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1. Introduction

Image denoising is a required pre-processing step in several applications in image processing
and pattern recognition, from simple image segmentation tasks to higher-level computer
vision ones, as tracking and object detection for example. Therefore, estimating a signal that is
degraded by noise has been of interest to a wide community of researchers. Basically, the goal
of image denoising is to remove the noise as much as possible, while retaining important
features, such as edges and fine details. Traditional denoising methods have been based
on linear filtering, where the most usual choices were Wiener, convolutional finite impulse
response (FIR) or infinitie impulse response (IIR) filters. Lately, a vast literature on non-linear
filtering has emerged Barash (2002); Dong & Acton (2007); Elad (2002); Tomasi & Manduchi
(1998); Zhang & Allebach (2008); Zhang & Gunturk (2008), especially those based on wavelets
Chang et al. (2000); H. et al. (2009); Ji & Fermüller (2009); Nasri & Nezamabadi-pour (2009);
Yoon & Vaidyanathan (2004) inspired by the remarkable works of Mallat (1989) and after
Donoho (1995).
The basic wavelet denoising problem consists in, given an input noisy image, dividing all
its wavelet coefficients into relevant (if greater than a critical value) or irrelevant (if less
than a critical value) and then process the coefficients from each one of these groups by
certain specific rules. Usually, in most denoising applications soft and hard thresholding are
considered, in a way that filtering is performed by comparing each wavelet coefficient to a
given threshold and supressing it if its magnitude is less than the threshold; otherwise, it
is kept untouched (hard) or shrinked (soft). Soft-thresholding rule is generally preferred over
hard-thresholding for several reasons. First, it has been shown that soft-thresholding has several
interesting and desirable mathematical properties Donoho (1995), Donoho & Johnstone (1994).
Second, in practice, the soft-thresholding method yields more visually pleasant images over
hard-thresholding because the latter is discontinuous and generates abrupt artifacts in the
recovered images, especially when the noise energy is significant. Last but not least, some
results found in the literature Chang et al. (2000) conclude that the optimal soft-thresholding
estimator yields a smaller estimation error than the optimal hard-thresholding estimator.
However, for some classes of signals and images, hard-thresholding results in superior estimates
to that of soft-thresholding, despite some of its disadvantages Yoon & Vaidyanathan (2004).
To tackle this problem, several hybrid thresholding functions have been proposed in the
literature.
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To test and evaluate our method, we built a series of experiments using both real Nuclear
Magnetic Resonance (NMR) images and simulated data, considering several wavelet basis.
The obtained results show the effectiveness of GSAShrink, indicating a clear improvement
on the wavelet denoising performance in comparison to the traditional approaches. As in
this chapter we are using a sub-optimal combinatorial optimization algorithm to approximate
the optimal MAP solution, GSAShrink converges to a local maximum, making our method
sensitive to different initializations. What at first could look like a disadvantage, actually
revealed to be an interesting and promissing feature, mostly because we can incorporate
other non-linear filtering techniques in a really straighforward way, by simply using them
to generate better initial conditions for the algorithm. Results obtained by combining Bilateral
Filtering and GSAShrink show that the MAP-MRF method under investigation is capable of
suppressing the noise while preserving most relevant image details, avoiding the appearance
of visible artifacts.
The remaining of the chapter is organized as follows. Section 2 describes the Discrete Wavelet
Transform (DWT) in the context of digital signal processing, showing that, in practice, this
transform can be implemented by a Perfect Reconstruction Filter Bank (PRFB), being completely
characterized by a pair of Quadrature Mirror Filters (QMF), h0[], a low-pass filter and g1[], a
high-pass filter. Section 3 briefly introduces the wavelet-based denoising problem, describing
the proposed MAP-MRF solution, as well as the statistical modeling and threshold estimation,
a crucial step in this kind of application. In Section 4 we briefly discuss the MRF Maximum
Pseudo-Likelihood parameter estimation. The experimental setup and the obtained results are
described in Section 5. Finally, Section 6 brings the our conclusions and final remarks.

2. The Wavelet transform

The basic tool for our MAP-MRF approach is the wavelet transform. Roughly speaking, in
mathematical terms, the wavelet transform is an expansion that decomposes a given signal
in a basis of orthogonal functions. In this sense, we can set a complete analogy with the
Fourier Transform. While the Fourier Transform uses periodic, smooth and unlimited basis
functions (i.e., sines and cosines), the wavelet transform uses non-periodic, non-smooth and
finite support basis functions (i.e., Haar, Daubechies,...), allowing a much more meaningful
representation through multi-resolution analysis, since it can capture a wide . In practice, the
Discrete Wavelet Transform (DWT) can be implemented by a Perfect Reconstruction Filter
Bank (PRFB), being completely characterized by a pair of Quadrature Mirror Filters (QMF)
h0[], a low-pass filter, and g1[], the corresponding high-pass filter, known as analysis filters.

2.1 Perfect reconstruction filter banks (PRFB)

This section describes the Discrete Wavelet Transform from a digital signal processing
perspective, by characterizing its underlying mathematical model by means of the
Z-Transform. For an excellent review on wavelet theory and mathematical aspects of filter
banks the reader is refered to Jensen & Cour-Harbo (2001); Strang & Nguyen (1997),
from where most results described in this section were taken. A two-channel perfect
reconstruction lter bank (PRFB) consists of two parts: an analysis filter bank, responsible for
the decomposition of the signal in wavelet sub-bands (DWT) and a synthesis filter bank, that
reconstructs the signal by synthesizing these wavelet sub-bands Ji & Fermüller (2009). Figure 1
shows the block diagram of a two-channel PRFB, where H0(z) and G1(z) are the Z-transforms
of the pair of analysis filters, r0[n] and r1[n] are the resulting signals after low-pass and
high-pass filtering, respectively, y0[n] and y1[n] are the downsampled signals, t0[n] and t1[n]
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reconstruction lter bank

