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1. Introduction      

Global warming is one of the most serious enviromental problems facing the world 
community today. It is typified by increasing the average temperature of Earth's surface and 
extremes of weather both hot and cold. Therefore, implementing a smart and renewable 
energies such as wind power, photo voltaic etc are expected to deeply reduce heat-trapping 
emissions. Moreover, wind power is expected to be economically attractive when the wind 
speed of the proposed site is considerable for electrical generation and electric energy is not 
easily available from the grid (Ackermann, 2005). This situation is usually found on islands 
and/or in remote localities. However, wind power is intermittent due to worst case weather 
conditions such as an extended period of overcast skies or when there is no wind for several 
weeks. As a result, wind power generation is variable and unpredictable.  
The hybrid wind power with diesel generation has been suggested (Hunter, 1994) and 
(Lipman, 1989) to handle the problem above. A hybrid wind diesel system is very reliable 
because the diesel acts as a cushion to take care of variation in wind speed and would 
always maintain an average power equal to the set point. However, in addition to the 
unsteady nature of wind, another serious problem faced by the isolated power generation is 
the frequent change in load demands. This may cause large and severe oscillation of power. 
The fluctuation of output power of such renewable sources may cause a serious problem of 
frequency and voltage fluctuation of the grid, especially, in the case of isolated microgrid, 
which is the a small power supply network consisting of some renewable sources and loads. 
In the worst case, the system may lose stability if the system frequency can not be 
maintained in the acceptable range.  
Control schemes to enhance stability in a hybrid wind – diesel power system have been 
proposed by much researchers in the previous work. The programmed pitch controller (PPC) 
in the wind side can be expected to be a cost-effective device for reducing frequency deviation 
(Bhatti et. al ,1997) and (Das et. al, 1999). Nevertheless, under the sudden change of load 
demands and random wind power input, the pitch controller of the wind side and the 
governor of the diesel side may no longer be able to effectively control the system frequency 
due to theirs slow response. To overcome this problem, an Energy Storage (ES), which is able 
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to supply and absorb active power rapidly, has been highly expected as one of the most 
effective controller of system frequency (Tripathy et. al. 1997) and (Tripathy et. al. 1997).  
In this chapter, Superconducting Magnetic Energy Storage (SMES) is used as Energy Storage. 
It is able to compensate the fluctuation of wind power generation. The SMES unit is a device 
that stores energy in the magnetic field generated by the direct currents flowing through a 
superconducting coil. Since energy is stored as a circulating current, energy can be drawn from 
the SMES unit with almost instantaneous response with energy stored or delivered over 
periods ranging from a fraction of a second to several hours (Ribeiro et.al, 2001). Because direct 
current flows with negligible losses in superconductors, the SMES unit can be used for small 
and large scale energy storage and rapid charge/discharge applications. The SMES system 
consists of a large superconducting coil at the cryogenic temperature. The coil is kept at 
cryogenic (superconductive) temperature by a refrigeration system designed to meet the 
superconducting properties of the special materials used to fabricate the magnetic coil. A 
power conversion/conditioning system connects the SMES unit to an ac power system, which 
has an inverter that converts the dc output of the storage device to ac during discharge and the 
ac to dc for recharging the storage device (Schainker, 2004). 
The SMES systems have several advantages. The SMES coil has the ability to release large 
quantities of power within a fraction of a cycle, and then fully recharge in just minutes. The 
SMES unit can store and discharge DC power at efficiencies of 98% or more and switch 
between charging and discharging within 17 milliseconds. This quick, high-power response 
is very efficient and economical. The SMES manufacturers cite controllability, reliability and 
no degradation in performance over the life of the system as prime advantages of SMES 
systems. The estimated life of a typical system is at least 20 years (Schainker, 2004).  
In power system, the SMES is capable of supplying both active and reactive powers 
simultaneously and quickly. Thus, it is able to enhance the power system stability and 
reliability dramatically (Jiang & Chu, 2001) and (Simo& Kamwa, 1995). Primarily, the SMES 
unit was aimed to store energy during the off-peak load period and release it in the peak 
load period. It has been shown that the SMES is able to supply the active and reactive power 
simultaneously and damp the oscillations in an power system (Simo& Kamwa, 1995) and 
(Wu & Lee, 1993). In fact, the SMES can also be used as a PSS, if the control scheme is 
suitably designed (maschowski & Nelles, 1992). Besides, the applications of the SMES also 
include load regulation, transmission stabilization, uninterruptible power supply, power 
compensation, voltage control and improving customer power quality, etc. (Buckles & 
Hassenzahl, 2000). Moreover, the SMES also has been successfully applied to solve many 
problems in power systems such as an improvement of power system dynamics (Rabbani 
et.al., 1998) and (Devotta & Rabbani,2000), a frequency control in interconnected power 
systems (tripathy,1997) and (Ngamroo,2005), an improvement of power quality (Chu et.al. 
2001), a stabilization of sub-synchronous oscillation in the turbine-generator (Devotta et.al. 
1999), a load leveling (Abdelsalam et.al. 1987) etc.  
Several design methods to design SMES have been successfully proposed, such as a 
proportional control (Banerjee et.al. 1990), a digital control (Tripathy & Juengst, 1997), an 
adaptive control (Tripathy et.al. 1997), a neural network (Demiroren et.al. 2003) and a fuzzy 
control (Demiroren & Yesil 2004), etc. Despite the potential of modern control techniques 
with different structures, power system utilities still prefer the fixed structure controller. The 
reasons behind that might be the ease of on-line tuning and the lack of the assurance of 
stability related to some adaptive or variable structure techniques. On the other hand, 
various generating and loading conditions, wind power fluctuations, variation of system 
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parameters and system nonlinearities etc., result in system uncertainties. The SMES 
controllers in these works have been designed without considering system uncertainties. 
The robust stability of resulted SMES controllers against uncertainties cannot be guaranteed. 
They may fail to operate and stabilize the power system. 

