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1. Introduction     

With the astonishing growth of wireless technologies, the requirement of providing universal 
location services by wireless technologies is growing. The process of obtaining a terminal’s 
location by exploiting wireless network infrastructure and utilizing wireless communication 
technologies is called wireless positioning (Rappaport, 1996). Location information can be used 
to enhance public safety and revolutionary products and services. In 1996, the U.S. federal 
communications commission (FCC) passed a mandate requiring wireless service providers to 
provide the location of a wireless 911 caller to the nearest public safety answering point 
(PSAP) (Zagami et al., 1998). The wireless E911 program is divided into two parts- Phase I and 
Phase II, carriers were required to report the phone number of the wireless E911 caller and the 
location (Reed, 1998). The accuracy demands of Phase II are rather stringent. Separate accuracy 
requirements were set forth for network-based and handset-based technologies: For network-
based solution: within 100m for 67% of calls, and within 300m for 95% of the calls. For 
handset-based solutions: within 50m for 67% of calls and within 150m for 95% of calls. Now 
E911 is widely used in U.S. for providing national security, publish safety and personal 
emergency location service. Wireless positioning has also been found useful for other 
applications, such as mobility management, security, asset tracking, intelligent transportation 
system, radio resource management, etc. As far as the mobile industry is concerned, location 
based service (LBS) is of utmost importance as it is the key feature that differentiates a mobile 
device from traditional fixed devices (Vaughan-Nichols, 2009). With this in mind, 
telecommunications, devices, and software companies throughout the world have invested 
large amounts of money in developing technologies and acquiring businesses that would let 
them provide LBS. Numerous companies-such as Garmin, Magellan, and TomTom 
international-sell dedicated GPS devices, principally for navigation. Several manufactures-
including Nokia and Research in Motion-sell mobile phones that provide LBS. Google’s My 
Location service for mobile devices, currently in beta, uses the company’s database of cell 
tower positions to triangulate locations and helps point out the current location on Google 
map. Various chip makers manufacture processors that provide devices with LBS 
functionality. These companies’ products and services work together to provide location-based 
services, as Fig. 1. Shows (Vaughan-Nichols, 2009). 
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Fig. 1. Diagram shows how various products and services work together to provide 
location-based services 

Thus, location information is extremely important. In order to help the growth of this 
emerging industry, there is a requirement to develop a scientific framework to lay a 
foundation for design and performance evaluation of such systems.  

1.1 Elements of wireless positioning systems 
Fig. 2. illustrates the functional block diagram of a wireless positioning system (Pahlavan, 
2002). The main elements of the system are a number of location sensing devices that 
measure metrics related to the relative position of a mobile terminal (MT) with respect to a 
known reference point (RP), a positioning algorithm that processes metrics reported by 
location sensing elements to estimate the location coordinates of MT, and a position 
computing system that calculate the location coordinates. The location metrics may indicate 
the approximate arrival direction of the signal or the approximate distance between the MT 
and RP. The angle of arrival (AOA)/Direction finding (DF) is the common metric used in 
direction-based systems. The received signal strength (RSS), carrier signal phase of arrival 
(POA) and time of arrival (TOA), time difference of arrival (TDOA), frequency difference of 
arrival (FDOA)/Doppler difference (DD) of the received signal are the metrics used for 
estimation of distance. Which metrics should be measured depends on the positioning 
 

 

Fig. 2. Basic elements of a wireless positioning system 
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algorithms. As the measurements of metrics become less reliable, the complexity of the 
position calculation increased. Some positioning system also has a display system. The 
display system can simply show the coordinates of the MT or it may identify the relative 
location of the MT in the layout of an area. This display system could be software residing in 
a private PC or a mobile locating unit, locally accessible software in a local area network, or 
a universally accessible service on the web.  

1.2 Location measuring techniques  
As discussed in section 1.1, received signal strength (RSS), angle of arrival (AOA), time of 
arrival (TOA), round trip time (RTT), time difference of arrival (TDOA), phase of arrival 
(POA), and phase difference of arrival (PDOA) can all be used as location measurements 
(Zhao, 2006).  

1.2.1 RSS estimation 
RSS is based on predicting the average received signal strength at a given distance from the 
transmitter (Jian, 2005). Then, the measured RSS can provide ranging information by 
estimating the distance from the large-scale propagation model. Large-scale propagation 
model is used to estimate the mean signal strength for an arbitrary transmitter-receiver (T-
R) separation distance since they characterize signal strength over large T-R separation 
distances (several hundreds or thousands of meters). The average large-scale propagation 
model is expressed as a function of distance by using a path loss exponent, n 

 0
0

( )[ ] ( )[ ] 10 log( )r r

d
P d dBm P d dBm n X

d
σ= − +  (1)       

Where ( )[ ]rP d dBm is the received power in dBm units which is a function of the T-R distance 

of d, n is the path loss exponent which indicates the rate at which the path loss increased 

with distance, d is the T-R separation distance, 0d is the close-in reference distance, as a 

known received power reference point. 0( )[ ]rP d dBm is the received power at the close-in 

reference distance. The value 0( )[ ]rP d dBm may be predicted or may be measured in the 

radio environment by the transmitter. For practical system using low-gain antennas in the 1-

2GHz region, 0d is typically chosen to be 1m in indoor environments and 100m or 1km in 

outdoor environments. Xσ describes the random shadowing effects, and is a zero-mean 

Gaussian distributed random variable (in dB) with standard deviation σ (also in dB). By 

measuring ( )[ ]rP d dBm and 0( )[ ]rP d dBm , the T-R distance of d may be estimated.  
RSS measurement is comparatively simple for analysis and implementation but very 
sensitive to interference caused by fast multipath fading. The Cramer-Rao lower bound 
(CRLB) for a distance estimate provides the following inequality (Gezici, 2005): 
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Where d is the distance between the T-R, n is the path loss factor, and σ is the standard 

deviation of the zero mean Gaussian random variable representing the log-normal channel 

shadowing effect. It is observed that the best achievable limit depends on the channel 

parameters and the distance between the transmitter and receiver. It is suitable to use RSS 

measurements when the target node can be very close to the reference nodes.  
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1.2.2 TOA and TDOA estimation 
TOA can be used to measure distance based on an estimate of signal propagation delay 
between a transmitter and a receiver since radiowaves travel at the speed of light in free 
space or air (Alavi,2006). The TOA can be measured by either measuring the phase of 
received narrowband carrier signal or directly measuring the arrival time of a wideband 
narrow pulse (Pahlavan, 2002). The ranging techniques of TOA measurement can be 
classified in three classes: narrowband, wideband and ultra wide band (UWB).  

