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1. Introduction

It becomes more important to obtain medical ultrasound images with higher signal-to-noise

ratio (SNR) and higher spatial resolution. In the last decade, tissue harmonic imaging (THI)

and coded excitation to medical ultrasound imaging have been investigated. Coded excitation

can overcome the trade-off between spatial resolution and penetration, which occurs when

using the conventional pulse (Chiao, 2005), (Hu et al., 2001), (Tanabe et al., 2008). It is said

that chirp signal is the most robust code for medical ultrasound image (Misaridis & Jensen,

2005). THI can acquire higher spatial resolution image and has been used in the commercial

medical ultrasound system. A combination of coded excitation and THI (coded THI) has been

investigated (Arshadi et al., 2007), (Hu et al., 2001), (Song et al., 2010), (Tanabe et al., 2010).

As a problem of THI, the frequency bandwidths of the fundamental and the harmonic

components often overlap. The spectral overlap causes degradation of spatial resolution and

the undesirable artifact. For the solution to the problem, only the harmonic component is

extracted by pulse inversion (PI) method. However, if reflectors in the region of interest (ROI)

move even a little, the fundamental components of echos are not cancelled completely. The

intensity of the extracted harmonic components is still much smaller than the intensity of the

residual fundamental component. Hence, the residual fundamental component has a bad

effect on THI.

In sections II through IV, THI, coded excitation, and the combination of them are explained.

In section V, we propose a new method which can extract broader bandwidth of the harmonic

component for coded THI. The feasibility of the method is evaluated with experiments and

simulations, and the expected performance in term of axial resolution and SNR has been

verified.

2. Tissue harmonic imaging

THI has become a more common option for B-mode scanning. THI makes use of the

nonlinearity of the sound propagation in the medium. The equation of a sound velocity c

is expressed as

c = c0 +
1

ρ0c0
(

B

2A
+ 1)p, (1)

1 
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where c0 is a sound velocity at atmospheric pressure, ρ0 is an atmospheric density, B/A

is a nonlinear parameter, and p is a sound pressure. The sound velocity increases at high

acoustic pressures, and decreases at negative high acoustic pressures, and thus, the signal is

distorted, as shown in Fig. 1(a). The harmonic components generate gradually, so that THI

can obtain further region of interest. Additionally, The beamwidth of the harmonic component

is narrower than that of the fundamental component. Therefore, THI can suppress sidelobe

artifacts. However, there is frequency dependent attenuation (FDA) in human body, thus, the

harmonic components attenuate more greatly than the fundamental components. Therefore,

it is said that the intensity of the harmonic component depends on the propagation distance

and the excitation intensity.

The amplitude of the harmonic component is much smaller than that of the fundamental

component, thus, THI suffers from the poor SNR, resulting in limited penetrating depth.
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Fig. 1. THI. (a) Initial signal (solid line) and distorted signal (dash line). (b) Frequency
spectrum of distorted signal.

3. Coded excitation

Next, let me explain coded excitation with linear chirp signal. The linear chirp signal is

defined as a signal which frequency changes linearly, as described below

s(t) = sin[2π( f0 +
B

2T
t)t], for 0 ≤ t ≤ T, (2)

where f0 is a starting frequency, B is a frequency bandwidth, and T is a time duration. An

example of the linear chirp signal and its frequency spectrum are shown in Figs. 2 (b) and 2

(c). To decode the signal, auto-correlation function (ACF) is calculated as

ACF(τ) =
∫

∞

−∞

s(t)s(t − τ)dt, (3)

where τ is a time shift. The ACF and its envelope are shown in Fig. 2(d). The half-bandwidth

of the decoded signal is 1/B [s]. The SNR improvement is determined by the product of the

duration T [s] and the bandwidth B [Hz] of the signal; it is called time-bandwidth product

(TBP). An unmodulated pulse of duration T [s] at a carrier frequency fc (= f0 + B/2) [Hz]

has a frequency bandwidth B = 1/T [Hz] around fc [Hz]. The SNR of the decoded signal is
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TB times higher than the unmodulated pulse. An advantage of chirp signal is to design the

frequency bandwidth within the system properties.
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Fig. 2. Chirp signal with rectangular window. Time duration is 24 µs, and frequency is 2.5−5
MHz. (a) Window shape, (b) time domain, (c) frequency spectrum, and (d) ACF (solid line)
and its envelope (dashed line).

