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1. Introduction    

The wide spread use of Doubly Fed Induction Generator technology (DFIG) is mostly due to 
the characteristics of its static converters that permit a variable speed operation with very 
reduced nominal power requirement which is approximately 25% of the generator power 
capacity specification [1-2]. With the increasing number of DFIGs being connected to the 
electrical grids some instability effects are arising which may worsen the power system 
security [3]. Time domain simulation techniques have being employed to evaluate the DFIG 
dynamic behavior and how it is dynamically impacting the power system security [4-7]. 
These studies are offering a better comprehension of the DFIG intrinsic dynamics when it is 
connected in electrical power grids, and these studies may be very useful when projecting 
controllers for this generator.   
Recently the particle swarm optimization technique (PSO) has being used to adjust the DFIG 
controllers gains with the objective of reducing the rotor current and also improving the 
small-signal stability [8-9]. In both references [8] and [9] the results obtained with the 
application of the PSO technique are compared with those obtained with a trial and error 
approach. The Bacteria Foraging optimization method has also being applied to the gain 
adjustment of the controller that is responsible to improve the damping of the DFIG 
oscillation modes [10].  However, the characteristics of exhibiting a robust damping and also 
improving the stability margin may not be guaranteed simultaneously when a change in the 
operation condition occurs. 
This chapter presents a multi-objective optimization methodology based on genetic 

algorithm (AG) to obtain the controller gains of the rotor side DFIG converter with the main 

objective of improving the DFIG ride-through capability, the voltage control and the overall 

power system stability margin.  

The methodology in this chapter, combines the GA with the pole placement method, since 

the gains obtained by the pole placement technique are chosen to compose one of the 

individuals of the initial population of the GA, in order that the optimal design procedure 

may start from a good initial solution, which may improve the convergence of the 

evolutionary procedure towards better solutions. 
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2. DFIG model 

For power system stability studies, the generator may be modeled as an equivalent voltage 
source behind transient impedance [11]. The differential equations of the stator and rotor 
circuits of the induction generator with stator current and equivalent voltage behind transient 
impedance as state variables can be given in a d-q reference frame rotating at synchronous 
speed. For adequately representing the DFIG dynamics involved in the controllers design the 
fourth order model of the induction generator is used as presented in [12]. 
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Where X´ and X are respectively the transient reactance and the open circuit reactance; '
de  

and '
qe    are respectively the d-axis and q-axis components of the internal voltage; '

oT  is the 

open circuit time constant in seconds. 
To represent the electrical and mechanical interaction between the electrical generator and 
wind turbine in transient stability studies, the two masses model is presented, according to [3]:  
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Where sK  is the axis stiffness in p.u./rad-elect; tD  and gD  are respectively the wind rotor 

and the electrical rotor damping coefficients; oω  is the electrical system angular velocity in 

rad-elect/sec; and tH  and gH  are the wind turbine and the electrical generator inertia 

constants respectively, in seconds. 

3. The DFIG converters models 

The model of the converter system includes the representation of the rotor-side converter, 
the grid-side converter and the dc link and the converter control. The rotor-side and grid-
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side converters are modeled as voltage sources. The control system for the rotor-side 
converter was implemented so that the field-oriented current control loop is used to control 
the rotor current, in which the q-axis component is responsible for the rotor speed control, 
and the d-axis component controls the terminal voltage, as shown in Fig. 1. 
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Fig. 1. Rotor-Side Converter Control Scheme 

5. GA-Multi objective optimal control 

The problem of adjusting the controller’s gains of the rotor-side DFIG converter, considering 
a specific operating point, may be formulated as a multi-objective optimization problem. 
The objectives to be optimized are the absolute errors between the rotor reference currents, 
which are established by the PI controllers, and the rotor measured currents along the q and 
d axis respectively and the magnitude of the rotor voltage.  
By considering the DFIG vector control formulation as presented in [13], it can be shown 
that the q and d components of the rotor current are very effective in controlling both the 
DFIG stator active power and the terminal voltage respectively. This way, improving the 
rotor current dynamic response (which may be obtained by minimizing the error between 
the rotor reference and measured currents) may reflect also in a better dynamic performance 
for the DFIG stator active power and terminal voltage. Besides that, the minimization of an 
additional term in the objective function that will be responsible for obtaining optimized 
responses for the magnitude of the rotor voltage may improve the dynamic behavior of 
other variables which are controlled by the grid side converter, as for example the rotor 
active power which is a function of the rotor voltage, as well as the dc-link voltage, and the 
current and reactive power of the grid-side converter. 
This way the global objective is to improve the DFIG dynamic behavior after the occurrence 
of faults in the electrical network enhancing the ride-through capability, voltage control, and 
also increasing the small-signal and transient stability margins of the power system. A 
measure that indicates if a good adjustment for the parameters of the rotor side converter 
has been achieved is given by the fitness function which is composed by the weighted sum 
of three objectives which will be minimized by the genetic algorithm optimization 
procedure:    
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Where 1ω , 2ω  and 3ω  are weight factors. 
The gains obtained by the pole placement technique as described in [14], form one of the 
individuals of the GA initial population which may improve the convergence of the GA 
once the evolutionary process is started with a good initial solution.    

