the displacement vectors is MAM > MDM for a high echo SNR
and MDM > MAM for a low echo SNR. On deformed agar phantoms, when lateral
modulations were not carried out, the order of the measurement accuracies of axial strains
were the same as that for the high echo SNR (Sumi & Ebisawa, 2009a), whereas when using
LGECM with Method 1, that of strain tensors was also same (Sumi et al., 2008i). Thus,
although decorrelation noise generated due to target deformation also increased echo noise
in the sense that pre- and post-deformation echo data were used, the laterally modulated
echo data obtained by LGECM had a high SNR (Sumi, 2008b). Thus, in section 3, after
showing, for the samely, laterally deformed agar phantom as that of previous reports (Sumi,
2008a, Sumi et al., 2008f, 2008i), US images and the corresponding 2D spectra laterally
modulated with a half US frequency by PAM as well as LGECM using Methods 1 and 2, the
measurement accuracies of MAM and MDM are also compared with each other.

3. Agar phantom experiments using PAM and LGECM with MAM and MDM

We have made a target agar phantom [40 (axial) X 96 (lateral) X 40 (elavational) mm?3]
having a central circular cylindrical inclusion (diameter, 10 mm; depth, 19 mm) with a shear
modulus different from that of the surrounding region, and shear moduli of 2.63 and 0.80 X
106 N/m? in the inclusion and surrounding regions, respectively (Sumi, 2008a, Sumi et al.,
2008f, 2008i). Thus, the relative shear modulus was 3.29. Manually, the phantom was
compressed by 2.0 mm in the lateral direction. The contact surfaces of the transducer and
phantom were separated by immersing them in water in a tank, and a sponge was put
under the phantom to allow the phantom to elongate in the axial direction by lateral
uniform compression from the right-hand side using a large plate as in Case 1 in the
experiments by Sumi (2007f). The left surface was fixed to a wall. A rectangular ROI 13.7
(axial, x) X 13.2 (lateral, y) mm?2 was centered on the inclusion (depths from 12.2 to 25.9
mm). For SA, Compaq Workstation DS20E (833 MHz) was used.

3.1 US imaging

Fig. 1 shows B-mode images for the ROI obtained by square detection for (a) nonmodulation
(i.e., conventional beam-forming), (b) PAM with Method 1, (c) PAM with Method 2, (d)
LGECMM with Method 1, and (e) LGECMM with Methos 2. The nominal frequency of US
used was 7.5 MHz. The lateral modulation frequency was half the nominal frequency, i.e.,
3.75 MHz [wavelengths, 0.408 vs axial 0.204 mm]. The lateral waves can be confirmed in
Figs. 1(b) to 1(e). As shown, the lateral bandwidth of Fig. 1(b) is the largest. This can be
confirmed by the lateral speckle sizes and specular echos (i.e., circled ones). Their lateral
bandwidths can be more clearly compared in their 2D spectra in Figs. 2(a) to 2(e).
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3.2 Elasticity measurement/imaging

Next, 2D shear modulus reconstructions (Sumi, 2005d) were performed together with 2D
strain tensor measurements using the laterally modulated echo data obtained on the agar
phantom (Figs. 1 and 2). For the 2D displacement vector measurement, MAM and MDM
(Sumi, 2002c, 2005¢, 2008b) were used (moving-average window size, 0.54 X 0.55 mm?2). For
the coarse measurement, to prevent MAM and MDM from being subjected to aliasing in the
evaluation of instantaneous phase due to the large lateral displacement (maximum, 2 mm), a
2D CCM was used (local window size, 0.54 X 2.15 mm?). The local region size used was
decreased when using MAM and MDM (Sumi et al., 1995d; Sumi, 1999a). After displacement
vector measurements, 2D strain tensor components were obtained using a differential filter
with a cutoff frequency of 0.89 mm-1. For the 2D reconstruction, the method using a typical
Poisson’s ratio (0.5) was used under a 2D stress condition with regularization (Sumi, 2005d).
Because the phantom was deformed primarily in the lateral direction, the reference region
was set on the right borderline of the ROI. In addition, regularized 1D reconstruction (Sumi,
2005d, Sumi et al., 2007b) was also carried out using the principal lateral strain ¢ yy.