As shown in Fig. 2(d), the rectangular window causes a range sidelobe. The range sidelobe

has a bad effect on imaging. For suppression of the sidelobe, the signal is weighted by a

window function. For example, the Hanning window w1(t) is expressed as

w1(t) = 0.5 − 0.5 cos(2πt/T) for 0 ≤ t ≤ T. (4)

Figure 3 describes a Hanning weighted chirp signal. As shown in Fig. 3(d), the ACF of the

Hanning window doesn’t cause a range sidelobe. However, the half pulse-width is wider than

that of the rectangular window as shown in Figs. 2(d) and 3(d).

It is said that there is a trade-off between the range sidelobe level and the half pulse-width.

As a derived form of the Hanning window, the Hanning window is applied at starting and

ending parts of the signal below

w2(t) =















0.5 − 0.5 cos(πt/(dT)) (0 ≤ t ≤ dT)

1 (dT ≤ t ≤ (1 − d)T)

0.5 − 0.5 cos(π(t − T)/(dT)) ((1 − d)T ≤ t ≤ T),

(5)

where, d is the starting and the ending ratio. Figure 4 describes a chirp signal with the window

in which d is 0.3.

99Tissue Harmonic Imaging with Coded Excitation

www.intechopen.com



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  4  8  12  16  20  24

N
o
r
m
a
l
i
z
e
d
 
a
m
p
l
i
t
u
d
e

Time [µs]

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24

N
o
r
m
a
l
i
z
e
d
 
a
m
p
l
i
t
u
d
e

Time [µs]

(a) (b)

-80

-60

-40

-20

 0

 2  3  4  5

[
d
B
]

Frequency [MHz]

-1

-0.5

 0

 0.5

 1

-4 -2  0  2  4

N
o
r
m
a
l
i
z
e
d
 
A
C
F

Time [µs]

(c) (d)

Fig. 3. Chirp signal with Hanning window. Time duration is 24 µs, and frequency is 2.5−5
MHz. (a) Window shape, (b) time domain, (c) frequency spectrum, and (d) ACF (solid line)
and its envelope (dashed line).
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Fig. 4. Chirp signal with partial Hanning window (d=0.3). Time duration is 24 µs, and
frequency is 2.5−5 MHz. (a) Window shape, (b) time domain, (c) frequency spectrum, and
(d) ACF (solid line) and its envelope (dashed line).
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The window shapes and the ACFs with various d are shown in Figs. 5(a) and 5(b).
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Fig. 5. (a) Window shapes and (b) envelopes of ACFs with various d. Time duration is 24 µs,
and frequency is 2.5−5 MHz.

It is said that the window shape has an influence on the spatial resolution and the sidelobe

level and that there is a trade-off between the spatial resolution and the sidelobe level.

In actual use, after transmission of s(t), an echo signal r(t) is received. To decode the signal,

the cross-correlation function (CCF) is calculated as

CCF(τ) =
∫

∞

0
r(t)s(t − τ)dt. (6)

4. Coded tissue harmonic imaging and spectral overlap consideration

To obtain both sufficient SNR and spatial resolution, a method which combines THI and

coded excitation, has been proposed. When a chirp signal is transmitted into the medium, the

obtained echo has harmonic components. The harmonic component of the chirp is also chirp

because chirp maintains their coded phase relationship in the harmonic domain (Misaridis &

Jensen, 2005). Therefore, the harmonic component can be compressed with a matched filter.

The template signal used in the matched filter for the harmonic component is designed as the

same time duration, and twice as bandwidth as the fundamental component of the chirp as

m(t) = sin[2π(2 f0 +
B

T
t)t]. for 0 ≤ t ≤ T (7)

If the harmonic and the fundamental components are not overlapped in frequency domain,

the harmonic component can be isolated by bandpass filtering (BF) as shown in Fig. 6(a).

However, if the harmonic component overlaps the fundamental component in frequency

domain due to the frequency broadness of the transmitted signal, the overlapped part of the

harmonic component cannot be extracted. Therefore, in the BF, the extracted bandwidth has

to be narrower, and thus, the image quality becomes poor, as shown in Fig. 6(b).

For avoiding the spectral overlap in THI, pulse inversion (PI) method has been used. The

PI transmits two phase-inverted pulses, as shown in Fig. 7. By simply summing two echo

signals, the harmonic component is doubled, and the fundamental component is cancelled, as

shown in Fig. 8. However, if the PI is used for fast moving target such as cardiac valves, phase

decorrelation occurs and the cancellation of the fundamental component cannot be done.
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Fig. 6. Bandpass filter (a) when overlap doesn’t occur and (b) occurs.
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Fig. 7. (a) (b) Transmitted signals of pulse inversion and (c) (d) harmonic components of
received signals.
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In coded THI, there still remains the problem of the spectral overlap, which exists in THI. The

matched filter is designed for the harmonic component. There is a cross-correlation between

the fundamental frequencies of received echo and the second harmonic matched filter. As a

result, an undesirable peak occurs at different time from the time of arrival.