In the narrowband ranging technique, the phase difference between received and 
transmitted carrier signals is used to measure the distance. The phase of a received carrier 
signal,φ , and the TOA of the signal, τ ,are related by / cτ φ ω= ,where cω is the carrier 
frequency in radio propagation. However, when a narrowband carrier signal is transmitted 
in a multipath environment, the composite received carrier signal is the sum of a number of 
carriers, arriving along different paths, of the same frequency but different amplitude and 
phase. The frequency of the composite received signal remains unchanged, but the phase 
will be different form one-path signal. Therefore, using a narrowband carrier signal cannot 
provide accurate estimate of distance in a heavy multipath environment. 
The direct-sequence spread-spectrum (DSSS) wideband signal has been used in ranging 
systems. In such a system, a signal coded by a known pseudo-noise (PN) sequence is 
transmitted by a transmitter. Then a receiver cross correlates received signal with a locally 
generated PN sequence using a sliding correlator or a matched filter. The distance between 
the transmitter and receiver is determined from the arrival time of the first correlation peak. 
Because of the processing gain of the correlation process at the receiver, the DSSS ranging 
systems perform much better than other systems in suppressing interference. 
Due to the scarcity of the available bandwidth in practice, the DSSS ranging systems cannot 
provide adequate accuracy. Inspired by high-resolution spectrum estimation techniques, a 
number of super-resolution techniques have been studied such as multiple signal 
classification (MUSIC) (Rieken, 2004).  
For a single path additive white Gaussian noise (AWGN) channel, it can be shown that the 
best achievable accuracy of a distance estimate derived from TOA estimation satisfies the 
following inequality (Anouar, 2007): 

  ( )
2 2

c
Var d

SNRπ β
≥

&
  (3) 

Where c is the speed of light, SNR is the signal-to-noise ratio, and β is the effective signal 

bandwidth defined by 

2 2
2 1/2[ ( ) / ( ) ]f S f df s f dfβ

∞ ∞

−∞ −∞
= ∫ ∫  

and S(f) is the Fourier transform of the transmitted signal. 
It is observed that the accuracy of a time-based approach can be improved by increasing the 
SNR or the effective signal bandwidth. Since UWB signals have very large bandwidths 
exceeding 500MHz, this property allows extremely accurate location estimates using time-
based techniques via UWB radios. For example, with a receive UWB pulse of 1.5 GHz 
bandwidth, an accuracy of less than an inch can be obtained at SNR=0dB. 
In general, direct TOA results in two problems. First, TOA requires that all transmitters and 
receivers in the system have precisely synchronized clocks (e.g.,just 1us of timing error 
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could result in a 300m position location error). Second, the transmitting signal must be 
labeled with a timestamp in order for the receiver to discern the distance the signal has 
traveled. For this reason, TDOA measurements are a more practical means of position 
location for commercial systems. The idea of TDOA is to determine the relative position of 
the mobile transmitter by examining the difference in time at which the signal arrives at 
multiple measuring units, rather than the absolute arrival time. Fig.3. is a simulation of a 
pulse waveform recorded by receivers P0 and P1. The red curve in Fig.3. is the cross 
correlation function. The cross correlation function slides one curve in time across the other 
and returns a peak value when the curve shapes match. The peak at time=5 is the TDOA 
measure of the time shift between the recorded waveforms. 
 

 

Fig. 3. Cross correlation method for TDOA measurements 

1.2.3 AOA estimation 
AOA is the measurement of signal direction through the use of antenna arrays. AOA metric 
has long and widely been studied in many years, especially in radar and sonar technologies 
for military applications. Using complicated antenna array, high-resolution angle 
measurement would be obtained.  
The advantages of AOA are that a position estimate may be determined with as few as three 
measuring units for 3-D positioning or two measuring units for 2-D positioning, and that no 
time synchronization between measuring units is required. The disadvantages include 
relatively large and complex hardware requirements and location estimate degradation as 
the mobile target moves farther from the measuring units. For accurate positioning, the 
angle measurements need to be accurate, but the high accuracy measurements in wireless 
networks may be limited by shadowing, by multipath reflections arriving from misleading 
directions, or by the directivity of the measuring aperture. Some literatures also call AOA as 
direction of arrival (DOA) or direct finding (DF). Classic approaches for AOA estimation 
include Capon’s method (Gershman, 2003; Stoica, 2003). The most popular AOA estimation 
techniques are based on the signal subspace approach by Schmidt (Swindlehurst, 1992) with 
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Multiple Signal Classification (MUSIC) algorithm. Subspace algorithms operate by 
separating a signal subspace from a noise subspace and exploiting the statistical properties 
of each. Variants of the MUSIC algorithm have been developed to improve its resolution 
and decrease its computational complexity including Root-MUSIC (Barabell, 1983) and 
Cyclic MUSIC. Other improved subspace-based AOA estimation techniques include the 
Estimation of Signal Parameters by Rotational Invariance Techniques (ESPRIT) algorithm 
and its variants, and a minimum-norm approach.  

1.2.4 Joint parameter estimation 
Estimators which estimate more than one type of location parameter (e.g., joint AOA/TOA) 
simultaneously have been developed. These are useful for hybrid location estimation 
schemes. Most joint estimators are based on ML techniques and signal subspace approaches, 
such as MUSIC or ESPRIT, and are developed for joint AOA/TOA estimation of a single 
users multipath signal components at a receiver.  
The ML approach in (Wax & Leshem, 1997) for joint AOA/TOA estimation in static 
channels presents an iterative scheme that transforms a multidimensional ML criterion into 
two sets of one dimensional problems. Both a deterministic and a stochastic ML algorithm 
were developed in (Raleigh & Boros, 1998) for joint AOA/TOA estimation in time-varying 
channels. A novel subspace approach was proposed in (Vanderveen, Papadias & Paulraj, 
1997) that jointly estimates the delays and AOAs of multipaths using a collection of space 
time channel estimates that have constant parameters of interest but different path fade 
amplitudes. Unlike MUSIC and ESPRIT, this technique has been shown to work when the 
number of paths exceeds that number of antennas. 

1.3 Positioning algorithms 
Once the location sensing parameters are estimated using the methods discussed in the 
previous section, it needs to be considered how to use these measurements to get the 
required position coordinates. In another words, how to design a geolocation algorithm 
with these parameters as input and position coordinates as output. In this section, the 
common methods for determining MT location will be described. It is to be noted that these 
algorithms assume measurements are made under Line of sight (LOS) conditions. 

1.3.1 Geometric location 
Geometric location uses the geometric properties to estimate the target location. It has three 

derivations: trilateration, multilateration and triangulation. Trilateration estimates the 

position of an object by measuring its distance from multiple reference points. 

Multilateration locates the object by computing the TDOA from that object to three or more 

receivers. Triangulation locates an object by computing angles relative to multiple reference 

points. 

A. Trilateration 

Trilateration is based on the measurement of distance (i.e. ranges) between MT and RP. The 

MT lies on the circumference of a circle, with the RP as center and a radius equal to the 

distance estimate. The desired MT location is determined by the intersection of at least three 

circle formed by multiple measurements between the MT and several RPs. Common 

methods for deriving the range measurements include TOA estimation and RSS estimation. 
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The solution is found by formulating the equations for the three sphere surface and then 

solving the three equations for the two unknowns: x and y, as shown in Fig.5. It is assumed 

that the MT located at ( , )x y , transmits a signal at time 0t , the three RPs located at 

1 1 2 2 3 3( , ),( , ),( , )x y x y x y  receive the signal at time 1 2 3, ,t t t . The equations for the three spheres 

are: 

 2 2
0( ) ( ) ( ), 1,2,3i i ix x y y c t t i− + − = − =  (4) 

( , )x y

1 1
( , )x y

1
d 2 2

( , )x y

2
d

3 3
( , )x y

3
d

 

Fig. 5. Trilateration positioning  

The next work to do is to find an optimized method to solve these equations under small 
error conditions. One well-known method is based on cost function. The cost function can 
be formed by 

 
3

2 2

1

( ) ( )i i
i

F x f xα
=

=∑  (5) 

Where iα can be chosen to reflect the reliability of the signal received at the measuring unit i, 

and ( )if x is given as follows. 