To enhance the robustness, many research works have been successfully applied robust 

control theories to design of PSS and damping controllers of flexible AC transmission 

systems (FACTS) devices. In (Djukanovic et.al. 1999) and (Yu et.al. 2001), the structured 

singular value has been applied to design robust PSS and static var compensator (SVC), 

respectively. In (Zhu et.al. 2003) and (Rahim & Kandlawala, 2004), the H∞ control approach 

has been used to design robust PSS and FACTS devices. The presented robust controllers 

above provide satisfactory effects on damping of power system oscillations. Nevertheless, 

selection of weighting functions becomes an inevitable problem that is difficult to solve. 

Furthermore, an order of designed controller depends on that of the system. This leads to 

the complex structure controllers. In (wang et.al. 2002) and (Tan & wang, 2004), the robust 

non-linear control based on a direct feedback linearization technique has been applied to 

design an excitation system, a thyristor controlled series capacitor (TCSC) and a SMES. 

However, the drawback of this design method is a tuning of Q and R matrices for solving 

Riccati equation by trial and error. Besides, the resulted controllers are established by a state 

feedback scheme which is not easy to implement in practical systems. 
This chapter presents a controller design of programmed pitch controller (PPC) and Energy 

storage (ES) to control frequency oscillation in a hybrid wind-diesel power generation. To 

take system uncertainties into account in the control design, the inverse additive 

perturbation is applied to represent all unstructured uncertainties in the system modeling. 

Moreover, the performance conditions in the damping ratio and the real part of the 

dominant mode is applied to formulate the optimization problem. In this work, the 

structure of the proposed controllers are the conventional first-order controller (lead/lag 

compensator). To achieve the controller parameters, the genetic algorithm (GA) is used to 

solve the optimization problem. Various simulation studies are carried out to confirm the 

performance of the proposed controller. 

2. Proposed control design method 

2.1 System uncertainties 

System nonlinear characteristics, variations of system configuration due to unpredictable 

disturbances, loading conditions etc., cause various uncertainties in the power system. A 

controller which is designed without considering system uncertainties in the system 

modeling, the robustness of the controller against system uncertainties can not be 

guaranteed. As a result, the controller may fail to operate and lose stabilizing effect under 

various operating conditions. To enhance the robustness of power system damping 

controller against system uncertainties, the inverse additive perturbation (Gu et.al. 2005) is 

applied to represent all possible unstructured system uncertainties. The concept of 

enhancement of robust stability margin is used to formulate the optimization problem of 

controller parameters.  