Fig. 1. Block diagram of a two-channel Perfect Reconstruction Filter Bank

are the upsampled signals obtained by placing zeros between each pair of samples, F0(z)
and K1(z) are the Z-transforms of the pair of synthesis filters, and finally, v0[n] and v1[n] are
interpolated signals that are combined to produce the reconstructed output x̂[n].
The basic assumption for perfect reconstruction is that the output x̂[n] has to be a delayed
version of the input signal x[n]. Suppose that in the filter bank depicted in Figure 1, we have
ℓ levels, each one causing a delay. Then, in mathematical terms, the condition for perfect
reconstruction is:

x̂[n] = x[n− ℓ] (1)

which means that the entire system can be replaced by a single transfer function. Equivalently,
in the Z-domain we have:

X̂(z) = z−ℓX(z) (2)

As the filter bank defines a linear time invariant (LTI) system and using the convolution
theorem, we have:

R0(z) = H0(z)X(z) (3)

R1(z) = G1(z)X(z) (4)

and using the Z-transform property of decimation operators:

Y0(z) =
1

2

{

R0

(

z1/2
)

+ R0

(

−z1/2
)}

(5)

Y1(z) =
1

2

{

R1

(

z1/2
)

+ R1

(

−z1/2
)}

(6)

leading to the following relationship:
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Y0(z) =
1

2

{

H0(z
1/2)X(z1/2) + H0(−z1/2)X(−z1/2)

}

(7)

Y1(z) =
1

2

{

G1(z
1/2)X(z1/2) + G1(−z1/2)X(−z1/2)

}

(8)

Since H0(z) and G1(z) are not ideal half-band filters, downsampling can introduce aliasing
since we cannot reduce the interval between samples by half because we would be sampling
below the Nyquist rate. To overcome this problem, conditions for alias cancellation must be
enforced. According to the perfect reconstruction condition:

V0(z) +V1(z) = z−ℓX(z) (9)

Using the upsampling property of the Z-transform, we have the following expressions for
V0(z) and V1(z):

V0(z) = F0(z)T0(z) = F0(z)Y0(z
2) (10)

V1(z) = K1(z)T1(z) = K1(z)Y1(z
2) (11)

which leads to:

V0(z) =
1

2
F0(z)

{

H0(z)X(z) + H0(−z)X(−z)

}

(12)

V1(z) =
1

2
K1(z)

{

G1(z)X(z) + G1(−z)X(−z)

}

(13)

Thus, grouping similar terms and enforcing the perfect reconstruction condition, we have the
following equation that relates the input, analysis filters, synthesis filters and the output of
the LTI system:

1

2

{

F0(z)H0(z) + K1(z)G1(z)

}

X(z) + (14)

1

2

{

F0(z)H0(−z) + K1(z)G1(−z)

}

X(−z) = z−ℓX(z)

Therefore, a perfect reconstruction lter bank must satisfy the following conditions:

1. Alias cancellation

F0(z)H0(−z) + K1(z)G1(−z) = 0 (15)

2. Perfect Reconstruction (No distortion)

F0(z)H0(z) + K1(z)G1(z) = 2z−ℓ (16)
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perfect reconstruction lter bank

Alias cancellation

The first condition is trivially satisfied by defining the synthesis filters as:

F0(z) = G1(−z) (17)

K1(z) = −H0(−z) (18)

This condition implies that:

F0(z) = G1(−z) (19)

=
∞

∑
−∞

g1[n](−z)−n

=
∞

∑
−∞

(−1)ng1[n]z−n

and

K1(z) = −H0(−z) (20)

= −
∞

∑
−∞

h0[n](−z)−n

=
∞

∑
−∞

(−1)n+1h0[n]z−n

so that the synthesis filters coefficients are obtained directly from the analysis filters by a
simple alternating signs rule:

f0[n] = (−1)ng1[n] (21)

k1[n] = (−1)n+1h0[n]

Defining P0(z) = F0(z)H0(z) and using equation (19) on (16) leads to:

P0(z) − P0(−z) = 2z−ℓ (22)

where ℓ must be odd since the left hand side of (22) is an odd function, since all even terms
cancel each other. Let P(z) = zℓP0(z). Then, P(−z) = −zℓP0(−z), since ℓ is odd. Rewriting
equation (22) we finally have:

P(z) + P(−z) = 2 (23)

showing that for perfect reconstruction the low-pass filter P(z) requires all even powers to be
zero, except the constant term. The design process starts with the specification of P(z) and
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then the factorization of P0(z) into F0(z)H0(z). Finally, the alias cancellation condition is used
to define G1(z) and K1(z). It has been shown that flattest P(z) leads to the widely recognized
Daubechies wavelet filter Daubechies (1988).
In this chapter, we consider the traditional 2-D separable DWT, also known as Square Wavelet
Transform, that is based on consecutive one dimensional operations on columns and rows of
the pixel matrix. The method first performs one step of the 1-D DWT on all rows, yielding
a matrix where the left side contains down-sampled low-pass (h filter) coefficients of each
row, and the right contains the high-pass (g filter) coefficients. Next, we apply one step to all
columns, resulting in four wavelet sub-bands: LL (which is known as approximation signal),
LH, HL and HH. A multilevel decomposition scheme can be generated in a straghtforward
way, always expanding the approximation signal.
The analysis of a signal or image wavelet coefficients suggests that small coefficients
are dominated by noise, while coefficients with a large absolute value carry more signal
information. Thus, supressing or smoothing the smallest, noisy coefficients and applying
the Inverse Wavelet Transform (IDWT) lead to a reconstruction with the essential signal or
image characteristics, removing the noise. More precisely, this idea is motivated by three
assumptions Jansen (2001):

• The decorrelating property of a DWT creates a sparse signal, where most coefficients are
zero or close to zero.

• Noise is spread out equally over all coefficients and the important signal singularities are
still distinguishable from the noise coefficients.

• The noise level is not too high, so that we can recognize the signal wavelet coefficients.