 2 2
0( ) ( ) ( ) ( )i i i if x c t t x x y y= − − − + −  (6) 

The location estimate is determined by minimizing the function F(x). There are other 
algorithms such as closest-neighbor (CN) and residual weighting (RWGH). The CN 
algorithm estimates the location of the user as the location of the base station or reference 
point that is located closest to that user. The RWGH algorithm can be viewed as a form of 
weighted least-square algorithm.   

B. Multilateration 

Multilateration, also known as hyperbolic positioning, measures the time difference of 
signals travelled from a MT to a pair of RPs, or vice versa. The MT lies on a hyperbola 
defined by constant distance difference to the two RPs with the foci at the RPs. The desired 
location of the MT is determined at the intersection of the hyperbolas produced by multiple 
measurements as shown in Fig.6. This method requires no timestamp and only the 
synchronization among the RPs is required. 
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When the TDOA is measured, a set of equations can be described as follows. 

 ,1 1 1( )  i i i iR c t t c R Rτ= − = Δ = −  (7) 

Where ,1  iR is the value of range difference from MT to the ith RP and the first RP. 
Define  

2 2( ) ( )  ,      1i i iR X x Y y i , N= − + − = A        

( , )i iX Y is the RP coordinate, ( , )x y is the MT location, iR is the distance between the RP and 
MT, N is the number of BS, c is the light speed, iτΔ is the TDOA between the service RP and 
the ith iRP . In the geometric point of view, each equation presents a hyperbolic curve. Eq. 
(7) is a set of nonlinear equations. Fang (Fang, 1990) gave an exact solution when the 
number of equations is equal to the number of unknown coordinates. This solution, 
however, cannot make use of extra measurements, available when there are extra sensors, to 
improve position accuracy. In reality, the surfaces rarely intersect, because of various errors. 
In this case, the location problem can be posed as an optimization problem and solved 
using, for example, a least square method. The more general situation based on least square 
algorithm with extra measurements was considered by Friendlander (Friendlander, 1987). 
Although closed-form solution has been developed, the estimators are not optimum. Chen 
gave a closed-form, non-iterative solution utilizing the least square algorithm two times 
which performs well when the TDOA estimation errors are small. However, as the 
estimation errors increase, the performance declines quickly. Taylor-series method (Foy, 
1976) is an iterative method which starts with an initial guess which is in the condition of 
close to the true solution to avoid local minima. 

RP1

RP2

RP3

MT

12d

13d

 
Fig. 6. Hyperbolic positioning  

C. Triangulation positioning 

When the AOA is measured, the location of the desired target can be found by the 
intersection of several pairs of angle direction lines. As shown in Fig. 7., at least two known 
RP and two measured angles are used to derive the 2-D location of the MT. The advantages 
of triangulation are that a position estimate may be determined with as few as three 
measuring units for 3-D positioning or two measuring units for 2-D positioning, and that no 
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time synchronization between measuring units is required. In cellular systems, the 
deployment of smart antenna makes AOA practical. However, the drawback of this method 
includes complexity and cost for the deployment of antennas at the RP side and impractical 
implementation at the MT side; susceptibility to linear orientation of RPs; accuracy 
deterioration with the increase in distance between the MT and the RP owing to 
fundamental limitations of the devices used to measure the arrival angles. The accuracy is 
limited by shadowing, multipath reflections arriving from misleading directions, or the 
directivity of the measuring aperture. 

RP1

RP2

1θ

 
2θ

MT

 
Fig. 7. Triangulation positioning 

1.3.2 Hybrid positioning  
Since the above reviewed location methods complement each other, hybrid techniques, 
which use a combination of available range, range-difference or angle measurements, or 
other methods to solve for locations, have been extensively investigated (see for example). 
Hybrid techniques are also studied to combat the problems, e.g. hearability (Zhao, 2006), 
accuracy , NLOS problems which will be discussed in the next section. Hybrid methods are 
especially useful in hearability conditions when the number of available BSs in cellular 
networks is limited. Most typical hybrid method combines TOA (TDOA) location with AOA 
location (Thomas, 2001). The scheme proposed in (Catovic & Sahinoglu, 2004) combines 
TDOA with RSS measurements.  

1.3.3 Fingerprinting  
Fingerprinting refers to techniques that match the fingerprint of some characteristic of a 
signal that is location dependent. There are two stages for location fingerprinting: offline 
stage and online stage. During the offline stage, a site survey is performed in an 
environment. The location coordinates and respective signal strengths from nearby RPs are 
collected. During the online stage, a fingerprinting algorithm is used to identify the most 
likely recorded fingerprinting to the measured one and to infer the target location. The main 
challenges to the techniques based on location fingerprinting is that the received signal 
strength could be affected by diffraction, reflection, and scattering in the propagation 
environments. There are at least five location fingerprinting-based positioning algorithm 
using pattern recognition technique so far: probabilistic methods, k-nearest-neighbor, neural 
networks, support vector machine, and smallest M-vertex polygon.  
In urban areas, when the multipath problem is quite severe, both AOA and TOA/TDOA 
may encounter difficulties. To solve this problem, the multipath characteristics can be 
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considered as the fingerprinting of mobile phones, as shown in Fig. 8. The design involves a 
location server with a database that includes measured and predicted signal characteristics 
for a specific area. When an E911 call is made, the location of the mobile phone can be 
computed by comparing signals received by the mobile with the signal values stored in the 
database. Various signal characteristics, including received signal levels and time delays 
may be utilized. 
Using a multipath delay profile to locate a mobile terminal is possible with fingerprinting. 
This avoids many of the problems that multipath propagation posed for conventional 
location methods. This method could obtain high accurate location as long as offline stage 
collects adequate and update information. However, the high cost for deployment and 
maintenance is obvious and unavoidable. As a result, it is a promising technique but not a 
mainstream option for the time being. 
 

 

Fig. 8. Fingerprinting of mobile phones 

2. Current location systems 

Network-aided positioning has attracted much research attention in recent years. Different 

network topologies pose various technical challenges to design faster, more robust and more 

accurate positioning systems. There are numerous methods for obtaining the location 

information, depending on different location systems. 