Table 1 shows the means and standard deviations obtained in a central square region having
5.5-mm-long sides in the inclusion for axial, lateral, and shear strains. By comparing the
accuracies obtained by MAM and MDM, the order of echo SNRs is clarified to be the same
as that reported by Sumi (2007d, 2008a, 2008i), i.e., inherent to the used beam-formings. This
result arises because decorrelation noise generated due to the target deformation increases
echo noise monotonically in the sense that pre- and post-deformation echo data are used. As
the echo SNR decreases, the measurement errors in MAM and MDM increase. For instance,
the SDs of the lateral strain ¢ yy measured by MAM are 0.28 (PAM with Method 1), 0.34
(LGECM and Method 1), 0.50 (LGECM and Method 2), and 0.72 (PAM and Method 2). In

Strains a Shear moduli
Methods Axial (ez,) Lateral (ey,) Shear (ey,) 2D 1D (Ratio of €,,)
Parabolic -Method 1, MAM 0.01 -0.20 0.07 3.28 1.95
(0.10) (0.28) (0.22) (0.35) (0.12)
MDM  0.01 -(.18 0.09 3.23 1.94
(0.11) (0.35) (0.34) (0.35) (0.15)
-Method 2, MAM 0.005 -0.20 0.01 2.34 1.45
(0.28) (0.72) (0.66) (0.18) (0.05)
MDM  0.003 -0.20 0.02 2.34 1.64
(0.27) (0.69) (0.64) (0.18)  (0.08)
Gaussian -Method 1, MAM  0.01 022 0.06 3.14 185
(0.13) (0.34) (0.24) (0.32) (0.13)
MDM  0.004 -0.22 0.08 3.17 1.89
(0.14) (0.36) (0.30) (0.33) (0.15)
-Method 2, MAM  0.002 -0.21 0.03 2.60 1.94
(0.21) (0.50) (0.44) (0.22) (0.12)
MDM 0.002 -0.22 0.04 2.63 1.69
(0.21) (0.45) (0.45) (0.22) (0.09)

Table 1. For lateral modulation echo data obtained on agar phantom using listed methods,
means and standard deviations (SDs in parentheses) evaluated for two-dimensional (2D)
strain tensor measurement and 2D shear modulus reconstruction in central 5.5-mm-side
square region of stiff inclusion (relative modulus 3.29). Results for 1D reconstructions
obtained using lateral strain ratio are also shown.
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Lateral direction y [mm]
0.0 5.0 100 132

Axial direction x [mm]

(a) (b) . (c)

(d) ©

Fig. 1. B-mode images obtained using (a) no modulation; lateral cosine modulation (LCM),
i.e.,, PAM with (b) Method 1 and (c) Method 2; LGECMM with (d) Method 1 and (e) Method
2. The specular echos from the same position are circled in the respective images.

the same manner, the order of the measurement accuracies of MAM and MDM became the
same as that obtained in simulations for the rigid motion case (Sumi, 2008b). Specifically, for
the lowest echo SNR obtained by PAM and Method 2, the order of accuracies of strain
measurements is MDM > MAM, although large differences were not detected between their
SDs; for instance, for lateral strain MDM became the same as that obtained in simulations
for the rigid motion case: ¢yy, 0.69 vs 0.72. For other modulations, the order of
measurement accuracies is almost always MAM > MDM. In this case (Sumi, 2008b), the echo
SNR obtained by PAM and Method 2 is low; that obtained by PAM and Method 1 is the
highest of all. For the highest echo SNR, large differences were detected between the SDs;
for example, for lateral strain ¢ yy, 0.28 vs 0.35.