2.2 Wavelet-based denoising

Basically, the problem of wavelet denoising by thresholding can be stated as follows. Let g =
{

gi,j; i, j = 1, 2, . . . , M
}

denotes the M × M observed image corrupted by additive Gaussian

noise:

gi,j = fi,j + ni,j (24)

where fi,j is the noise-free pixel, ni,j has a N(0, σ2) distribution and σ2 is the noise variance.
Then, considering the linearity of the DWT:

yj,k = xj,k + zj,k (25)

with yj,k, xj,k and zj,k denoting the k-th wavelet coefficient from the j-th decomposition level
of the observed image, original image and noise image, respectively. The goal is to recover
the unknown wavelet coefficients xj,k from the observed noisy coefficients yj,k. One way to
estimate xj,k is through Bayesian inference, by adopting a MAP approach. In this chapter, we
introduce a MAP-MRF iterative method based on the combinatorial optimization algorithm
Game Strategy Approach (GSA) Yu & Berthod (1995a), an alternative to the deterministic and
widely known Besag’s Iterated Conditional Modes (ICM) Besag (1986a). By iterative method we

mean that an initial solution x(0) is given and the algorithm successively improves it, by using
the output from one iteration as the input to the next. Thus, the algorithm updates the current
wavelet coefficients given a previous estimative according to the following MAP criterion:

x̂
(p+1)
j,k = arg maxxj,k

{

p
(

xj,k|x
(p)
j,k , yj,k,�Ψ

)}

(26)
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• The decorrelating property of a DWT creates a sparse signal, where most coefficients are

• Noise is spread out equally over all coefficients and the important signal singularities are

• The noise level is not too high, so that we can recognize the signal wavelet coefficients.

where p
(

xj,k|x(p)
j,k , yj,k,�Ψ

)

represents the a posteriori probability obtained by adopting a

Generalized Gaussian distribution as likelihood (model for observations) and a Generalized
Isotropic Multi-Level Logistic (GIMLL) MRF model as a priori knowledge (for contextual

modeling), x
(p)
j,k denotes the wavelet coefficient at p-th iteration and �Ψ is the model parameter

vector. This vector contains the parameters that control the behavior of the probability laws.
More details on the statistical modeling and how these parameters are estimated are shown
in Sections 3 and 4. In the following, we will derive an algorithm for approximating the MAP
estimator by iteratively updating the wavelet coefficients.

3. The MAP-MRF framework for bayesian inference

The main problem with MAP-MRF approaches is that there is no analytical solution for
MAP estimation. Hence, algorithms for numerically approximating the MAP estimator are
required. It has been shown, in combinatorial optimization theory, that convergence to the
global maximum of the posterior distribution can be achieved by the Simulated Annealing
(SA) algorithm Geman & Geman (1984). However, as SA is extremely time consuming and
demands a high computational burden, sub-optimal combinatorial optimization algorithms,
which yield computationally feasible solutions to MAP estimation, are often used in real
problems. Some of the most popular iterative algorithms found in image processing literature
are: the widely used Besag’s Iterated Conditional Modes (ICM) Besag (1986a), Maximizer of the
Posterior Marginals (MPM) Marroquin et al. (1987a), Graduated Non-Convexity (GNC) Blake &
Zisserman (1987), Highest Condence First (HCF) Chou & M. (1990) and Deterministic Pseudo
Annealing Berthod et al. (1995). In this chapter, we introduce GSAShrink, a modified version of
an alternative algorithm known as Game Strategy Approach (GSA) Yu & Berthod (1995a), based
on non-cooperative game theory concepts and originally proposed for solving MRF image
labeling problems.

3.1 Statistical modeling

3.1.1 Generalized gaussian distribution

It has been shown that the distribution of the wavelet coefficients within a sub-band can
be modeled by a Generalized Gaussian (GG) with zero mean Mallat (1989), Westerink et al.
(1991). The zero mean GG distribution has the probability density function:

p (w|ν, β) =
ν

2βΓ (1/ν)
exp

{

−
( |w|

β

)ν}

(27)

where ν > 0 controls the shape of the distribution and β the spread. Two special cases of the

GG distribution are the Gaussian and the Laplace distributions. When ν = 2 and β =
√

2σ,
it becomes a standard Gaussian distribution. The Laplace distribution is obtained by setting
ν = 1 and β = 1/λ. According to Sharifi & Leon-Garcia (1995), the parameters ν and β
can be empirically determined by directing computing the sample moments χ = E [|w|] and
ψ = E

[

w2
]

(method of moments), because of this useful relationship:

ψ

χ2
=

Γ

(

1
ν̂

)

Γ

(

3
ν̂

)

Γ2
(

2
ν̂

) (28)

and we can use a look-up table with different values of ν and determine is value from the ratio
ψ/χ2. After, it is possible to obtain β̂ by:
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β̂ =
ψΓ

(

1
ν̂

)

Γ
(

3
ν̂

) (29)

3.1.2 Generalized isotropic multi-level logistic

Basically, MRF models represent how individual elements are influenced by the behavior
of other individuals in their vicinity (neighborhood system). MRF models have proved
to be powerful mathematical tools for contextual modeling in several image processing
applications. In this chapter, we adopt a model originally proposed in Li (2009) that
generalizes both Potts and standard isotropic Multi-Level Logistic (MLL) MRF models for
continuous random variables. According to the Hammersley-Clifford theorem any MRF
can be equivalently defined by a joint Gibbs distribution (global model) or by a set of
local conditional density functions (LCDF’s). From now on, we will refer to this model
as Generalized Isotropic MLL MRF model (GIMLL). Due to our purposes and also for
mathematical tractability, we define the following LCDF to characterize this model, assuming
the wavelet coefficients are quantized into M̃ levels:

p (xs|ηs, θ) =
exp {−θDs (xs)}

∑y∈G exp {−θDs (y)}
(30)

where Ds(y) = ∑k∈ηs

[

1 − 2exp
(

− (y− xk)
2
)]