Location systems can be grouped in many different ways, including indoor versus outdoor 
systems or cellular versus sensor network positioning, as shown in Fig.9 (Guolin, 2005). 
Global positioning systems and cellular based location system can be used for outdoor 
positioning while indoor location used existing wireless local access network (WLAN) 
infrastructures for positioning. An overview of indoor positioning versus outdoor 
positioning by satellite is shown in Table 1. Sensor networks vary significantly from 
traditional cellular networks, where access nodes are assumed to be small, inexpensive, 
cooperative, homogeneous and often relatively autonomous. A number of location-aware 
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protocols have been proposed for “ad hoc” routing and networking. Sensor networks have 
also been widely used for intrusion detection in battlefields as well as for monitoring 
wildlife. 
Different network topologies, physical layer characteristics, media access control layer 
characteristics, devices and environment require remarkably different positioning system 
solutions. In this section, an overview of positioning solutions applied in GPS, cellular 
networks and WLAN will be provided. 
 

 

Fig. 9. Overview of indoor versus outdoor positioning systems 

 

 

Table. 1. Overview of indoor positioning versus outdoor positioning by satellite 

2.1 GPS 
The Global Positioning System (GPS) is a satellite-based positioning system that can provide 
3-D position and time information to users in all weather and at all times and anywhere on 
or near the earth when and where there is an unobstructed line of sight to four or more GPS 
satellites. It is maintained by the United States government and is freely accessible by 
anyone with a GPS receiver. GPS was created by U.S. Department of Defense and was 
originally run with 24 satellites. It was established in 1973. 
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2.1.1 GPS structure 
GPS consists of three parts: the space segment, the control segment and the user segment. 
The space segment is composed of 24 to 32 satellites in medium earth orbit and also includes 
the boosters required to launch them into orbit. As of March 2008, there are 31 active 
broadcasting satellites in the GPS constellation shown in Fig.10., and two older, retired from 
active service satellites kept in the constellation as orbital spares. The additional satellites 
improve the precision of GPS receiver calculations by providing redundant measurements. 
The control segment is composed of a master control station, an alternate master control 
station, and a host of dedicated and shared ground antennas and monitor stations. The user 
segment is composed of hundreds of thousands of U.S. and allied military users of the 
secure GPS precise positioning service, and tens of millions of civil, commercial, and 
scientific users of the standard positioning service. In general, GPS receivers are composed 
of an antenna, receiver-processors and a highly stable clock. 
 

 
Fig. 10. GPS constellation 

2.1.2 GPS signals 
Each GPS satellite continuously broadcasts a navigation message at a rate of 50 bits per 

second. Each complete message is composed of 30 second frames shown in Fig. 11. All 

satellites broadcast at the same two frequencies, 1.57542GHz (L1 signal) and 1.2276 GHz (L2 

signal). The satellite network uses a CDMA spread-spectrum technique where the low bit 

rate message data is encoded with a high rate pseudo random (PN) sequence that is 

different for each satellite as shown in Fig. 12. The receiver must be aware of the PN codes 

for each satellite to reconstruct the actual message data. The C/A code, for civilian use, 

transmits data at 1.023 million chips per second, whereas the P code, for U.S. military use, 

transmits at 10.23 million chips per second. The L1 carrier is modulated by both the C/A 

and P codes, while the L2 carrier is only modulated by the P code. The P code can be 

encrypted as a so-called P(Y) code which is only available to military equipment with a 

proper decryption key.  

Since all of the satellite signals are modulated onto the same L1 carrier frequency, there is a 
need to separate the signals after demodulation. This is done by assigning each satellite a 
unique binary sequence known as a Gold code. The signals are decoded after demodulation, 
using addition of the Gold codes corresponding to the satellite monitored by the receiver as 
shown in Fig. 13. 
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Fig. 11. GPS message frame 

 

Fig. 12. Modulating and encoding GPS satellite signal using C/A code 
 

 

Fig. 13. Demodulating and decoding GPS satellite signal using C/A code  

When the receiver uses messages to obtain the time of transmission and the satellite 
position, trilateration method is used to form equations and optimized algorithm is used to 
solve the equations as mentioned above. 
The main advantages of GPS are its global coverage and high accuracy within 50 meters. 
And GPS receivers are not required to transmit anything to satellites, so there is no limit to 
the number of users that can use the system simultaneously. However, there also exist 
several issues that affect the effectiveness of GPS, especially in dealing with emergency 
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services: response time, the time to first fix (TTFF) which may be greater than 30 seconds. 
Besides, GPS cannot provide accurate location under the obstructed signal case (e.g. in the 
unban city area, inside buildings). Taking these drawbacks into consideration, GPS are not 
suitable for some location services such as emergency call. 

2.2 Standardization methods for positioning in cellular networks 
There are various location techniques that are used in cellular-based positioning system. 
They can be classified by three types: mobile-based solution in which the positioning is 
carried out in handset and sent back to the network, mobile-assisted solution in which 
handset makes the measurements, reports these to the network where the serving mobile 
location center node calculated the position, and network-based solution in which the 
measuring and positioning are done by network. 
In 1997, TIA led the standardization activities for the positioning in GSM. Four positioning 
methods were included. They are cell identity and timing advance, uplink time of arrival, 
enhanced observed time difference (E-OTD) and Assisted GPS (A-GPS). There are two stages 
of standardizations, the first version specification supports circuit-switch connections and the 
second version specification provides the same support in the packet-switch domain. 
Cell-ID is a simple positioning method based on knowing which cell sector the target 
belongs to. The sector is known only during an active voice or data call. With this method, 
no air interface resources are required to obtain cell sector information (if the user is active), 
and no modifications to handset hardware are required. The disadvantage obviously is that 
the location is roarse. 
Time advance (TA) represents the round trip delay between the mobile and serving base 
station (BS), it is represented by a 6-bit integer number in the GSM frame. In addition, 
RXLEV is the measurement of the strength of signals received by a mobile, therefore, with 
suitable propagation models, the distance between a mobile and BS can be estimated.  
Since Cell-ID is not accurate, Cell-ID+TA and Cell-ID+TA+RXLEV such hybrid positioning 
methods are used as shown in Fig.14. 
 

 

Fig. 14. Cell-ID with TA for GSM 
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E-OTD is based on TDOA measured by the mobile between the receptions of bursts 
transmitted from the reference BS and each neighboring BS which value is called geometric 
time difference (GTD), requiring a synchronous network. However, GSM is not 
synchronous. Location measurement unit (LMU) devices are therefore required to compute 
the synchronization difference between two BSs which is called real time difference (RTD). 
The GTD can be obtained by GTD=OTD-RTD. Fig. 15 illustrates the solution of E-ODT. 
 