6. Electrical network 

The electrical network used for the simulation studies is a real power system belonging to the 
COSERN electric power utility that operates in the northeast region of Brazil, in the state of Rio 
Grande do Norte. In this study, the wind park to be connected is considered as a dynamic 
equivalent, represented by an equivalent wind generator of 20 MW and 960 V. The wind park 
must be connected to the distribution electrical grid by 0.96 kV/69 kV transformers. 
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Fig. 2. Electrical Network 

7. Simulations and results 

Firstly, it will be presented the gains obtained for the PI rotor-side controller using the GA 

optimal design technique. In this optimization procedure a three-phase short circuit was 

applied at t=0.1s for 100 ms at bus 2. The simulation time was 4 s and it was considered the 

base operational condition for the electrical network as shown in Fig. 2, without the “crow-

bar” protection arrangement. 

The gains obtained by the pole placement project and by the GA project are presented in 
tables 1 and 2, respectively. It may be noticed that the switching frequency used for the CA-
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CC-CA converter system was 2 kHz [15], which is a key parameter for the adjustment of the 

static converter controls in DFIG generators. The objective function weight factors 1ω , 2ω  

and 3ω   were set equal to 1. 

 

1PK
 1IK

 2PK 2IK 3PK
 3IK

 4PK
 4IK

-0.27 -0.016 0.4 0 0.006 0.004 0.405 0 

Table 1. Poles Placement Gains Adjustments for the PI Controllers of Rotor-Side Converter  
 

1PK
 1IK

 2PK 2IK 3PK
 3IK

 4PK
 4IK

-0.87 -0.016 0.45 7.9 0.19 0.004 0.36 0.06 

Table 2. GA Gains Adjustments for the PI Controllers of Rotor-Side Converter  

To evaluate the performance and robustness of the proposed GA optimization 

methodology, as well as the effectiveness of the crow-bar protection scheme, three case 

studies are presented: a) base case load as informed by the electrical utility; b) 20% load 

reduction in all load buses with respect to the base case; c) 20% load increase in all load 

buses with respect to the base case. In the results presented in this chapter, the optimal 

design refers to the results obtained by the GA optimization procedure, and formal design 

refers to the results obtained by the pole placement techniques.  

Case a) A three phase short circuit lasting for 100 ms is applied at t1 = 1s, at the end of line 
18-16, near bus 16.  The fault is cleared by the protection scheme and the electrical system 
changes to a new operational point disconnecting transmission line 18-16. 

In Fig. 3 it is shown the transient behavior of the DFIG rotor current. It can be observed that 

the rotor current limit specified for the rotor-side converter, which is approximately 0.406 

p.u., is exceeded right after starting the fault which implies in activating the crow-bar 

protection, at t2 = 1.0016 s, by the insertion of external resistances in the DFIG rotor. The 

inserted resistances reduce significantly the rotor current until the fault is cleared at t3 = 1.1 s. 

It must be emphasized that during the fault period the rotor-side converter remains 
connected to the DFIG once the rotor current is flowing through the external resistances and 
not through the converter itself. Immediately after the fault is cleared the crow-bar 
protection is deactivated and simultaneously the DFIG returns to normal operation, 
activating again the rotor-side converter controllers. 
But when the fault is cleared the rotor current oscillates again as can be seen in Fig. 4. In this 
case the projected PI controllers, by either pole placement technique or by GA technique, 
present a good performance in damping the oscillation without the need of activating the 
crow-bar protection scheme again.  
However, it is noticed in Fig. 4 that when using the optimal gains of the GA projected PI 
controller the rotor current presents a better time response when compared with the pole 
placement projected PI controller. This improvement is evident in the second oscillation 
when the current overshoot is higher for the pole placement projected controller, reaching 
values above 0.3 p.u., as compared with the response obtained by the GA PI controller. 
Besides that, the GA PI controller reduced more significantly the oscillation after t = 2 s, with 
respect to the pole placement PI controller. 
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Fig. 3. DFIG Rotor Current 
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Fig. 4. DFIG Rotor Current 

It is shown in Fig. 5 the DFIG rotor voltage. It is observed that the adopted crow-bar 
protection strategy was efficient, once the rotor voltage oscillation does not exceed the 
maximum allowed limit value which is specified by the rotor-side converter and is equal to 
0.3 p.u. It is noticed also that during the fault the rotor voltage is obtained by the applied 
voltage to the external resistances of the crow-bar protection scheme, which is equal to the 
rotor-side converter voltage.  
After the fault is cleared, both PI controllers, adjusted by pole placement and by GA 
techniques, have presented a good performance when submitted to voltage sags. As 
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Fig. 5. DFIG Rotor Voltage 

observed previously for the current behavior, the optimal PI controller design also reduced 

the rotor voltage oscillation  after t = 2 s, as compared to the PI controller designed by the 

pole placement technique.   