The feedback control system with inverse additive perturbation is shown in Fig.1. G is the 

nominal plant. K is the designed controller. For unstructured system uncertainties such as 

various generating and loading conditions, variation of system parameters and 
 

www.intechopen.com



 From Turbine to Wind Farms - Technical Requirements and Spin-Off Products 

 

80 

 

Fig. 1. Feedback system with inverse additive perturbation. 

nonlinearities etc., they are represented by AΔ  which is the additive uncertainty model. 
Based on the small gain theorem, for a stable additive uncertainty AΔ , the system is stable if  

 /(1 ) 1AG GK ∞Δ − <   (1) 

then, 

 1 / /(1 )A G GK∞ ∞Δ < −   (2) 

The right hand side of equation (2) implies the size of system uncertainties or the robust 

stability margin against system uncertainties. By minimizing ( )1G GK
∞

− , the robust 

stability margin of the closed-loop system is a maximum or near maximum. 

2.2 Implementation 
2.2.1 Objective function 

To optimize the stabilizer parameters, an inverse additive perturbation based-objective 

function is considered. The objective function is formulated to minimize the infinite norm of 

( )1G GK
∞

− . Therefore, the robust stability margin of the closed-loop system will increase 

to achieve near optimum and the robust stability of the power system will be improved. As 

a result, the objective function can be defined as 

Minimize      ( )1G GK
∞

−   (3) 

It is clear that the objective function will identify the minimum value of ( )1G GK
∞

− for 

nominal operating conditions considered in the design process.  

2.2.2 Optimization problem 

In this study, the problem constraints are the controller parameters bounds. In addition to 

enhance the robust stability, another objective is to increase the damping ratio and place the 

closed-loop eigenvalues of hybrid wind-diesel power system in a D-shape region (Abdel-

Magid et.al. 1999). the conditions will place the system closed-loop eigenvalues in the D-

shape region characterized by specζ ζ≥ and specσ σ≤ as shown in Fig. 2. 
Therefore, the design problem can be formulated as the following optimization problem. 

 Minimize      ( )1G GK
∞

−    (4) 

www.intechopen.com



Control Scheme of Hybrid Wind-Diesel Power Generation System   

 

81 

 

 
 

Fig. 2. D-shape region in the s-plane where specσ σ≤  and specζ ζ≥  

Subject to     ,spec specζ ζ σ σ≥ ≤                         (5) 

min maxK K K≤ ≤   

min maxT T T≤ ≤  

where ζ  and specζ  are the actual and desired damping ratio of the dominant mode, 

respectively; σ  and specσ  are the actual and desired real part, respectively;  maxK and minK  

are the maximum and minimum controller gains, respectively; maxT  and minT  are the 

maximum and minimum time constants,  respectively. This optimization problem is solved 

by GA (GAOT, 2005) to search the controller parameters. 

2.3 Genetic algorithm 
2.3.1 Overview 

GA is a type of meta-heuristic search and optimization algorithms inspired by Darwin’s 
principle of natural selection. GA is used to try and solving search problems or optimize 
existing solutions to a certain problem by using methods based on biological evolution. It 
has many applications in certain types of problems that yield better results than the 
common used methods. 
According to Goldberg (Goldberg,1989), GA is different from other optimization and search 
procedures in four ways: 
1. GA searches a population of points in parallel, not a single point. 
2. GA does not require derivative information or other auxiliary knowledge; only the 

objective function and corresponding fitness levels influence the directions of search. 
3. GA uses probabilistic transition rules, not deterministic ones. 
4. GA works on an encoding of the parameter set rather than the parameter set itself 

(except in where real-valued individuals are used). 
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It is important to note that the GA provides a number of potential solutions to a given 
problem and the choice of final solution is left to the user.  

2.3.2 GA algorithm 

A. Representation of Individual. 

Individual representation scheme determines how the problem is structured in the GA and 
also determines the genetic operators that are used. Each individual is made up of a 
sequence of genes. Various types of representations of an individual are binary digits, 
floating point numbers, integers, real values, matrices, etc. Generally, natural 
representations are more efficient and produce better solutions. Encoding is used to 
transform the real problem to binary coding problem which the GA can be applied.  

B. GA Operators. 

The basic search mechanism of the GA is provided by the genetic operators. There are two 
basic types of operators: crossover and mutation. These operators are used to produce new 
solutions based on existing solutions in the population. Crossover takes two individuals to 
be parents and produces two new individuals while mutation alters one individual to 
produce a single new solution (S. Panda,2009).  
In crossover operator, individuals  are  paired  for mating  and  by  mixing  their  strings  
new  individuals  are  created. This process is depicted in Fig. 3. 
 