 

Fig. 15. E-OTD positioning for GSM 

In the A-GPS for GSM, the GSM network informs the mobile about the data that GPS 
satellites are sending. 
The standard positioning methods supported within UTRAN are: 
- Cell-ID based method; 
- OTDOA method that may be assisted by network configurable idle periods; 
- Network-assisted GNSS methods; 
- U-TDOA. 
In the cell ID based (i.e. cell coverage) method, the position of an UE is estimated with the 
knowledge of its serving Node B. The information about the serving Node B and cell may be 
obtained by paging, locating area update, cell update, URA update, or routing area update. 
The cell coverage based positioning information can be indicated as the Cell Identity of the 
used cell, the Service Area Identity or as the geographical co-ordinates of a position related 
to the serving cell. The position information shall include a QoS estimate (e.g. regarding 
achieved accuracy) and, if available, the positioning method (or the list of the methods) used 
to obtain the position estimate. When geographical co-ordinates are used as the position 
information, the estimated position of the UE can be a fixed geographical position within the 
serving cell (e.g. position of the serving Node B), the geographical centre of the serving cell 
coverage area, or some other fixed position within the cell coverage area. The geographical 
position can also be obtained by combining information on the cell specific fixed 
geographical position with some other available information, such as the signal RTT in FDD 
or Rx Timing deviation measurement and knowledge of the UE timing advance, in TDD. 
In OTDOA-IPDL method, the Node B may provide idle periods in the downlink, in order to 
potentially improve the hearability of neighbouring Node Bs. The support of these idle 
periods in the UE is optional. Support of idle periods in the UE means that its OTDOA 
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performance will improve when idle periods are available. Alternatively, the UE may 
perform the calculation of the position using measurements and assistance data. 
Global Navigation Satellite System (GNSS) methods make use of UEs, which are equipped 
with radio receivers capable of receiving GNSS signals. Examples of GNSS include GPS, 
Modernized GPS, Galileo, GLONASS, Satellite Based Augmentation Systems (SBAS), and 
Quasi Zenith Satellite System (QZSS).In this concept, different GNSS (e.g. GPS, Galileo, etc.) 
can be used separately or in combination to perform the location of a UE. 
The U-TDOA positioning method is based on network measurements of the Time of Arrival 
(TOA) of a known signal sent from the UE and received at four or more LMUs. The method 
requires LMUs in the geographic vicinity of the UE to be positioned to accurately measure 
the TOA of the bursts. Since the geographical coordinates of the measurement units are 
known, the UE position can be calculated via hyperbolic trilateration. This method will 
work with existing UE without any modification. 
The standard positioning methods supported for E-UTRAN access are: 
- network-assisted GNSS methods; 
- downlink positioning; 
- hanced cell ID method. 
Hybrid positioning using multiple methods from the list of positioning methods above is 
also supported. 
These positioning methods may be supported in UE-based, UE-assisted/E-SMLC-based, or 
eNB-assisted versions. Table 2 indicates which of these versions are supported in this 
version of the specification for the standardized positioning methods. 
 

Method UE-based 
UE-assisted, E-SMLC-

based 
eNB- 

assisted 
SUPL 

A-GNSS Yes Yes No 
Yes (UE-

based and 
UE-assisted 

Downlink No Yes No 
Yes (UE-
assisted) 

E-CID No Yes Yes 
Yes (UE-
assisted) 

Table 2. Supported versions of UE positioning methods 

The downlink (OTDOA) positioning method makes use of the measured timing of downlink 
signals received from multiple eNode Bs at the UE. The UE measures the timing of the 
received signals using assistance data received from the positioning server, and the resulting 
measurements are used to locate the UE in relation to the neighbouring eNode Bs. 
Enhanced Cell ID (E-CID) positioning refers to techniques which use additional UE and/or 
E-UTRAN radio resource and other measurements to improve the UE location estimate. 
Although E-CID positioning may utilize some of the same measurements as the 
measurement control system in the RRC protocol, the UE generally is not expected to make 
additional measurements for the sole purpose of positioning; i.e., the positioning procedures 
do not supply a measurement configuration or measurement control message, and the UE 
reports the measurements that it has available rather than being required to take additional 
measurement actions. In cases with a requirement for close time coupling between UE and 
eNode B measurements (e.g., TADV type 1 and UE Tx-Rx time difference), the eNode B 

www.intechopen.com



Wireless Positioning: Fundamentals, Systems and State of the Art Signal Processing Techniques   

 

19 

configures the appropriate RRC measurements and is responsible for maintaining the 
required coupling between the measurements.  

2.3 Indoor location system 
Since cellular-based positioning methods or GPS cannot provide accurate indoor 
geolocation, which has its own independent applications and unique technical challenges, 
this section focuses on positioning based on wireless local area network (WLAN) radio 
signals as an inexpensive solution for indoor environments. 

2.3.1 IEEE 802.11 
What is commonly known as IEEE 802.11 actually refers to the family of standards that 
includes the original IEEE 802.11 itself, 802.11a, 802.11b, 802.11g and 802.11n. Other 
common names by which the IEEE standard is known include Wi-Fi and the more generic 
wireless local area network (WLAN). IEEE 802.11 has become the dominant wireless 
computer networking standard worked at 2.4GHz with a typical gross bit rate of 11,54,108 
Mbps and a range of 50-100m. 
Using an existing WLAN infrastructure for indoor location can be accomplished by adding a 
location server. The basic components of an infrastructure-based location system are shown 
in Fig.16. The mobile device measures the RSS of signals from the access points (APs) and 
transmits them to a location server which calculates the location. 
There are several approaches for location estimation. The simpler method which is to 
provide an approximate guess on AP that receives the strongest signal. The mobile node is 
assumed to be in the vicinity of that particular AP. This method has poor resolution and 
poor accuracy. The more complex method is to use a radio map. The radio map technique 
typically utilizes empirical measurements obtained via a site survey, often called the offline 
phase. Given the RSS measurements, various algorithms have been used to do the match 
such as k-nearest neighbor (k-NN), statistical method like the hidden Markov model 
(HMM). While some systems based on WLAN using RSS requires to receive signals at least 
three APs and use TDOA algorithm to determine the location. 
 

 
Fig. 16. Typical architecture of WLAN location system 
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3. Advanced signal processing techniques for wireless positioning 

Although many positioning devices and services are currently available, some important 

problems still remain unsolved. This chapter gives some new ideas, results and advanced 

signal processing techniques to improve the performance of positioning. 

3.1 Computational algorithms of TDOA equations 
When TDOA measurements are employed, a set of nonlinear hyperbolic equations has been 

set up, the next step is to solve these equations and derive the location estimate. Usually, 

these equations can be solved after being linearized. These algorithms can be grouped into 

two types: non-iterative methods and iterative methods.  

3.1.1 Non-iterative methods 
A variety of non-iterative methods for position estimation have been investigated. The most 

common ones are direct method (DM), least-square (LS) method, Chan method.  

When the TDOA is measured, a set of equations can be described as follows. 

,1 1 1( )  i i i iR c t t c R Rτ= − = Δ = −  

Where ,1  iR is the value of range difference from MT to the ith RP and the first RP. 