By suppressing the bandwidth to avoid the spectral overlap, the problem does not occur as

shown in Fig. 6(b), but the spatial resolution becomes worse. As mentioned above, we can of

course also apply the PI, but the method is susceptible to the target motion.

In this study, a novel harmonic isolation method is proposed, and the impact of spectral

overlap is examined through simulations and experiments.

5. Method

5.1 Principle

In this section, we explain the proposed method. The method uses multi chirp signals. The

spectrum of the each signal is designed for not overlapping between the fundamental and

harmonic components. The each chirp signal is transmitted separately, and only the harmonic

component of the echo signal can be extracted by the bandpass filter simply. Consequently,

decoding with the isolated harmonic components, high spatial resolution signal with high

SNR can be obtained.

5.2 Coding process

When the number of excitations is defined as N, the ith chirp signal si(t) (i = 1, 2, ..., N) is

expressed as

si(t) = α(t) sin{2π[ fi +
B

2T
· t] · t}, (0 ≤ t ≤ T/N), (8)

fi = f0 +
B(i − 1)

N
, (9)

where α(t) is the amplitude modulation, fi is the ith starting frequency, B/N is the bandwidth

of each shot, T/N is the time duration of each shot.
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5.3 Matched filter and decoding process

After transmission, N echo signals are received. The harmonic component of the each echo

signal is separated from the fundamental component. Therefore, it is easy to isolate the

harmonic component by bandpass filtering.

For decoding with the harmonic components, the each matched filter mi(t) has a same time

duration and a twice frequency bandwidth as the transmitted signal.

mi(t) = α(t) sin 2π[2 fi +
B

T
t]t, (0 ≤ t ≤ T/N). (10)

The echo signals ri(t)i=1,2,...,N are decoded bellow

CCF(τ) =
N

∑
i=1

[
∫ ∞

0
ri(t)mi(t − τ)dt]. (11)

The TBP of the decoded signal is assumed as TB below

(T/N × N)× (B/N × N) = TB. (12)

6. Experiments and simulations

6.1 Experimental procedure

To evaluate the proposed method, in vitro experiments are conducted. The stainless steel

block is placed in a water tank. The signal is transmitted by a transducer (KB-AEROTECH

MLB50DL, the center frequency is 5 MHz). Figure 9 describes the experimental circumstance.

In the proposed method, N is 2, the frequencies of the proposal are 2.5−3.7 MHz and 3.6−5

MHz, the time duration 13.5 µs, each 3 µs of the start and the end of the signal is half of the

Hanning window (d = 3/13.5)..

For comparison, conventional coded THI method is also used. The frequency of the

conventional type is 2.5−5 MHz, time duration 24 µs, and each 3 µs of start and end of the

signal is half of the Hanning window (d = 0.125). The time duration of conventional coded

THI is adjusted as sum of two signals of the proposed method. Figures 10, 11(a) and (b)

describe the transmitted signals.

6.2 Axial resolution

The received echo signals are shown in Figs. 12(a), 13(a) and 13(b). As shown in Fig. 12(b),

in conventional coded THI, the harmonic component is overlapped with the fundamental

component at −30 dB. While, as shown in Fig. 14, in proposal, the each harmonic component

is overlapped with the fundamental component at approximately −55 dB and −60 dB.

Therefore, it is obvious that the proposed method can obtain the harmonic component more

easily than the conventional method.

Subsequently, envelopes of the CCFs are shown in Figs. 15 and 16. In Figs. 15 and 16, the solid

and the dashed lines describe the CCF using the fundamental and the harmonic components,

respectively. Fig. 15 (b) is a part at 86−90 µs of Fig. 15(a). As shown in Fig. 15(b), it is

shown that the CCF of the harmonic component is narrower than that of the fundamental

component. However, in conventional coded THI, it is shown that the CCF with the harmonic

component has an artifact at approximately 110 µs, as shown in Fig. 15(a). The artifact is the
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Fig. 9. Experimental circumstance

cross-correlation between the fundamental component of the echo signal and the harmonic

matched filter. The CCF of the proposal, there is no artifact such as the conventional THI, and

the CCFs of the fundamental and the harmonic components have the same axial resolution as

that of the conventional THI.
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Fig. 10. Transmitted signal of conventional coded THI.