 

Fig. 3. Crossover operator 

In natural evolution, mutation is a random process where one point of individual is replaced 
by another to produce a new individual structure. The effect of mutation on a binary string 
is illustrated in Fig. 4 for a 10-bit chromosome and a mutation point of 5 in the binary string. 
Here, binary mutation flips the value of the bit at the loci selected to be the mutation point 
(Andrew C et.al). 
  

 

Fig. 4. Mutation operator 

C. Selection for Reproduction 

To produce successive generations, selection of individuals plays a very significant role in a 
GA. The selection function determines which of the individuals will survive and move on to 
the next generation. A probabilistic selection is performed based upon the individual’s 
fitness such that the superior individuals have more chance of being selected (S. Panda et.al 
,2009). There are several schemes for the selection process: roulette wheel selection and its 
extensions, scaling techniques, tournament, normal geometric, elitist models and ranking 
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methods. Roulette wheel selection method has simple method. The basic concept of this 
method is “ High fitness, high chance to be selected”. 

2.3.3 Parameters optimization by GA 

In this section, GA is applied to search the controller parameters with off line tuning. Each 
step of the proposed method is explained as follows. 
Step 1. Generate the objective function for GA optimization. 

In this study, the performance and robust stability conditions in inverse additive 
perturbation design approach is adopted to design a robust controller as mention in 
equation (4) and (5).  

Step 2. Initialize the search parameters for GA. Define genetic parameters such as 
population size, crossover, mutation rate, and maximum generation. 

Step 3. Randomly generate the initial solution. 
Step 4. Evaluate objective function of each individual in equation (4) and (5).  
Step 5. Select the best individual in the current generation. Check the maximum generation. 
Step 6. Increase the generation. 
Step 7. While the current generation is less than the maximum generation, create new 

population using genetic operators and go to step 4. If the current generation is the 
maximum generation, then stop. 

3. Robust frequency control in a hybrid wind-diesel power system 

3.1 System modeling 
The basic system configuration of an isolated hybrid wind-diesel power generation system 
as shown in Fig. 5 (Das et.al. 1999) is used in this study. The base capacity of the system is 
350 kVA. The diesel is used to supply power to system when wind power could not 
adequately provide power to customer. Moreover, The PPC is installed in the wind side 
while the governor is equipped with the diesel side. In addition to the random wind energy 
supply, it is assumed that loads with sudden change have been placed in this isolated 
system. These result in a serious problem of large frequency deviation in the system. As a 
result, a serious problem of large frequency deviation may occur in the isolated power 
system. Such power variations and frequency deviations severely affect the system stability. 
Furthermore, the life time of machine apparatuses on the load side affected by such large 
frequency deviations will be reduced.  

3.2 Pitch control design in a hybrid wind-diesel power system  
3.2.1 Linearized model of hybrid wind-diesel power system with PPC 

For mathematical modelling, the transfer function block diagram of a hybrid wind-diesel 
power generation used in this study is shown in Fig. 6 (Das et.al. 1999). The PPC is a 1st 
order lead-lag controller with single input feedback of frequency deviation of wind side. 
The state equation of linearized model in Fig. 6 can be expressed as 

 
PPCX A X B u

•
Δ = Δ + Δ   (6) 

 PPCY C X D uΔ = Δ + Δ   (7) 

 ( )PPC Wu K s fΔ = Δ   (8) 
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Fig. 5. Basic configuration of a hybrid wind-diesel power generation system. 

 

 

Fig. 6. Functional block diagram for wind–diesel system with proposed PPC. 
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Where the state vector 1 1 2[ ]W D D D mX f f P P H H PΔ = Δ Δ Δ Δ Δ Δ Δ , the output vector 

[ ]WY fΔ = Δ , PPCUΔ  is the control output of the PPC. The proposed control is applied to 

design a proposed PPC K(s). The system in equation (6) is referred to as the nominal plant G. 