Define  

 2 2( ) ( )  ,      1i i iR X x Y y i , N= − + − = A  (8) 

 

( , )i iX Y is the RP coordinate, ( , )x y is the MT location, iR is the distance between the RP and 

MT, N is the number of BS, c is the light speed, iτΔ is the TDOA between the service RP and 

the ith iRP .  
Squaring both sides of (8) 

 2 2 2( ) ( )  ,      1i i iR X x Y y i , N= − + − = A   (9) 

Substracting (9) for i=2,…N by (8) for i=1 

 ,1 ,1 ,1 , 2,...i i iX x Y y d i N+ = =   (10) 

 

Where ,1 1 ,1 1;i i i iX X X Y Y Y= − = − and 2 2 2 2 2 2
,1 1 1 1(( ) ( ) ) / 2i i i id X Y X Y R R= + − + + −  

3.1.1.1 Direct method 

It assumes that three RPs are used. The solution to (10) gives: 

 2,1 3,1 3,1 2,1 3,1 2,1 2,1 3,1

3,1 2,1 2,1 3,1 3,1 2,1 2,1 3,1

;
Y d Y d X d X d

x y
X Y X Y X Y X Y

− −
= =

− −
& &

 (11) 

 

The solution shows that there are two possible locations. Using a priori information, one of 
the value is chosen and is used to find out the coordinates. 
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3.1.1.2 Least square methods 

Reordering (10) the terms gives a proper system of linear equations in the form A Bθ = , where 

2,121 21

31 31 3,1

; ;
dX Y x

A B
X Y y d

θ
⎡ ⎤⎡ ⎤⎛ ⎞

= = = ⎢ ⎥⎜ ⎟ ⎢ ⎥
⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦

 

The system is solved using a standard least-square approach: 

 1( )T TA A A Bθ −=
&

.  (12) 

3.1.1.3 Chan’s method 

Chan’s method (Chan, 1994) is capable of achieving optimum performance. If we take the 
case of three RPs, the solution of (10) is given by the following relation: 

              

1 2
21 21 21 21 2 1

1 2
31 31 31 31 3 1

0.5
x X Y d d K K

R
X Yy d d K K

− ⎧ ⎫⎡ ⎤− +⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎪ ⎪= − × + × ⎢ ⎥⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥− +⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

 (13)  

Where  
2 2 , 1,2,3i i iK X Y i= + =  

3.1.2 Iterative method 
Taylor series expansion method is an iterative method which starts with an initial guess 
which is in the condition of close to the true solution to avoid local minima and improves 
the estimate at each step by determining the local linear least-squares.  
Eq. (10) can be rewritten as a function 

  2 2 2 2
1 1 1 1( , ) ( ) ( ) ( ) ( )          i i if x y x X y Y x X y Y+ += − + − − − + −   1, -1 i N= A  (14)                          

Let it
∧

be the corresponding time of arrival at BSi . Then, 

 1,1 1,1( , )        1, -1ii if x y d ǆ i N
∧
+ += + = A  (15) 

Where  

 1,1 1 1( )i id c t t
∧ ∧ ∧
+ += −  (16) 

,1iǆ is the corresponding range differences estimation error with covariance R. 

If 0 0( , )x y is the initial guess of the MS coordinates, then 

 0 0,           x yx x ǅ y y ǅ= + = +  (17) 

Expanding Eq. (15) in Taylor series and retaining the first two terms produce 

 ,0 ,1 ,2 1,1 1,1i i x i y i if a ǅ a ǅ d ǆ
∧

+ ++ + ≈ +   1, 1i N= −A  (18) 
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Where  

 
0 0

0 0

,0 0 0

1 0 1 0
,1

,
1 1

2 2
0 0

1 0 1 0
,2

, 1 1

( , )

( ) ( )

i i

i i
i

x y
i

i i i

i i
i

x y i

f f x y

f X x X x
a

x
d d

d x X y Y

f Y y Y y
a

y
d d

+
∧ ∧

+
∧

+
∧ ∧

+

=

∂ − −
= = −
∂

= − + −

∂ − −
= = −
∂

  (19) 

Eq. (18) can be rewritten as 

 A D eδ = +  (20) 

Where  

1,1 1,2

2,1 2,2

1,1 1,2

        

       
A

              

   N N

a a  

a a

a a− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B B
，   

x

y

ǅ
ǅδ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

2,1 1,0

3,1 2,0

,1 1,0

D
       

N N

d f

d f

d f

∧

∧

∧

−

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

B
，   

2,1

3,1

,1

e
  

N

ǆ
ǆ

ǆ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B
 

The weighted least square estimator for (20) produces 

 
1

T -1 T -1A R A A R Dδ
−

⎡ ⎤= ⎣ ⎦  (21) 

R is the covariance matrix of the estimated TDOAs. 

Taylor series method starts with an initial guess 0 0( , )x y , in the next iteration, 0 0( , )x y are set 

to 0 0( , )x yx yδ δ+ + respectively. The whole process is repeated until ( , )x yδ δ are sufficiently 

small. The Taylor series method can provide accurate results, however the convergence of 

the iterative process depends on the initial value selection. The recursive computation is 

intensive since least square computation is required in each iteration. 

3.1.3 Steepest decent method 
From the above analysis, the convergence of Taylor series expansion method and the 
convergence speed directly depends on the choice of the MT initial coordinates. This 
iterative method must start with an initial guess which is in the condition of close to the true 
solution to avoid local minima. Selection of such a starting point is not simple in practice. 
To solve this problem, steepest decent method with the properties of fast convergence at the 
initial iteration and small computation complexity is applied at the first several iterations to 
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get a corrected MT coordinates which are satisfied to Taylor series expansion method. The 
algorithm is described as follows. 
Eq. (18) can be rewritten as 

 1,1 1,1( , ) ( , )         ii i ix y f x y d ǆϕ
∧
+ += − +    1, -1i N= A  (19) 

Construct a set of module functions from Eq. (18) 

 
1

2

1

( , ) ( , )
N

i
i

x y x yϕ
−

=

Φ = ⎡ ⎤⎣ ⎦∑   (20) 

The solution to Eq. (18) is translated to compute the point of minimumΦ . In 

geometry, ( , )x yΦ is a three-dimension curve, the minimum point equals to the tangent point 

between ( , )x yΦ and xOy . In the region D  of ( , )x yΦ , any point is passed through by an 

equal high line. If starting with an initial guess 0 0( , )x y in the region D , declining ( , )x yΦ in 

the direction of steepest descent until ( , )x yΦ declines to minimum, and then we can get the 

solution. 

Usually, the normal direction of an equal high line is the direction of the gradient vector of 

( , )x yΦ which is denoted by 

 T( , )G
x y

∂Φ ∂Φ
=

∂ ∂
 (21) 

The opposite direction to the gradient vector is the steepest descent direction.  

Given 0 0( , )x y is an approximate solution, compute the gradient vector at this point 

T
0 10 20( , )G g g=  

Where  

 

0 0

0 0

0 0

0 0

1

10 ( , )
( , ) 1

1

20 ( , )
1( , )

2[ ( ) ]

2[ ] ]

N
i

i x y
x y i

N
i

i x y
ix y

g
x x

g
y y

ϕ
ϕ

ϕ
ϕ

−

=

−

=

⎧ ∂∂Φ
= =⎪
∂ ∂⎪⎪

⎨
∂∂Φ⎪ = =⎪ ∂ ∂⎪⎩

∑

∑
 (22) 

Then, start from 0 0( , )x y , cross an appropriate step-size in the direction of 0G− , λ is the step-

size parameter, get a new point 1 1( , )x y  

 1 0 10

1 0 20

x x g

y y g

λ
λ

= −⎧⎪
⎨ = −⎪⎩

  (23) 

Choose an appropriate λ in order to let 1 1( , )x y be the relative minimum in 0G− , 

1 1 0 10 0 20( , ) min{ ( , )}x y x g y gλ λΦ ≈ Φ − −   
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In order to fix on another approximation close to 0 0( , )x y , expand 0 10 0 20( , )i x g y gϕ λ λ− − at 