Lateral direction (MHz)
15 3750 375750 375750 375750 37575
Tlr5I " I " "
0

(a) (b) (e) (d) (e)
Fig. 2. 2D spectra for the ROI obtained from laterally modulated rf-echos corresponding to

Figs. 1(a) to (e), i.e., (a) no modulation; lateral cosine modulation (LCM), i.e., PAM with (b)
Method 1 and (c) Method 2; LGECMM with (d) Method 1 and (e) Method 2.

Axial direction (MHz)
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For visual comparison of the measurement accuracies, in Figs. 3 and 4 for the respective
highest and lowest echo SNRs (i.e., PAM and Method 1, and PAM and Method 2), the lateral,
axial, and shear strains ¢ yy, ¢ xx and & xy measured using (a) MAM and (b) MDM are
shown in a linear gray scale together with lateral and axial displacements dy and dx. As
shown, for the highest echo SNR, both displacements dy and dx were stably measured by
MAM [in Fig. 3(a)] and a circular stiff inclusion could be detected from the stably measured
lateral and axial strain images. In the lateral strain image, the upper borderline of the inclusion
was estimated to be quite soft. At the upper borderline of the inclusion, the inclusion and the
surrounding region might be separated. However, in Figs. 3(b), 4(a), and 4(b), the effects due
to the low echo SNRs and inherent to the displacement vector measurement methods can be
visually confirmed in terms of the measured displacements and strains, particularly, in the
lateral strain ¢ yy at the boundary of the circular stiff inclusion.

Next, 2D lateral shear modulus reconstructions are shown for all the combinations of PAM,
LGECM, Methods 1 and 2, and MAM and MDM. The means and SDs of relative shear
moduli obtained in the stiff inclusion are also summarized in Table 1, and for the highest
and lowest echo SNRs, the log-gray-scaled reconstruction images are also shown in Figs.
3(a), 3(b), 4(a) and 4(b). For the highest echo SNR as well as other echo SNRs, the stiff
circular region can be stably detected (LGECM data not shown). However, although for the
highest echo SNR, the relative shear modulus was accurately reconstructed (the evaluated
mean relative shear modulus, 3.28; SD, 0.35), the effects of strain measurement errors on the
shear modulus reconstructions were confirmed, particularly from the mean shear moduli
evaluated in the inclusion (Table 1). With increasing strain measurement error, the mean
shear modulus decreased, i.e., for MAM, 3.28 (PAM and Method 1), 3.14 (LGECM and
Method 1), 2.60 (LGECM and Method 2), 2.34 (PAM and Method 2); however, marked
differences between the results obtained by MAM and MDM were not confirmed in this
experiment, probably because of the proper smoothing achieved by the regularization
(Sumi, 2005d).
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Fig. 4. For the lowest echo SNR obtained using PAM with Method 2 (lateral modulation
frequency, 3.75 MHz), measured by (a) MAM and (b) MDM. See captions of Fig. 3.

Furthermore, because the target phantom was deformed primarily in the lateral direction
(Sumi, 2007f), the lateral 1D reconstruction might yield a wuseful shear modulus
reconstruction, as was the case with the axial 1D reconstruction where the target was
deformed primarily in the axial direction (Sumi, 2005d, 2007f). However, even for the
highest echo SNR, as shown, the shape of the inclusion is not a circle. The phantom was not
deformed horizontally, i.e., not accurately, in the lateral direction. The strains generated
were small in the neighborhood of the lower borderline of the ROI For the highest echo
SNR, the mean relative shear modulus of the inclusion was 1.95 (SD, 0.12). This value lower
than the original value is also affected by an artifact of the 1D reconstruction, i.e., the
dynamic range of stiffness is estimated to be smaller than the original (Sumi, 2005d). For all
the combinations, the means and SDs are shown in Table 1. Almost the same effects caused
by strain measurement errors were confirmed as were confirmed in the 2D reconstructions.