3.2.2 Optimization problem formulation 

The optimization problem can be formulated as follows, 

Minimize      ( )1G GK
∞

−   (9)                          

Subject to     ,spec specζ ζ σ σ≥ ≤   (10) 

min maxK K K≤ ≤  

min maxT T T≤ ≤  

where ζ  and specζ  are the actual and desired damping ratio of the dominant mode, 

respectively;  σ  and specσ  are the actual and desired real part, respectively;  maxK and minK  

are the maximum and minimum controller gains, respectively; maxT  and minT  are the 

maximum and minimum time constants,  respectively. This optimization problem is solved 

by GA to search optimal or near optimal set of the controller parameters. 

3.2.3 Designed results 

In this section, simulation studies in a hybrid wind-diesel power generation are carried out. 

System parameters are given in (Das et.al. 1999). In the optimization, the ranges of search 

parameters and GA parameters are set as follows: [1 100]CK ∈ , 1T  and 2T [0.0001 1]∈ , 

crossover probability is 0.9, mutation probability is 0.05, population size is 200 and 

maximum generation  is 100. As a result, “the proposed PPC” is given automatically. 
In simulation studies, the performance and robustness of the proposed PPC is compared 
with those of the PPC designed by the variable structure control (VSC) obtained from (Das 
et.al. 1999). Simulation results under four case studies are carried out as shown in table 1. 
 

Cases Disturbances 

1 Step input of wind power or load change 

2 Random wind power input 

3 Random load power input 

4 Simultaneous random wind power and load change.

Table 1. Operating conditions 

Case 1: Step input of wind power or load change 

First, a 0.01 pukW step increase in the wind power input and the load power are applied to the 
system at t = 5.0 s, respectively. Fig. 7 and Fig. 8 show the frequency deviation of the diesel 
generation side which represents the system frequency deviation. The peak frequency 
deviation is reduced significantly by both of the VSC PPC and the proposed PPC. However, 
the proposed PPC is able to damp the peak frequency deviation quickly in comparison to VSC 
PPC cases.  
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Fig. 7. System frequency deviation against a step change of wind power. 
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Fig. 8. System frequency deviation against a step load change. 

Case 2: Random wind power input. 

In this case, the system is subjected to the random wind power input as shown in Fig.9. The 

response of system frequency deviation is shown in Fig.10. By the proposed PPC, the 

frequency deviation is significantly reduced in comparison to that of the VSC PPC.  
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Fig. 9. Random wind power input. 
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Fig. 10. System frequency deviation in case 2 

Case 3: Random load change. 

Next. the random load change as shown in Fig.11 is applied to the system. Fig. 12 depicts 

the response of system frequency deviation under the load change disturbance. The control 

effect of the proposed PPC is better than that of the VSC PPC.  
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Fig. 11. Random load change 
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Fig. 12. System frequency deviation in case 3. 

Case 4: Simultaneous random wind power and load change. 

In this case, the random wind power input in Fig. 9 and the load change in Fig.11 are 

applied to the hybrid wind-diesel power system simultaneously. The response of system 

frequency deviation is shown in Fig. 13. The frequency control effect of the proposed PPC is 

superior to that of the VSC PPC.  
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Fig. 13. System frequency deviation in case 4. 

3.3 Frequency control in a hybrid wind-diesel power system using SMES 

In this study, the system configuration in Fig. 5 is used to design frequency controller using 
SMES. In worst case, it is assumed that the ability of the pitch controller in the wind side 
and the governor in the diesel side to provide frequency control are is not adequate due to 
theirs slow response. Accordingly, the SMES is installed in the system to fast compensate for 
surplus or insufficient power demands, and minimize frequency deviation. Here, the 
proposed method is applied to design the robust frequency controller of SMES. 

3.3.1 Linearized model of hybrid wind-diesel power system with PPC and SMES 

The linearized model of the hybrid wind-diesel power system with Programmed Pitch 

Controller (PPC) and SMES is shown in Fig.14 (Tripathy, 1997). This model consists of the 

following subsystems: wind dynamic model, diesel dynamic model, SMES unit, blade pitch 

control of wind turbine and generator dynamic model. The details of all subsystems are 

explained in (Tripathy, 1997). As shown in Fig. 15, the SMES block diagram consists of two 

transfer functions, i.e. the SMES model and the frequency controller. Based on (Mitani et.al. 