, xs is the s-th element of the field, ηs is the

neighborhood of xs, xk is an element belonging to the neighborhood of xs, θ is a parameter
that controls the spatial dependency between neighboring elements, and G is the set of all
possible values of xs, given by G = {g ∈ �/m ≤ g ≤ M}, where m and M are respectively,
the minimum and maximum sub-band coefficients, with |G| = M̃ (cardinality of the set). This
model provides a probability for a given coefficient depending on the similarity between its
value and the neighboring coefficient values. Acording to Li (2009), the motivation for this
model is that it is more meaningful in texture representation and easier to process than the
isotropic MLL model, since it incorporates similarity in a softer way.
For GIMLL MRF model parameter estimation we adopt a Maximum Pseudo-Likelihood
(MPL) framework that uses the observed Fisher information to approximate the asymptotic
variance of this estimator, which provides a mathematically meaningful way to set this
regularization parameter based on the observations. Besides, the MPL framework is useful
in assessing the accuracy of MRF model parameter estimation.

3.2 Game strategy approach

In a n-person game, I = {1, 2, . . . , n} denotes the set of all players. Each player i has a set
of pure strategies Si. The game process consists in, at a given instant, each player choosing a
strategy si ∈ Si. Hence, a situation (or play) s = (s1, s2, . . . , sn) is yielded, and a payoff Hi (s) is
assigned to each player. In the approach proposed by Yu & Berthod (1995a), the payoff Hi (s)
of a player is defined in such a way that it depends only on its own strategy and on the set of
strategies of neighboring players.
In non-cooperative game theory each player tries to maximize his payoff by choosing his own
strategy independently. In other words, it is the problem of maximizing the global payoff
through local and independent decisions, similar to what happens in MAP-MRF applications
with the conditional independence assumption.
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A mixed strategy for a player is a probability distribution defined over the set of pure
strategies. In GSA, it is supposed that each player knows all possible strategies, as well as the
payoff given by each one of them. Additionally, the solutions for a non-cooperative n-person
game are given by the set of points satisfying the Nash Equilibrium condition (or Nash points).
It has been shown that Nash Equilibrium points always exist in non-cooperative n-person
games Nash (1950). A play t∗ =

(

t∗1 , t∗2 , . . . , t∗n
)

satisfies the Nash Equilibrium condition
if none of the players can improve you payoff by changing his strategy unilaterally, or in
mathematical terms:

∀i : Hi (t∗) = maxsi∈SiHi (t∗||t) (31)

where t∗||t is the play obtained by replacing t∗ by t.
The connection between game theory and combinatorial optimization algorithms is
demonstrated in Yu & Berthod (1995a). It has been proved that the GSA algorithm
fundamentals are based on two major results that states the equivalence between MAP-MRF
estimation and non-cooperative games Yu & Berthod (1995a):

Theorem 3..1. (MAP-MRF Nash Points Equivalence Theorem) The set of local maximum points
of the a posteriori probability in MAP-MRF image labeling problems is identical to the set of Nash
equilibrium points of the corresponding non-cooperative game.

Theorem 3..2. (GSA Convergence Theorem) The GSA algorithm converges to a Nash point in a
nite number of iterations, given an arbitrary initial condition.

Actually, a complete analogy between game theory and the wavelet denoising problem can
be made, since the wavelet denoising process can be thought as being a generalization of
image labeling, where instead of discrete labels, the unknown coefficients are continuous
random variables. In Table 1 we show how concepts of non-cooperative game theory and
our algorithm are in fact closely related.

Wavelet Denoising Game Theory

sub-band lattice n-person game structure
sub-band elements players
wavelet coefficients pure strategies

an entire sub-band at p-th iteration a play or situation
posterior distribution payoff

local conditional densities mixed strategies
local maximum points (MAP) Nash equilibrium points

Table 1. Correspondence between concepts of game theory and the MAP-MRF wavelet
denoising approach.

3.3 GSAShrink for wavelet denoising

Given the observed data y (noisy image wavelet coefficients), and the estimated parameters

for all the sub-bands �Ψr =
{

ν̂r , β̂r , θ̂r
}

, r = 1, . . . , S, where S is the total number of sub-bands
in the decomposition, our purpose is to recover the optimal wavelet coefficient field x∗ using a
Bayesian approach. As the number of possible candidates for x∗ is huge, to make the problem
computationally feasible, we adopt an iterative approach, where the wavelet coefficient field
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at a previous iteration, let’s say x(p), is assumed to be known. Hence, the new wavelet

coefficient x
(p+1)
j,k can be obtained by:

x
(p+1)
j,k = argmaxxj,k

{

log p
(

xj,k|x(p), yj,k,�Ψj

)}

(32)

Basically, GSAShrink consists in, given an initial solution, improve it iteratively by scanning
all wavelet coefficients sequentially until the convergence of the algorithm or until a
maximum number of iterations is reached. In this manuscript, we are setting the initial

conditions as the own noisy image wavelet sub-band, that is, x(0) = y, although some
kind of previous preprocessing may provide better initializations. Considering the statistical
modeling previously described, we can define the following approximation:

log p
(

xj,k|x(p), yj,k,�Ψj

)

∝ log

⎛

⎝

ν̂j

2β̂jΓ
(

1
ν̂j

)

⎞

⎠ − (33)

⎡

⎣

�

�

�
yj,k

�

�

�

β̂j

⎤

⎦

ν̂j

− θ̂j ∑
(ℓ∈ηj,k)

�

1 − 2exp

�

−
(

x
(p)
j,k − x

(p)
j,ℓ

)2
��

Therefore, we can define the following rule for updating the wavelet coefficient x
(p)
j,k , based on

minimizing the negative of each player payoff, denoted by Hj,k

(

x, y,�Ψj

)

, considering x(0) =
y:

x
(p+1)
j,k = argminxj,k

{

Hj,k

(

x, y,�Ψj

)}

(34)

where

Hj,k

(

x, y,�Ψj

)

= (35)