4. Discussions and conclusions

In this report, we reviewed our several trials, searching for the best lateral modulation (i.e.,
coherent superimposition of echo signals) for US imaging with a high lateral resolution and
accurate measurement of displacement vectors such as blood vector flow, a tissue
displacement vector, a strain tensor, a strain rate tensor and an acceleration vector. PAM
and HAM were introduced after LGECM to increase the echo SNR and lateral spatial
resolution and decrease the effective aperture size. Such modulations were obtained on the
basis of our knowledge about US propagation. The energy of the foot is lost during US
propagation, and the main lobe contributes to the echo signals.

In the agar phantom experiment, PAM yielded a high echo SNR and a high lateral spatial
resolution. Moreover, we compared the combinations of modulation methods and
displacement vector measurement methods. Although for PAM, Method 1 yielded a more
accurate 2D displacement vector/2D strain tensor than Method 2, in practical applications for
in vivo tissues, rapid target motion will significantly affect the accuracy of Method 1. Because, a
monostatic SA was used in this study, the echo SNR must be lower than that obtained when a
conventional beam-former is used. In future studies, the limitations of Method 2 will also be
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clarified such as obtaining of a high echo SNR in shorter time. A multistatic SA will also be
reported. However, because large differences were not confirmed between MAM and MDM in
this experiment, the echo data obtained by the monostatic SA had a rather high SNRs (Sumi,
2008b). If we can obtain a higher echo SNR, MAM will be more useful than MDM. Because
MDM requires less calculation time than MAM (Sumi, 2008b), MDM may be better suited for
2D measurements of complex 3D blood flow and tissue motion and the 3D or 2D monitoring
of various thermal treatments (Sumi, 2005d). Multiple transmitting modulations will also be
performed. In future studies, the strain measurement accuracies of MAM and MDM will be
clarified theoretically or through simulations or phantom experiments.

By using lateral deformation in the agar phantom experiment, we also obtained a
meaningful result. The LCMs enable the attachment only of a US transducer to the target
body in order to measure blood vector flow, the tissue strain tensor, and shear modulus
reconstruction. In the axial strain measurement and 1D shear modulus reconstruction using
the strain ratio (e.g., Sumi, 2005d, 2007f; Sumi & Matsuzawa, 2007b), the target must be
compressed or elongated in the axial direction. Otherwise, the principle strain must be
measured by setting the US beam in the direction of the target motion in successive scans
(Sumi, 2010g). However, the LCMs enable freehand measurement and reconstruction in
addition to dealing with uncontrollable target motion due to heart motion or pulsation and
with deeply situated tissue that cannot be accessed from the body surface (e.g., liver and
heart), although for the 2D measurements, a proper frame must be used to remove the out-
of-motion from the frame. Recently, in addition to the reconstruction method used in this
chapter [Method F referred to as in report by Sumi (2010d)], we have developed a shear
modulus reconstruction method E from Methods F [Sumi et al., 1993, 1995a; Sumi, 1999c,
2005d, 2010d] and A to C [Sumi, 2006b, 2007g], which also enables the use of a quasi-
reference shear modulus (quasi-reference value, e.g., unity) in order to obtain an accurate
and unique shear modulus reconstruction in that the reconstruction has no geometrical
artifacts, although the reconstruction has not absolute but relative shear modulus values
(i.e., it depends on the quasi-reference value of shear modulus used) [Sumi, 2010d]. The use
of a quasi-reference shear modulus enables us to deal with such deeply situated tissues. In
Method F, when taking the logarithm of the shear modulus, an absolute or relative shear
modulus reconstruction had been obtained as in this chapter; when not taking the logarithm
and using a quasi-reference shear modulus, similarly an absolute or relative shear modulus
reconstruction can also be obtained (Sumi et al.,, 1995a; Sumi, 2005d). Hereafter, all such
relative reconstructions are referred to as those obtained by Method E (Sumi, 2010d).