0 0( , )x y , omit 2λ  high order terms, get the approximation ofΦ   

0 0

1
2

0 10 0 20 0 10 0 20
1

1 1 1
2 2 2

10 20 10 20 ( , )
1 1 1

( , ) [ ( , )]

{ ( ) 2 [ ( )] [ ( ) ]}

N

i
i

N N N
i i i i

i i x y
i i i

x g y g x g y g

g g g g
x y x y

λ λ ϕ λ λ

ϕ ϕ ϕ ϕϕ λ ϕ λ

−

=
− − −

= = =

Φ − − = − −

∂ ∂ ∂ ∂
≈ − + + +

∂ ∂ ∂ ∂

∑

∑ ∑ ∑
 

Let / 0λ∂Φ ∂ = , 

 

0 0

1

10 20
1

1
2

10 20
1 ( . )

( )

( )

N
i i

i
i
N

i i

i x y

g g
x y

g g
x y

ϕ ϕϕ
λ

ϕ ϕ

−

=
−

=

⎡ ⎤∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂
+⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

∑

∑
 (24) 

Subtract Eq. (24) from Eq. (23), we obtain a new 1 1( , )x y , and regard this as a relative 

minimum point ofΦ in the direction of 0G− , then start at this new point 1 1( , )x y , update the 

position estimate according to the above steps untilΦ is sufficiently small.  
In general, the convergence of steepest descent method is fast when the initial guess is far 
from the true solution, vice versa. Taylor series expansion method has been widely used in 
solving nonlinear equations for its high accuracy and good robustness. However, this 
method performs well under the condition of close to the true solution, vice versa. 
Therefore, hybrid optimizing algorithm (HOA) is proposed combining both Taylor series 
expansion method and steepest descent method, taking great advantages of both methods, 
optimizing the whole iterative process, improving positioning accuracy and efficiency. 
In HOA, at the beginning of iteration, steepest descent method is applied to let the rough 
initial guess close to the true solution. Then, a further precise adjustment is implemented by 
Taylor series expansion method to make sure that the final estimator is close enough to the 
true solution. HOA has the properties of good convergence and improved efficiency. The 
specific flow is 

1. Give a free initial guess 0 0( , )x y , compute 1 1,  ,i ii N
x y

ϕ ϕ∂ ∂
= −

∂ ∂
A   

2. Compute the gradient vector 10 20,g g at the point 0 0( , )x y from Eq. (22) 

3. Compute λ from Eq. (24) 

4. Compute 1 1( , )x y from Eq. (23) 

5. If 0Φ ≈ , stop; otherwise, substitute 1 1( , )x y for 0 0( , )x y , iterate (2)(3)(4)(5) 

6. Compute 1,1id
∧

+ when 1 1i N= −A from Eq. (16) 

7. Compute 1 1 ,0 ,1 ,2, , , ,i i i id d f a a
∧ ∧

+ when 1 1i N= −A from Eq. (19) 

8. Compute δ from Eq. (21) 

9. Continually refine the position estimate from (7)(8)(9) untilδ satisfies the accuracy 

According to the above flow, the performance of the proposed HOA is evaluated via Matlab 
simulation software. In the simulation, we model a cellular system with one central BS and 
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two other adjacent BS. More assistant BS can be utilized for more accuracy, however, in 
cellular communication systems, one of the Main design philosophies is to make the link 
loss between the target mobile and the home BS as small as possible, while the other link 
loss as large as possible to reduce the interference and to increase signal-to-interference ratio 
for the desired communication link. This design philosophy is not favorable to position 
location (PL), and leads to the main problems in the current PL technologies, i.e. hearability 
and accuracy. Considering the balance between communication link and position accuracy, 
two assistant BS is chose. We assume that the coordinates of central BS is (x1=0m；y1=0m), 

the two assistant BS coordinates is (x2=2500m；y2=0m); (x3=0m；y3=2500m) respectively, 

MS coordinates is (x=300;y=400). A comparison of HOA and Taylor series expansion 
method is presented. 
A lot of simulation computation demonstrates: there are 3 situations. The first one is that 
HOA is more accuracy and efficiency under the precondition of the same initial guess and 
the same measured time. In the second situation, HOA is more convergence to any initial 
guess than Taylor series expansion method under the precondition of the same initial guess 
and the same measured time. In the third situation, at the prediction of inaccurate 
measurements, the same initial guess, HOA is proved to be more accuracy and efficiency. 
The simulation results are given in Tables 3,4,5 respectively. 

As shown in Table 3, the steepest decent method performs much better at the convergence 

speed. Indeed, the location error is smaller than Taylor series expansion method for 310 . 

Meanwhile, the computation efficiency is improved by 23.35%. The result is that HOA is 

more accuracy and efficiency. 
As shown in Table 4, when the initial guess is far from the true location, Taylor series 
expansion method is not convergent while HOA is still convergent which declines the 
constraints of the initial guess. 
As shown in Table 5, when the measurements are inaccurate, the HOA location error is 
smaller than Taylor series expansion method for 10 times. Meanwhile, the computation 
efficiency is improved by 23.14%. 
 

algorithms Iterative results(m) errors(m) time(ms) 

HOA x =299.9985 
y =400.0006 

xx =-0.0015 
yy =0.0006 

0.374530 

Taylor x=301.1 
y=400.4482 

xx=1.1000 
yy=0.4482 

0.488590 
 

Table 3. Comparison of HOA and Taylor series expansion method when the initial guess is 
close to the true solution and the measured time is accurate 
 

algorithms Iterative results(m) errors(m) time(ms) 

HOA x =299.9985 
y =400.0006 

xx =-0.0015 
yy =0.0006 

1.025930 

Taylor x =+∞ 
y =+∞ 

Not 
convergent 

 

Table 4. Comparison of HOA and Taylor series expansion method when the initial guess is 
far from the true solution and the measured time is accurate 
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algorithms Iterative results(m) errors(m) time(ms) 

HOA x= 301.1297 
y= 400.4492 

xx=1.1297 
yy=0.4492 

0.376400 

Taylor x =317.8 
y =396.0549 

xx=17.8000 
yy=-3.9451 

0.489680 

Table 5. Comparison of HOA and Taylor series expansion method when the initial guess is 
the same and the measured time is inaccurate 

3.2 Data fusion techniques 
Date fusion techniques include system fusion and measurement data fusion (Sayed, 2005). 
For example, a combination of GPS and cellular networks can provide greater location 
accuracy, and that is one kind of system fusion. Measurement data fusion combines 
different signal measurements to improve accuracy and coverage. This section mainly 
concerns how to use measurement data fusion techniques to solve problems in cellular-
based positioning system.  

3.2.1 Technical challenges in cellular-based positioning 
The most popular cellular-based positioning method is multi-lateral localization. In such 
positioning system, there are two major challenges, non-line-of-sight (NLOS) propagation 
problem and hearability.  