⎡

⎣

�

�

�
xj,k

�

�

�

β̂j

⎤

⎦

ν̂j

+ θ̂j ∑
(ℓ∈ηj,k)

�

1 − 2exp

�

−
(

x
(p)
j,k − x

(p)
j,ℓ

)2
��

The analysis of the above functional (the payoff of each player), reveals that while the first
term favors low valued strategies (coefficients near zero), since the mean value of wavelet
coefficients in a sub-band is zero, the MRF term favors strategies that are similar to those
belonging to the neighborhood (coefficients close to the neighboring ones), defining a tradeoff
between supression and smoothing, or hard and soft thresholding. In this scenario, the
MRF model parameter plays the role of a regularization parameter, since it controls the
compromisse between these two extreme behavior. Thus, our method can be considered a
hybrid adaptive approach since identical wavelet coeficients belonging to different regions
of a given sub-band are modified by completely different rules. In other words, coefficients
belonging to smooth regions tend to be more attenuated than those belonging to coarser
regions. In the following, we present the GSAShrink algorithm for wavelet-based image
denoising.
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ALGORITHM: GSAShrink for wavelet denoising

Require: The S sub-bands of the wavelet decomposition (LH1, HL1, HH1, . . .), a payoff
function (Hj,k), the probability of acceptance of new strategies (α), the attenuation parameter
for noisy coefficients (β), the gain parameter for relevant image coefficients (γ), the
threshold (T) and the number of iterations (MAX).

Ensure: Shrinked wavelet sub-bands
while p ≤ MAX do

for j = 1 to S do
for k = 1 to L (j) do {L (j): size of current sub-band}

x∗j,k = argminxj,k

{

Hj,k

(

x, y,�Ψj

)}

if
(

H
(

x∗j,k

)

≤ H
(

x
(p)
j,k

))

then

if
(∣

∣

∣
x
(p)
j,k

∣

∣

∣
≥ T

)

or
(

max
{∣

∣

∣
ηj,k

∣

∣

∣

}

≥ T
)

then

x
(p+1)
j,k = x

(p)
j,k × (1 + γ)

else
x
(p+1)
j,k = x∗j,k w. p. α;

Otherwise,

x
(p+1)
j,k = x

(p)
j,k × (1 − β) w. p. (1 − α) ;

end if
end if

end for
end for

end while

It is interesting to note that an observation can be set forward to explain why there are a large
number of "small" coefficients but relatively few "large" coefficients as the GGD suggests: the
small ones correspond to smooth regions in a image and the large ones to edges, details or
textures Chang et al. (2000). Therefore, the application of the derived MAP-MRF rule in all
sub-bands of the wavelet decomposition removes noise in an adaptive manner by smoothing
the wavelet coeficients in a selective way.
Basically, the GSAShrink algorithm works as follows: for each wavelet coefficient, the value
that maximizes the payoff is chosen and the new payoff is calculated. If this new payoff is
less than the original one, then nothing is done (since in the Nash equilibrium none of the
playes can improve its payoff by uniterally changing its strategy). Otherwise, if the absolute
value of the current wavelet coefficient xj,k or any of its neighbors is above the threshold T,
which means that we are probably dealing with relevant image information such as edges
or fine details, then xj,k is amplified by a factor of (1 + γ). The goal of this procedure is to
perform some image enhancement during noise removal. However, if its magnitude is less a
threshold, then the new coefficient x∗j,k is accepted with probability α, which is a way to smooth

the wavelet coefficients since we are employing the MAP-MRF functional given by equation
(35). The level of suppression/shrinkage depends basically on two main issues: the contextual
information and the MRF model parameter, that controls the tradeoff between suppression
and smoothing. On the other hand, with probability (1 − α) the coefficient is attenuated by
a constant factor of (1 − β), since we are probably facing a noise coefficient. It is worthwhile
to note that the only parameter originally existing in the traditional GSA algorithm for image
labeling problems is α, that controls the probability of acceptance of new strategies. Both β
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and γ parameters have been included to better represent the nature of our problem. Also,
in all experiments thoughout this chapter, we have adopted the following parameter values:
α = 0.9, β = 0.1, γ = 0.05 and MAX = 5.

3.4 Wavelet thresholds

As we have seen, a critical issue in the method is the choice of the thresholding value. Several
works in the wavelet literature discuss threshold estimation Chang et al. (2000); Jansen &
Bultheel (1999). In the experiments throughout this chapter we adopted four different wavelet
thresholdings: universal Donoho (1995); Donoho et al. (1995), SURE Jansen (2001), Bayes and
Oracle thresholds Chang et al. (2000).

3.4.1 Universal threshold

Despite its simplicity, it has been shown that the Universal Threshold has some optimal
asymptotic properties Donoho (1995); Donoho & Johnstone (1994). The Universal Threshold
is obtained by the following expression:

λUNIV =
√

2logNσ2 (36)

where N is the number of data points and σ2 denotes the noise variance. Thus, the Universal
Threshold does not depend directly on the observed input signal, but only on simple statistics
derived from it.

3.4.2 SURE threshold

The SURE (Steins’s Unbiased Risk Estimator) threshold is obtained by minimizing a risk function
R(.), assuming the coefficients are normally distributed Hudson (1978); Stein (1981). In this
chapter, we use the approximation for R(.) derived in Jansen (2001) and given by:

R(λ) =

[

1

N
�ωλ − ω�2 − σ2

]

+

[

2σ2 (N− N0)

N

]

(37)

where N is the number of wavelet coefficients, σ2 is the noise variance, ωλ and ω denote
the wavelet coefficients before and after thresholding, respectively, and N0 is number of null
wavelet coefficients after thresholding. The SURE threshold λSURE, is defined as the one that
minimizes R(λ), that is:

λSURE = argminλ {R(λ)} (38)

Analyzing the expression we can see that this method for threshold estimation seeks a tradeoff
between data fidelity and noise removal.