In the experiment, accurate strain tensor measurements and shear modulus reconstructions
were achieved, because we used the shear modulus reconstruction method F using a 2D
stress assumption (Sumi, 2005d) and realized such a stress condition approximately. Thus,
strictly speaking, the use of 2D US array will enable perfect measurement and
reconstruction regardless of the direction of the dominant target motion. For tissue elasticity
measurements, 3D shear modulus reconstruction should be performed with 3D
displacement vector measurement. We have already developed six useful 3D shear modulus
reconstruction methods, Methods F (Sumi et al., 1995a; Sumi, 1999c, 2005d, 2010d), A (Sumi,
2006b), B (Sumi, 2006b; 2007g), C (Sumi, 2007g), D (Sumi, 2008a, 2010d) and E (Sumi, 1999c,
2005d, 2010d), in which a finite difference method or a finite element method is properly
used. Such 3D reconstruction can also be carried out in real-time as low-dimensional
reconstruction (e.g., Sumi & Matsuzawa, 2007b) by setting a narrow 3D ROI even if a
personal computer (PC) is used. The comparison of the methods will be reported elsewhere.
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In this chapter, although we applied regularization only to the shear modulus
reconstruction (Method F: Sumi, 2005d), its application to the displacement vector
measurement, ie., displacement component-dependent regularization or directional-
dependent regularization (Sumi & Sato, 2008c; Sumi & Itoh, 2009b) will also be effective in
stabilizing the strain tensor measurements by MAM, MDM, and MCSPGM in addition to
shear modulus reconstruction. In both regularizations, the measured or theoretically
predicted strain tensor variances are used to set the regularization parameters (Sumi & Sato,
2008c; Sumi, 2007a, 2008e; Sumi & Itoh, 2009b, 2010e). With such regularizations, a spatially
varying regularization is also realized. As a result, the reconstructed shape of shear modulus
inhomogeneity will be more improved.

We also referred to the determination of beam-forming parameters using optimization
theory. Although we reported the use of analytic functions such as a parabolic function for
PSF envelope, the better PSF has been obtained (Sumi et al., 2008g, 2009d, 2010c). The best
PSF will also be sought in the same manner as the design of filters and windows. From the
viewpoint of spatial resolution, PSF will be designed in the spatial and frequency domains.
For echo SNR, knowledge of US propagation and decay is also required. By RanganathanIn
& Walker (2003) and Guenther & Walker (2007), for conventional US imaging of a cyst, the
contrast resolution is optimized by using a least squares estimation. In our case, target US
properties such as a frequency-dependent attenuation will also be used in the determination
of PSFs. Such a method of determination will be reported elsewhere together with the
simultaneous determination of multiple parameters. Nonlinear optimization will also be
used to determine a US element size and materials. Such an optimally realized PSF or
laterally modulated PSF should also be used in US harmonic imaging and measurements as
well as in radar (sumi, 2007d). These determinations may also reveal a new aspect of
superresolution imaging by inverse filtering (Sumi et al., 2006a, 2008d, 2009¢c). For instance,
in US imaging, a spatial resolution of less than 3mm is currently required to overcome the
clinical limitations in conventional digital US imaging equipment (Sumi et al., 2008f; Sumi,
2010a).

Thus, an accurate real-time 3D US imaging, 3D tissue motion measurements (3D blood flow
vector, tissue strain tensor, strain tensor rate etc.) and 3D shear modulus and viscoelasticity
reconstructions (Sumi, 2005d, 2007d; Sumi et al., 2005a, 2008f, 2008i, 2009e) using a 2D US
array will also be achieved. That is, the optimal determination of a 1D apodization function
achieved can be easily extended to 2D functions (Sumi, 2008b). LCM makes it possible to
attach an US transducer to the target body in order to achieve the measurements and
reconstructions without considering the direction of the target motion. That is, being
different from the 2D measurement, the LCM permits complete freehand measurements and
reconstructions.