6.3 SNR

To examine the SNR of the proposed method, the decibel representations of the envelopes

of the CCFs in conventional coded THI are shown in Figs. 17(a) and (b), and those of
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Fig. 11. Transmitted signals of proposed coded THI. (a)1st and (b)2nd shots.
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Fig. 12. Echo signal of conventional coded THI in (a)time domain and (b)frequency domain.
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Fig. 13. Echo signals of proposed coded THI in time domain. (a)1st and (b)2nd shots.
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Fig. 14. Echo signals of proposed coded THI in frequency domain. (a)1st and (b)2nd shots.
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Fig. 15. Envelope of CCF of conventional coded THI at (a)85-135 µs and (b)86-90 µs.
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Fig. 16. Envelope of CCF of proposed coded THI at (a)85-135 µs and (b)86-90 µs.
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proposed method are shown in Figs. 18(a) and (b). As compared with conventional coded

THI, excepting the artifact at approximately 110 µs, it is shown that the proposed method can

obtain almost the same SNR.
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Fig. 17. SNR of conventional coded THI. CCF with (a)fundamental and (b)harmonic
components.
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Fig. 18. SNR of proposed coded THI. CCF with (a)fundamental and (b)harmonic
components.

6.4 Tissue motion effects

The robustness of the proposal method against tissue motion is evaluated through FEM

simulator PZFlex (Weidlinger Associates, Inc.). In a water tank, a point sound source is

excited, and monitored from 6 cm away. In proposal, the number of shots N is 2, the

each time duration is 20 µs, and the each frequency is 2−3.8, and 3.2−5 MHz, separately.

For comparison, the pulse inversion method is also evaluated. In the PI method, the each

transmitted signal is 2−5 MHz and 20 µs. Time difference ξ between two shots is caused by

tissue motion. In this study, the Doppler shift is ignored, and the time difference ξ is given as

time shift artificially.

The received signals are shown in Figs. 19 and 20. When ξ=0 µs, as shown in Figs.

21(a),the fundamental components are cancelled completely, and the CCF can be conducted,
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as shown in Figs. 21(a) and (b). When ξ=0.05 µs, as shown in Figs. 22(a), the fundamental

components are not cancelled and and the spectral overlap occurs. As described in Fig. 22(b),

the cross-correlation between the fundamental component and the harmonic matched filter

occurs.

Figured 23 and 24 show the results of the proposed method. When ξ=0 µs, as shown in Fig.

23(b), the half pulse-width is the same as that of the PI. When ξ=0.05 µs, as shown in Fig.

24(b), the half-width of CCF is wider than that when ξ=0 µs, however, the cross-correlation

like the PI does not occur.
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Fig. 19. Received signals of conventional coded THI with PI. (a)1st and (b)2nd shots.
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Fig. 20. Received signals of proposed coded THI. (a)1st and (b)2nd shots.

7. Conclusion

In this study, we proposed a new method which can avoid the occurrence of the spectral

overlap. From the experimental results, it was shown that the proposed method can extract

harmonic component. In simulations, it was shown that the proposed method can suppress

the tissue motion effects compared with the PI.

This study is assumed that the imaging target has the static aspect. Although the Doppler shift

was ignored in this study, the proposed method is still valid if the target moves at the constant

speed. In future work, we will consider a situation that the target moves at an accelerating

pace.
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Fig. 21. Received signals of conventional coded THI with PI when ξ = 0µs. (a) Frequency
spectrum and (b) CCF.

-120

-100

-80

-60

-40

-20

 0

 1  2  3  4  5  6  7  8  9  10

S
p
e
c
t
r
u
m
 
[
d
B
]

Frequency [MHz]

Time shift:49.84e-09s

 0

 0.2

 0.4

 0.6

 0.8

 1

 30  35  40  45  50  55

N
o
r
m
a
l
i
z
e
d
 
C
C
F

Time [µs]

Time shift:49.84e-09s

(a) (b)

Fig. 22. Received signals of conventional coded THI with PI when ξ = 0.05µs. (a) Frequency
spectrum and (b) CCF.
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Fig. 23. Received signals of proposed coded THI when ξ = 0µs. (a) Frequency spectrum and
(b) CCF.

110 Ultrasound Imaging

www.intechopen.com



-100

-80

-60

-40

-20

 0

 1  2  3  4  5  6  7  8  9  10

S
p
e
c
t
r
u
m
 
[
d
B
]

Frequency [MHz]

Time shift:49.84e-09s

 0

 0.2

 0.4

 0.6

 0.8

 1

 30  35  40  45  50  55

N
o
r
m
a
l
i
z
e
d
 
C
C
F

Time [µs]

Time shift:49.84e-09s

(a) (b)

Fig. 24. Received signals of proposed coded THI when ξ = 0.05µs. (a) Frequency spectrum
and (b) CCF.
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