3.4.3 Bayes threshold

The Bayes Threshold is a data-driven threshold derived in Bayesian framework by using
a generalized Gaussian distribution as prior for the wavelet coefficients. It is a simple and
closed-form threshold that is obtained in a sub-band adaptive way by Chang et al. (2000):

λBAYES =
σ̂2

σ̂x
(39)

where
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σ̂x =
√

max
(

σ̂2
y − σ̂2, 0

)

(40)

σ̂2
y =

1

N2

N

∑
1

y2
i (41)

σ̂ =
Median (|yi|)

0.6745
(42)

It is worth mentioning that in case of σ̂2
> σ̂2

y , σ̂x is taken to be zero, implying that λBAYES =
∞, which means, in practice, that all coefficients within the sub-band are suppressed.

3.4.4 Oracle thresholds

The Oracle Thresholds are the theoretic optimal sub-band adaptive thresholds in a MSE
sense, assuming the original image is known, a condition that obviously is possible only in
simulations. The OracleShrink threshold is defined as:

λ∗
S = argminλ

{

N

∑
k=1

(ηλ (yk) − xk)
2

}

(43)

where N is the number of wavelet coefficients in the sub-band, ηλ denotes the soft
thresholding operator and xk is the k-th coefficient of the original image. Similarly, the
OracleThresh threshold is given by:

λ∗
H = argminλ

{

N

∑
k=1

(ψλ (yk)− xk)
2

}

(44)

where ψλ denotes the hard threshold operator.

4. Statistical inference on MRF models

With advances on probability and statistics, such as the remarkable Hammersley-Clifford
Theorem Hammersley & Clifford (1971), which states the Gibbs-Markov equivalence,
Bayesian inference and the development of Markov Chain Monte Carlo simulation methods
(MCMC) Metropolis et al. (1953), Geman & Geman (1984), Swendsen & Wang (1987), Wolff
(1989) together with combinatorial optimization algorithms to solve numerical maximization
of complex high dimensional functions Besag (1986b), Marroquin et al. (1987b), Yu & Berthod
(1995b), Markov Random Fields became a central topic in a variety of research fields including
pattern recognition, game theory, computer vision and image processing. Those important
contributions have led to a huge number of novel methodologies and techniques in statistical
applications, especially those regarding contextual modeling and spatial data analysis.
However, in most applications the MRF model parameters are still chosen by trial-and-error
through simple manual adjustments Solberg (2004), Wu & Chung (2007). Therefore, statistical
inference on several MRF models remains an open problem. The main reason is that the most
general estimation method, maximum likelihood (ML), is computationally intractable. An
alternative solution proposed by Besag (1974) is to use the local conditional density functions
(LCDF) to perform Maximum Pseudo-Likelihood (MPL) estimation.
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4.1 Maximum pseudo-likelihood estimation

This section briefly describes the MLP estimation of the Generalized isotropic MLL parameter
model θ, given by equation (30). Basically, our motivations for this approach are:

• MPL estimation is a computationally feasible method.

• From a statistical perspective, MPL estimators have a series of desirable properties, such
as consistency and asymptotic normality Jensen & Künsh (1994), Winkler (2006).

In recent works found in MRF literature, analytical pseudo-likelihood equations for Potts
MRF model on higher-order neighborhood systems have been derived Levada et al. (2008c),
showing the importance of MRF parameter estimation assessment. In the experiments along
this chapter, the proposed methodology is based on the approximation for the asymptotic
variance of the Potts MRF model reported in Levada et al. (2008b) and Levada et al. (2008a).

4.1.1 Pseudo-likelihood equation

The main advantage of maximum pseudo-likelihood estimation is its mathematical
tractability and computational simplicity. The pseudo-likelihood function for the Generalized
Potts MRF model is defined as:

PL(X; θ) =
N

∏
s=1

exp {−θDs (xs)}

∑y∈G exp {−θDs(y)}
(45)

where N denotes the number of elements on the field.
Taking the logarithms, differentiating on the parameter and setting the result to zero, lead to
the following expression (pseudo-likelihood equation):

N

∑
s=1

[

∑y∈G Ds (y) exp {−θDs (y)}

∑y∈G exp {−θDs (y)}

]

=
N

∑
s=1

Ds (xs) (46)

In the experiments, the solution is obtained by finding the zero of the resultant equation.
We chose the Brent’s method Brent (1973), a numerical algorithm that does not require the
computation (or even the existence) of derivatives. The advantages of this method are: it uses
a combination of bisection, secant, and inverse quadratic interpolation methods, leading to a
very robust approach. Besides, it has superlinear convergence rate.

4.2 Bilateral filtering

Bilateral Filtering (BF) is a noniterative and local non-linear spatial domain filtering technique
that originally was proposed as an intuitive tool Tomasi & Manduchi (1998) but later has
showed to be closely related to classical partial differential equation based methods, more
precisely, anisotropic diffusion Barash (2002); Dong & Acton (2007); Elad (2002). The basic
idea of bilateral filtering is to use a weighted average of degraded pixels to recover the original
pixel by combining a low-pass function (hD) and a edge stoping function (hP) according to the
following relationship:

f̂ [i, j] =
∑(k,n)∈Ωi,j

hD [k, n]hP[k, n]g(k,n)

∑(k,n)∈Ωi,j
hD [k, n]hP[k, n]

(47)

where Ωi,j is a (2N + 1) × (2N + 1) window centered at (i, j) and
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• MPL estimation is a computationally feasible method.

• From a statistical perspective, MPL estimators have a series of desirable properties, such

In recent works found in MRF literature, analytical pseudo-likelihood equations for Potts
MRF model on higher-order neighborhood systems have been derived Levada et al. (2008c),
showing the importance of MRF parameter estimation assessment. In the experiments along
this chapter, the proposed methodology is based on the approximation for the asymptotic
variance of the Potts MRF model reported in Levada et al. (2008b) and Levada et al. (2008a).