Optimal beamforming (LCM, etc.) can also enable the use of effective high intensity focused
ultrasound (HIFU) with a high lateral resolution (Sumi, 2007d). Although the pulse shape
and length of US must be considered technically, a proper high intensity US can also be
used as a radiation force (ARF) [Bercoff et al., 2004; Dahl et al., 2007] for the imaging of shear
waves or treatments. The use of a suitable receiver for HIFU and ARF will also be effective
for diagnosis, monitoring and treatment (Sumi, 2002a, 2007d). The evaluation of the newly
developed PSFs will also be performed by reconstruction of the mechanical source (e.g.,
Sumi et al., 2009e) or thermal source (e.g., Sumi et al., 2010b) using the proposed differential-
type inverse methods. Thus, beamforming parameter determinations will also be used to
develop a spatially uniform efficient and accurate treatment. A perfect minimum invasive
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treatment will be also realized. Efforts will also be made to determine the high-frequency
components in an apodization function for a very near field. A various in vivo/in situ
microscope can also be realized using LM (e.g., skin: Sumi, 2008h; other applications such as
a cultured cardiac cell: Sumi, 2009e; thermal properties: Sumi, 2010b).
In this chapter, we also reviewed MDSAM, MTM and thier applications (Sumi, 2002a,
2005d, 2008b). When small steering angles must be used, non-superimposition methods are
more accurate than LCM (Sumi, 2008b). However, when realizing the modulation at half the
US frequency as in the agar phantom experiment, the accuracies are almost the same (Sumi
et al., 2008i). If we can achieve a higher lateral modulation frequency by realizing a more
appropriate US transducer, LCM becomes more accurate than the non-superimposition
methods. Moreover, such methods has the same problem as Method 1, and further requires
accurate interpolations of the measured displacements at proper coordinates to evaluate the
strain tensor.

By Sumi (2010g), a new more simple beamforming method was reported, i.e., ASTA referred

to as by abbreviation of “a single steering angle.” In conjunction, we also developed a new

displacement vector measurement methods and lateral displacement measurement methods

(Sumi, 2010g). For non-steered scanning, by rotating a coordinate when performing a

beamforming or after obtaining a beam, a lateral frequncy can also be obtained. This is a

version of ASTA. Thus, for instance, for the original and another version of ASTA, the

application of MAM or MDM to an orthant spectra divided in a frequency domain also
yields an accurate displacement vetor measurement (Sumi, 2010g; Sumi et al., 2010i). Also
low frequency spectra can be disregared to increase a measurement accuracy of
displacement (Sumi, 2010g; Sumi et al., 2010i). Although these methods are beyond the
scope of this chapter, we briefly mention the problems of LM that can be coped with by

ASTA (Sumi, 2010g), i.e.,

1. For a measurement in a 2D or 3D ROI, when a classical synthetic aperture (SA) is used,
the US intensity transmitted from an element is small, which may yield low SNR echo
data.

2. Alternatively, when crossed beams are superimposed, although a large US intensity can
be obtained, time differences between the transmission of the beams can cause
measurement errors, if the displacement occurs during these time differences.

3. If plural beams which have different paths are used, the inhomogeneity of tissue
properties affects beamforming. Specifically, propagation speed affects focusing (i.e.,
the beam-crossing position), whereas attenuation and scattering lead to different
frequencies of the crossed beams for the applications of 1D displacement measurement
methods.

4. At the minimum, more time is required to complete a beamforming than that required
with ASTA. Occasionally, more time is also required to complete a displacement
calculation than is required with ASTA.

5. If obstacles such as bone exist in a superficial region, a deeply situated tissue cannot be
dealt with, because a larger physical aperture is required than for conventional
beamforming.

In contrast, with ASTA, although used for a displacement vector measurement, the number

of available methods may be limited, and being dependent on the measurement method,

only a lateral displacement measurement can be performed, and any of the above concerns,

(1) to (5), will not become a problem, and a simple beamforming increases the number of

applications of displacement measurement.
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Because the highest quality and accuracy of imaging, measurement, and treatment should
be spatially uniform, an optimization will also be performed under conditions in which
transducers have physically finite effective aperture widths and various shapes. Thus,
efforts to develop next-generation US diagnosis/treatment systems wusing proper
beamforming and various methods of computational imaging are currently underway.
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