1988), the SMES can be modeled by the first-order transfer function with time constant 

0.03smT =  s. In this work, the frequency controller is practically represented by a lead/lag 

compensator with first order. In the controller, there are three control parameters i.e., smK , 

1smT  and 2smT . 
The linearized state equation of system in Fig. 14 can be expressed as 

 SMX A X B u
•

Δ = Δ + Δ   (11) 

 SMY C X D uΔ = Δ + Δ   (12) 

 SM SM INu K uΔ = Δ   (13) 
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Fig. 14. Block diagram of a hybrid wind-diesel power generation with SMES. 

 

 

Fig. 15. Block diagram of SMES with the frequency controller. 

Where the state vector [ ]TMDFDW PHHHPPffX ΔΔΔΔΔΔΔΔ=Δ 2101
, the output 

vector [ ]DfY Δ=Δ , 
DfΔ  is the system frequency deviation, 

SMSESPΔ is the control output 

signal of SMES controller;
INuΔ =[ YΔ ] is the feedback input signal of SMES controller. 

Note that the system in equation (11) is a single-input single-output (SISO) system. The 

proposed method is applied to design SMES controller, and the system of equation (11) is 

referred to as the nominal plant G..  

3.3.2 Optimization problem formulation 

The optimization problem can be formulated as follows, 

Minimize      ( )1G GK
∞

−   (14) 

Subject to     ,spec specζ ζ σ σ≥ ≤   (15) 
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min maxK K K≤ ≤         

min maxT T T≤ ≤  

where ζ  and specζ  are the actual and desired damping ratio of the dominant mode, 

respectively; σ  and specσ  are the actual and desired real part, respectively;  maxK and minK  

are the maximum and minimum controller gains, respectively; maxT  and minT  are the 

maximum and minimum time constants,  respectively. This optimization problem is solved 

by GA to search optimal or near optimal set of the controller parameters. 

3.3.3 Designed results 

In the optimization, the ranges of search parameters and GA parameters are set as follows: 

specζ  is desired damping ratio is set as 0.4, 
specσ  is desired real part of the dominant mode is 

set as -0.2, and minK are maxK  minimum and maximum gains of SMES are set as 1 and 60, 

minT  and maxT  are minimum and maximum time constants of SMES are set as 0.01 and 5. 

The optimization problem is solved by genetic algorithm.  As a result, the proposed 

controller which is referred as “RSMES” is given. 

Table 2 shows the eigenvalue and damping ratio for normal operating condition. Clearly, 

the desired damping ratio and the desired real part are achieved by RSMES. Moreover, the 

damping ratio of RSMES is improved as designed in comparison with No SMES case. 
 

Cases Eigenvalues (damping ratio) 

NO SMES 

-39.0043           
-24.4027           
 -3.5072           
 -1.2547        
-0.1851 ±  j 0.671, ξ = 0.266 
-0.5591 ±  j 0.541, ξ = 0.719 

RSMES 

-39.5266           
-24.4006           
-2.1681           
-1.3325           
-17.782 ±  j 5.339, ξ =0.958 
-0.3050 ±  j 0.539, ξ =0.492 
-0.2012 ±  j 0.268, ξ =0.600 

Table 2. Eigenvalues and Damping ratio 

To evaluate performance of the proposed SMES, simulation studies are carried out under 

four operating conditions as shown in Table 1. In simulation studies, the limiter 0.01−  

pukW 0.01SMESP≤ Δ ≤  pukW on a system base 350 kVA is added to the output of SMES 

with each controller to determine capacity of SMES. The performance and robustness of the 

proposed controllers are compared with the conventional SMES controllers (CSMES) 

obtained from (Tripathy,1997). Simulation results under 4 case studies are carried out as 

follows. 
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Case 1: Step input of wind power or load change 

In case 1, a 0.01 pukW step increase in the wind power input are applied to the system at t = 

0.0 s. Fig. 16 shows the frequency deviation of the diesel generation side which represents 

the system frequency deviation. Without SMES, the peak frequency deviation is very large. 

The frequency deviation takes about 25 s to reach steady-state. This indicates that the pitch 

controller in the wind side and the governor in the diesel side do not work well. On the 

other hand, the peak frequency deviation is reduced significantly and returns to zero within 

shorter period in case of CSMES and the RSMES. Nevertheless, the overshoot and setting 

time of frequency oscillations in cases of RSMES is lower than that of CSMES. 
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Fig. 16. System frequency deviation against a step change of wind power. 