The main advantage of maximum pseudo-likelihood estimation is its mathematical
seudo-likelihood function for the Generalized

Potts MRF model is defined as:

exp

exp

denotes the number of elements on the field.

the following expression (pseudo-likelihood equation):

In the experiments, the solution is obtained by finding the zero of the resultant equation.

computation (or even the existence) of derivatives. The advantages of this method are: it uses

(BF) is a noniterative and local non-linear spatial domain filtering technique
that originally was proposed as an intuitive tool Tomasi & Manduchi (1998) but later has

idea of bilateral filtering is to use a weighted average of degraded pixels to recover the original
pixel by combining a low-pass function (

hD [k, n] = exp

{

−
(k− i)2 + (n− j)2

2σ2
D

}

(48)

hP[k, n] = exp

{

−
(g[k,n] − g[i, j])2

2σ2
P

}

(49)

where the parameters σD and σP control the effect of the spatial and radiometric weight
factors. The first weight, hD , measures the geometric distance between the central pixel and
each one of its neighbors, in a way that the nearest samples have more influence on the final
result than the distant ones. The second weight, hP, penalizes the neighboring pixels that vary
greatly in intensity from the central pixel, in a way that the larger the difference, the smaller
will be the pixel’s contribution during the smoothing. In all experiments along this chapter,
we set N = 2 (5× 5 window), σ2

D = 1 and σ2
P = 0.1.

Basis Metrics

Soft Hard GSAShrink
ISNR -0.8484 0.4388 0.5823

HAAR PSNR 25.613 27.032 27.777
SSIM 0.8012 0.8625 0.8903

ISNR 0.4864 1.6952 2.2662
DB4 PSNR 27.067 28.705 29.365

SSIM 0.8598 0.9017 0.9108

ISNR 0.6580 1.8093 2.3455
SYM4 PSNR 27.257 28.662 29.266

SSIM 0.8639 0.9001 0.9113

ISNR 0.8336 1.9868 2.587
BIOR6.8 PSNR 27.549 28.856 29.829

SSIM 0.8655 0.8981 0.9176

Table 2. Performance of wavelet denoising algorithms on Lena image corrupted by additive
Gaussian noise (PSNR = 26.949 dB) using the Universal Threshold.

5. Experiments and results

In order to test and evaluate the GSAShrink algorithm for wavelet-based image denoising,
we show the results of some experiments performed by using both simulated and real noisy
image data:

• Lena image corrupted by gaussian noise.

• Real Nuclear Magnetic Resonance (NMR) images from primate brains (marmosets and
brown capuchin monkeys).

In all experiments the wavelet thresholds were estimated in a sub-band adaptive way, which
means that we used a different threshold λj, j = 1, 2, . . . , 6, for each sub-band, except the
LL2 (approximation), since we are using a Level-2 wavelet decomposition, resulting in the six
details sub-bands known as LL2, LH2, HL2,HH2, LH1,HL1 and HH1. Also, in all experiments,
we compared the performance of GSAShrink against soft and hard-thresholding techniques,
by using several wavelet basis: Haar, Daubechies4, Symlet4 and Biorthogonal6.8, a kind of
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(a) LHL wavelet subband. (b) HH wavelet subband.

Fig. 2. HL2 and HH1 wavelet sub-bands for the Lena image: (a) a more homogeneous
situation (θ = 1.1754) and (b) a more heterogeneous case (θ = 0.9397), defined by statistically
different MRF parameter values.

wavelet transform that has filters with symmetrical impulse response, that is, linear phase
filters. The motivation for including Biorthogonal wavelets is that it has been reported that in
image processing applications filters with non-linear phase aften introduce visually annoying
artifacts in the denoised images.
To perform quantitative analysis of the obtained results, we compared several metrics
for image quality assessment. In this manuscript, we selected three different metrics that
are: Improvement in Signal-To-Noise-Ratio (ISNR), Peak Signal-To-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM), since MSE based metrics have proved to be inconsistent
with the human eye perception Wang & Bovik (2009).

Sub-band θ̂MPL σ̂
2
n(θ̂MPL)

LH2 1.1441 3.1884× 10−6

HL2 1.1754 9.1622× 10−6

HH2 1.0533 1.8808× 10−5

LH1 0.9822 6.2161× 10−6

HL1 0.9991 7.3409× 10−6

HH1 0.9397 4.5530× 10−6

Table 3. MPL estimators for θ and asymptotic variances for the Lena image wavelet
sub-bands.

Table 2 shows the results for GSAShrink denoising on the Lena image, corrupted by additive
Gaussian noise (PSNR = 26.949 dB). Table 3 shows the estimated regularization MRF
parameters and their respective asymptotic variances for each one of the details sub-bands.
Figure 2 shows the HL2 and HH1 sub-bands of wavelet decomposition. Note that the coarser
a sub-band, the smaller is the regularization parameter, indicating that suppression is favored
over smoothing, forcing a more intense noise removal.
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Analyzing the results, we see that GSAShrink had superior performance in all cases.
Furthermore, the best result was obtained by using GSAShrink with Biorthogonal 6.8 wavelets.
To illustrate these numerical results, Figure 3 shows some visual results for the best
performances.

(a) Noisy Lena. (b) Soft-Threshold.

(c) Hard Threshold. (d) GSAShrink.

Fig. 3. Visual results for wavelet denoising using Biorthogonal6.8 wavelets with sub-band
adaptive Universal threshold (Table 2): (a) Noisy Lena; (b) Soft-Threshold; (c)
Hard-Threshold; (d) GSAShrink.