The DC link voltage time responses are shown in Fig. 6, and it can be seen that the response 

that corresponds to the PI controller projected by the GA technique  presents oscillation with 

lower overshoot and higher damping as compared to the response obtained by the PI 

controller which gains were adjusted by the pole placement procedure. This is an important 

aspect to consider since the DC link voltage is one of the variables that may activate the 

crow-bar protection scheme. 

The time response of the DFIG terminal voltage is presented in Fig. 7. It may be observed 
that by using the GA procedure to project the PI controller, it is obtained for the DFIG 
terminal voltage a less oscillatory response containing lower overshoot after the fault is 
cleared, when compared with the PI controller projected by the pole placement technique. 
These results are very relevant as much as high voltage values for the wind generator buses 
may disconnect the DFIG machines by the overvoltage protection scheme. The grid 
operators in some European countries, for example, are including this recent requisite, 
known as High Voltage Ride-Through [16], to be attended by wind parks to be connected to 
the grid.   
Besides that, the problem of poorly damped oscillations in distributed generation systems 
may affect significantly the power quality for the consumers. This happens because such 
oscillations directly influence the magnitude and frequency of the voltage waveform in load 
buses. 
In Fig. 8 it is presented the plot of the DFIG stator active power. It can be observed a less 

oscillatory response after the fault is cleared when using the PI controller designed by the 

GA procedure. The proposed optimization procedure improves the behavior of variables 

that are decoupled by the vector control strategy employed for the DFIG, namely the 

terminal voltage (or reactive power) and active power (or rotor speed) as shown in Figs. 7 

www.intechopen.com



 Wind Turbines 

 

314 

and 8 respectively. This way it is justified the methodology of improving the transient 

behavior of the d and q axis components of the rotor current because this improvement has 

as  consequence a better transient behavior for the terminal voltage (or reactive power) and 

active power (or rotor speed).  
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Fig. 6. DC-Link Voltage 
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Fig. 7. DFIG Terminal Voltage 

Fig. 9 presents the grid-side converter reactive power transient response. It is evident that 

when the PI controller projected by the GA procedure is used the transient response is less 
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oscillatory presenting a better overall performance. The behavior presented by the grid-side 

converter reactive power, as well as the DC link voltage (which are variables controlled  

by the grid-side converter) demonstrates the effectivity of the GA optimization procedure  

in improving the grid-side and rotor-side converters overall performance, although  

the optimal gain adjustment GA procedure was applied only to the rotor-side  

controller. 
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Fig. 8. DFIG Stator Active Power 
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Fig. 9. DFIG Grid-Side Converter Reactive Power 
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Fig. 10 presents the rotor angle transient response of the equivalent synchronous generator 
connected at bus 1 of the Açu electrical system. It is evident that the synchronous generator 
rotor angle time response is more oscillatory when the PI controller designed by the pole 
placement procedure is used. In this case the risk of small signal instability is more evident. 
On the other side, when using the PI controller designed by the GA technique, the low 
frequency oscillation is reduced which improve the small signal stability margin. 
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Fig. 10. Rotor Angle of the Synchronous Generator 

This way, the proposed GA optimization process to obtain the gains of the DFIG rotor-side 
converter, besides contributing to a better characteristic of terminal voltage recovery, and 
ride-though the fault capability, it also improved considerably the system damping 
characteristic reducing the magnitude of the electromechanical oscillation, without  the need 
of a power system stabilizer (PSS) in the equivalent synchronous generator. 

It is worth mentioning that the objective of damping the electromechanical oscillations is not 

directly included in the GA fitness function. However, the DFIG capacity to introduce 

damping in the synchronous generator oscillations can be reinforced by an appropriate 

adjustment of the rotor angle δ , and of the DFIG rotor flux  rλ  , which are accomplished by 

the quadrature rotor current component  qri  , that is used in the proposed vector control 

adopted here, to control the DFIG rotor speed or the active power. 

Case b) 20% load reduction in all buses. A three phase short circuit lasting for 100 ms at bus 
10 is applied. 