Next, a 0.01 pukW step increase in the load power is applied to the system at t = 0.0 s. As 

depicted in Fig. 17, both CSMES and RSMES are able to damp the frequency deviation 

quickly in comparison to without SMES case. These results show that both CSMES and 

RSMES have almost the same frequency control effects.  

Case 2: Random wind power input. 

In this case, the system is subjected to the random wind power input as shown in Fig.18. The 

system frequency deviations under normal system parameters are shown in Fig.19. Normal 

system parameter is the design point of both CSMES and RSMES. By the RSMES, the 

frequency deviation is significantly reduced in comparison to that of CSMES.  

Next, the robustness of frequency controller is evaluated by an integral square error (ISE) 

under variations of system parameters. For 100 seconds of simulation study under the same 

random wind power in Fig.18, the ISE of the system frequency deviation is defined as 

ISE of   
100 2

0D Df f dtΔ = Δ∫   (16) 
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Fig. 17. System frequency deviation against a step load change. 
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Fig. 18. Random wind power input. 

www.intechopen.com



 From Turbine to Wind Farms - Technical Requirements and Spin-Off Products 

 

94 

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1.5
x 10

-5

Time (sec)

S
y
st

e
m

 f
re

q
u
e
n
c
y
 d

e
v
ia

ti
o
n
 (
p
u
 H

z
)

 

 

CSMES

RSMES

 

Fig. 19. System frequency deviation under normal system parameters. 

Fig.20 shows the values of ISE when the fluid coupling coefficient fcK  is varied from -30 % 

to +30 % of the normal values. The values of ISE in case of CSMES largely increase as fcK  

decreases. In contrast, the values of ISE in case of RSMES are lower and slightly change.  
 
 

 

Fig. 20. Variation of ISE under a change of fcK . 

Case 3: Random load change. 

Fig. 22 shows the system frequency deviation under normal system parameters when the 
random load change as shown in Fig.21 is applied to the system. The control effect of 
RSMES is better than that of the CSMES.   
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Fig. 21. Random load change. 
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Fig. 22. System frequency deviation under normal system parameters. 

Case 4: Simultaneous random wind power and load change. 

In case 4, the random wind power input in Fig. 18 and the load change in Fig.21 are applied 

to the system simultaneously. When the inertia constant of both sides are reduced by 30 % 

from the normal values, the CSMES is sensitive to this parameter change. It is still not able 

to work well as depicted in Fig.23. In contrast, RSMES is capable of damping the frequency 

oscillation. The values of ISE of system frequency under the variation of fcK  from -30 % to 

+30 % of the normal values are shown in Fig.24. As fcK  decreases, the values of ISE in case 

of CSMES highly increase. On the other hand, the values of ISE in case of RSMES are much 

lower and almost constant. These simulation results confirm the high robustness of RSMES 

against the random wind power, load change, and system parameter variations. 
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Fig. 23. System frequency deviation under a 30 % decrease in fcK  

 

 

Fig. 24. Variation of ISE under a change in fcK . 

Finally, SMES capacities required for frequency control are evaluated based on 

simultaneous random wind power input and load change in case study 4 in addition to a 30 

% decrease in fcK  parameters. The kW capacity is determined by the output limiter -0.01 ≤ 

ΔPSMES ≤ 0.01 pukW on a system base of 350 kW. The simulation results of SMES output 

power in case study 4 are shown in Figs. 25. Both power output of CSMES and RSMES are 

in the allowable limits. However, the performance and robustness of frequency oscillations 

in cases of RSMES is much better than those of CSMES. 
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Fig. 25. SMES output power under a 30 % decrease in fcK  

5. Conclusion 

Control scheme of hybrid wind-diesel power generation has been proposed in this work. 
This work focus on frequency control using robust controllers such as Pitch controller and 
SMES. The robust controllers were designed based on inverse additive perturbation in an 
isolated hybrid wind – diesel power system. The performance and stability conditions of 
inverse additive perturbation technique have been applied as the objective function in the 
optimization problem. The GA has been used to tune the control parameters of controllers. 
The designed controllers are based on the conventional 1st-order lead-lag compensator. 
Accordingly, it is easy to implement in real systems. The damping effects and robustness of 
the proposed controllers have been evaluated in the isolated hybrid wind – diesel power 
system. Simulation results confirm that the robustness of the proposed controllers are much 
superior to that of the conventional controllers against various uncertainties. 
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