The same experiment was repeated by considering other threshold estimation methods. The
use of SURE and Bayes thresholds improved the denoising performance, as indicate Table
4. As the use of Biothogonal6.8 wavelets resulted in uniformly superior performances, from
now on we are omitting the other wavelet filters. Figure 4 shows the visual results for the best
results (SURE).
As GSAShrink iterativelly converges to local maxima solutions, we performed an experiment
to illustrate the effect of using different initializations on the final result by combining spatial
domain (Bilateral Filtering) and wavelet-domain (GSAShrink) non-linear filtering. If instead of
considering the observed noisy image directly as input to our algorithm, we use the result
of Bilateral Filtering, the performance can be further improved. Table 5 shows a comparison
between simple Bilateral Filtering and the combined approach. Figure 5 shows that the use of
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Threshold Metrics

Soft Hard GSAShrink
ISNR 2.0235 2.8836 3.3458

SURE PSNR 28.702 29.641 30.441
SSIM 0.8918 0.8991 0.9270

ISNR 2.8511 1.2721 3.2280
Bayes PSNR 29.433 28.270 29.880

SSIM 0.8942 0.8306 0.9157

ISNR 3.3713 2.7318 3.6411
Oracle PSNR 30.045 29.586 30.609

SSIM 0.9103 0.8964 0.9277

Table 4. Performance of wavelet denoising algorithms on Lena image corrupted by additive
Gaussian noise (PSNR = 26.949 dB) using the SURE, Bayes and Oracle thresholds with
Biorthogonal6.8 wavelets.

(a) Noisy Lena. (b) Soft-Threshold.

(c) Hard-Threshold. (d) GSAShrink.

Fig. 4. Visual results for wavelet denoising using Biorthogonal6.8 wavelets with sub-band
adaptive SURE threshold (Table 4): (a) Noisy Lena; (b) Soft-Threshold; (c) Hard-Threshold;
(d) GSAShrink.

Bilateral Filtering in the generation of initial conditions to the GSAShrink algorithm prevents
the appearance of visible artifacts that are usually found in wavelet-based methods.
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Metric BF GSAShrink BF + GSAShrink
ISNR 4.6211 3.2280 4.6912
PSNR 31.149 29.880 31.481
SSIM 0.9142 0.9157 0.9310

Table 5. Results of using Bilateral Filtering to generate better initial conditions to our
MAP-MRF approach.

Sub-band θ̂MPL σ̂
2
n(θ̂MPL)

LH2 0.8066 2.4572× 10−5

HL2 0.8898 3.7826× 10−5

HH2 0.7338 1.0153× 10−5

LH1 0.7245 3.9822× 10−5

HL1 0.7674 5.8675× 10−5

HH1 0.6195 4.4578× 10−5

Table 6. MPL estimators for θ and asymptotic variances for the NMR image wavelet
sub-bands.

5.1 Results on real image data

Additionally to the simulations, we have performed some experiments on real NMR
image data to test and evaluate GSAShrink. The NMR images considered here are from
primate brains (both marmosets and brown capuchin monkeys) and were acquired by
the CInAPCe project, an abbreviation for the Portuguese expression “Inter-Institutional
Cooperation to Support Brain Research” a Brazilian research project that has as main purpose
the establishment of a scientific network seeking the development of neuroscience research
through multidisciplinary approaches. In this sense, image processing can contribute to the
development of new methods and tools for analyzing magnetic resonance imaging and its
integration with other methodologies in the investigation of brain diseases.
Figure 6 shows some visual results for NMR image denoising. Analyzing the results, it is
possible to see that GSAShrink acts more like soft-thresholding in homogeneous areas and
more like hard-thresholding in regions with a lot of details. Table 6 shows the estimated
regularization MRF parameters and their respective asymptotic variances for each one of the
details sub-bands. Figure 7 shows the subbands HL2 and HH1.

6. Conclusion

In this chapter, we investigated a novel MAP-MRF iterative algorithm for wavelet-based
image denoising (GSAShrink). Basically, it uses the Bayesian approach and game-theoretic
concepts to build a flexible and general framework for wavelet shrinkage. Despite its
simplicity, GSAShrink has demonstrated to be efficient in edge-preserving image filtering.
The Generalized Gaussian distribution and a GIMLL MRF model were combined to derive a
payoff function which provides a rule for iterativelly update the current value of a wavelet
coefficient. This was, to the best of our knowledge, the first time these two models were
combined for this purpose. Also, we have shown that in this scenario, the MRF model
parameter plays the same role of a regularization parameter, since it controls the tradeoff
between supression and atenuation, defining a hybrid approach.
Experiments with both simulated and real NMR image data provided good results that were
validated by several quantitative image quality assessment metrics. The obtained results
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(a) Original Lena. (b) Bilateral Filtering (BF).

(c) GSAShrink. (d) BL + GSAShrink.

Fig. 5. Results for wavelet denoising using combination of Bilateral Filtering and our
MAP-MRF approach (Table 5): (a) Original Lena; (b) Bilateral Filtering (BF); (c) GSAShrink;
(d) Bilateral Filtering + GSAShrink.

indicated a significant improvement in the denoising performance, showing the efectiveness
of the proposed method.
Future works may include the use and investigation of more wavelet decomposition levels,
other kinds of wavelet transforms, such as wavelet packets and undecimated or stationary
transforms, as well as the filtering of other kinds of noise such as multiplicative speckle and
signal-dependent Poisson noise (by using the Anscombe Transform). Finally, we intend to
proposed and study the viability of other combinatorial optimization shrinkage methods
as ICMShrink and MPMShrink, based on modified versions of ICM and MPM algorithms
respectively. Regarding the influence of the initial conditions on the final result, we believe
that the use of multiple initializations instead of a single one, together with information
fusion techniques, can further improve the denoising performance, particularly in multiframe
image filtering/restoration or video denoising, where several frames from the same scene are
available and only the noise changes from one frame to another.
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(a) Noisy NMR image. (b) Soft-Threshold.

(c) Hard-Threshold. (d) BL + GSAShrink.

Fig. 6. Results for wavelet denoising on real NMR marmoset brain image data: (a) Noisy
NMR image; (b) Soft-Threshold; (c) Hard-Threshold; (d) Bilateral Filtering + GSAShrink.

(a) LHL subband. (b) HH subband.

Fig. 7. HL2 and HH1 wavelet sub-bands for the NMR image: (a) a more homogeneous
situation (θ = 0.8898) and (b) a more heterogeneous case (θ = 0.6195), defined by statistically
different MRF parameter values.
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