The time responses of the DFIG variables in this case study are very similar to those 

presented in Case a. These results presented in Figs. 11 to 15 demonstrate the better 

performance exhibited by the PI controllers designed by the GA approach, demonstrating 

robustness and effectiveness when the system operation point is changed. It is observed in 

Fig. 15 that the rotor angle of the synchronous generator presents smaller low frequency 

oscillations and a larger transient stability margin, when the PI controller projected by the 

GA approach is used.   
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In this case, the proposed optimal solution contributes: to enhance the DFIG capacity to 

withstand voltage sags events; to improve voltage control; to  increase transient and small 

signal stability margins, contributing, this way, to improve the overall system security. 
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Fig. 11. DFIG Rotor Current 
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Fig. 12. DFIG Rotor Voltage 
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Fig. 13. DFIG Terminal Voltage 
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Fig. 14. DFIG Stator Active Power 
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Fig. 15. Rotor Angle of the Synchronous Generator 

Case c) 20% load increase in all buses. A three phase short circuit lasting for 100 ms at bus 6 
is applied. 

The DFIG rotor current and rotor voltage time responses are shown in Figs. 16 and 17. It can 
be seen that immediately after the short circuit is applied the rotor current limit is exceeded, 
activating the crow-bar protection scheme. After the short circuit is cleared the crow-bar 
protection is deactivated, and simultaneously the DFIG generators return to normal 
operation, with the activation of the rotor-side PI controllers.   
Just after the fault is cleared both controllers, namely that designed by pole placement and 
the other by GA, succeeded in maintaining the wind park connected to the grid avoiding the 
activation of the crow-bar protection, although the PI controller designed by GA procedure 
was more effective in reducing the rotor voltage and current oscillations in this time period. 
However, in approximately t = 2.5 s it is observed that in the case of using the PI controller 
projected by the pole placement technique, the converter specified current limit is exceeded 
again, which activates the crow-bar protection, for a period of 100 ms, which is the transition 
time imposed by the crow-bar logic.  
After this transition time the crow-bar is deactivated and immediately the PI controllers 
start to function again. However, it may be observed that in the case of using the PI 
controller designed by the pole placement technique, it was not possible to introduce 
sufficient damping in the current oscillation and the system became instable. 
It is worth noting that the proposed crow-bar protection logic does not allow the activation 
of the protection scheme for more than two times in a short time period. Besides that, the 
activation of the crow-bar scheme makes the DFIG machine to operate as a conventional 
induction machine, lacking the advantage of using the converter control actions.  
In Fig. 18 it is presented the DFIG terminal voltage response. When using the PI controller 
designed by the GA procedure it can be seen an improvement in the terminal voltage 
control, besides presenting smaller low frequency oscillations, after the fault is cleared. On 
the other side, when using the PI controller designed by the pole placement technique it was 
not able to recover the terminal voltage, as can be seen in Fig. 18.  
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Fig. 16. DFIG Rotor Current 
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Fig. 17. DFIG Rotor Voltage 

www.intechopen.com



Using Genetic Algorithm to Obtain Optimal Controllers  
for the DFIG Converters to Enhance Power System Operational Security   

 

321 

 
 
 

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

 Time [s] 

 T
e

rm
in

a
l 

V
o

lt
a

g
e

 [
p

.u
.]

 

 

 

Optimal Design

Formal Design

 

 

Fig. 18. DFIG Terminal Voltage 
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Fig. 19. DC-Link Voltage 
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The DC link voltage is shown in Fig.19. When using the controller designed by the pole 

placement technique it is observed a power unbalance between the grid-side converter  

and the DFIG rotor, which energy is stored continuously in the capacitor, resulting in 

increasing voltage and the DC link voltage becomes instable. This behavior is not observed 

when the PI controller designed by the GA procedure is used, maintaining the DC link 

voltage stable. 

In Fig. 20 it is presented the equivalent synchronous generator rotor angle time response. It 

can be seen that the synchronous generator looses synchronism in the case the PI controller 

designed by the pole placement technique is used. The same does not happen when using 

the PI controller designed by the GA procedure, which maintain the synchronous generator 

synchronism, besides improving the small signals stability margin. 
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Fig. 20. Rotor Angle of the Synchronous Generator 

7. Conclusion 

This chapter presented a design procedure based on genetic algorithms combined with the 
formal pole placement methodology to obtain optimal gains for the PI controllers used in 
the control loop of the DFIG rotor-side converter in order to increase the ride-through 
capability and the overall stability margin of the power system. The effectiveness of this 
proposed approach was assessed for the DFIG-based plants using a real electrical network, 
in three different operational conditions, and the results obtained confirmed the 
effectiveness of the proposed control design procedure. 
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