A. Hearability problem 

In cellular communication systems, one of the main design philosophies is to make the link 
loss between the target mobile and the home BS as small as possible, while the other link 
loss as large as possible to reduce the interference and to increase signal to noise ratio for the 
desired communication link. In multi-lateral localization, the ability of multiple base stations 
to hear the target mobile is required to design the localization system, which deviates from 
the design of wireless communication system , and this phenomenon is referred as 
hearability (Prretta, 2004). 

B. The non-line-of-sight propagation problem 

Most location systems require line-of-sight radio links. However, such direct links do not 
always exist in reality because the link is always attenuated or blocked by obstacles. This 
phenomenon, which refers as the NOLS error, ultimately translates into a biased estimate of 
the mobile’s location (Cong, 2001). 
As illustrated by the signal transmission between BS7 and MS in Fig.17. A NLOS error 
results from the block of direct signal and the reflection of multipath signals. It is the extra 
distance that a signal travels from transmitter to receiver and as such always has a 
nonnegative value. Normally, NLOS error can be described as a deterministic error, a 
Gaussian error, or an exponentially distributed error.  
In order to demonstrate the performance degradation of a time-based positioning algorithm 
due to NLOS errors, taking the TOA method as an example. The least square estimator used 
for MS location is of the following form 

  
2

arg min ( )i i
i S

r
∈

= −∑x x - X
&

  (25)    
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Fig. 17. NLOS error 

 ,    1,2,...i i i ir L n e i N= + + =  (26) 

Where r is the range observation, L is LOS range, n is receiver noise, e is NLOS error.            

 r = L + n + e   (27) 

If the true MS location is used as the initial point in the least square solution, the range 

measurements can be expressed via a Taylor series expansion as                

 
x

y

Δ⎡ ⎤
≈ + ⎢ ⎥Δ⎣ ⎦

r L G  (28) 

 
x

y

Δ⎡ ⎤
=⎢ ⎥Δ⎣ ⎦

T -1 T -1(G G) G.n + (G G) G.e  (29) 

Where G is the design matrix, and [ , ]x yΔ Δ is the MS location error. Because NLOS errors are 

much larger than the measurement noise, the positioning errors result mainly from NLOS 
errors if NLOS errors exist. 

3.2.2 Data fusion architecture 
The underlying idea of data fusion is the combination of disparate data in order to obtain a 

new estimate that is more accurate than any of the individual estimates. This fusion can be 

accomplished either with raw data or with processed estimates. One promising approach to 

the general data fusion problem is represented by an architecture that was developed in 

1992 by the data fusion working group of the joint directors of laboratories (JDL) (Kleine-

Ostmann, 2001). This architecture is comprised of a preprocessing stage, four levels of fusion 

and data management functions. As a refinement of this architecture, Hall proposed a 

hybrid approach to data fusion of location information based on the combination of level 

one and level two fusion (Kleine-Ostmann, 2001). 
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Based on the JDL model and its specialization to first and second level hybrid data fusion, 
an architecture for the position estimation problem in cellular networks is constructed. Fig. 
18. shows the data fusion model that uses four level data fusion. 
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Fig. 18. Data fusion model 

Position estimates are obtained by four different approaches in this model. The first 
approach uses TOA/AOA hybrid method. The second position estimate is based on RSS 
/AOA hybrid method. The other two estimates are obtained by level one and level 2 data 
fusion methods.  

A. Level one fusion 

Firstly, we use the method shown in (Wylie, 1996) to mitigate TOA NLOS error and 

calculate the LOS distance TOAd . As the same way, we mitigate RSS NLOS error and 

calculate the LOS distance RSSd . Then, the independent TOAd  and RSSd are fused into d. The 

derivation of d is below. 
Let  

2
TOA TOA

2
RSS RSS

Var( )

 Var( )

d

d

σ

σ

⎧ =⎪
⎨

=⎪⎩
 

Define,    

 TOA RSS TOA RSS( , )d f d d ad bd= = +  (30) 

The constrained minimization problem is described as (31) 

            
2

min minarg [Var( )] arg [E( - ) ]

1

d d d

a b

=
+ =

 (31) 
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By using Lagrange Multipliers, the solution of (31) is obtained as (32) 

 
2
RSS

2 2
RSS TOA

a
σ

σ σ
=

+
, 

2
TOA

2 2
TOA RSS

b
σ

σ σ
=

+
  (32) 

The data fusion result is given by (33) 

 
2 2
RSS TOA TOA RSS

2 2
TOA RSS

d d
d

σ σ
σ σ

+
=

+
 (33) 

Using (32)(33), the variance of d is 

 1
2 2
TOA RSS

1 1
Var( ) ( )d

σ σ
−= +  (34) 

Therefore, 

 

1
TOA2

TOA

1
RSS2

RSS

1
Var( ) ( ) Var( )

1
Var( ) ( ) Var( )

d d

d d

σ

σ

−

−

≤ =

≤ =
 (35) 

So, the data fusion estimator is more accurate than estimator 1 or 2. 

B. Level two fusion 

By utilizing the result proved in (32)(33)(34), the estimator 4 fused solution and its variance 

are of the following equations. 

 
2 2
TOA/AOA RSS/AOA RSS/AOA TOA/AOA

C 2 2
TOA/AOA RSS/AOA

x x
x

σ σ

σ σ

+
=

+
  (36) 

 2 1
C 2 2

TOA/AOA RSS/AOA

1 1
( )σ
σ σ

−= +  (37) 

Where RSS/AOAx and variance 2
RSS/AOAσ are the mean and variance of estimator 

1, TOA/AOAx and 2
TOA/AOAσ are the mean and variance of estimator 2, Cx and 2

Cσ are the mean 

and variance of estimator 4. 

C. Level three fusion 

In general, the estimate that exhibits the smallest variance is considered to be the most 

reliable estimate. However, the choice cannot be based solely on variance. In a poor signal 

propagation situation when the MS is far from BSs, the RSS estimate becomes mistrust.  

3.2.3 Single base station positioning algorithm based on data fusion model 
To solve the problem, a single home BS localization method is proposed in this paper. In 
(Wylie, 1996), a time-history-based method is proposed to mitigate NLOS error. Based on 
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this method, a novel single base station positioning algorithm based on data fusion model is 
established to improve the accuracy and stability of localization. 
Fig.19. illustrates the geometry fundamental of this method. The MT coordinates (x, y) is 
simply calculated by (38)  

 
cos

sin

x d

y d

α
α

=
=

 (38) 

 

Smar t  ant enna

DOA
TOA

 

Fig. 19. Geometry of target coordinates (x, y) 

The MT localization is determined by d andα where d denotes the line-of-sight (LOS) 

distance between the MT and the home BS,α denotes the signal direction from the home BS 

to the TM. The above two parameters are important for localization accuracy. Data fusion 
model discussed above can be utilized to get a more accurate localization. 

In this section, we present some examples to demonstrate the performance of the proposed 

method. We suppose the MT’s trajectory is x=126.9+9.7t，y=286.6+16.8t, sampling period is 

0.05s, 200 samples are taken, 50 random tests are taken in one sample. The velocity is 

constant at 9.7m/sxv = , 16.8m/syv = . The TOA measurements error is Gaussian random 

variable with zero mean and standard variance 20, NLOS error is exponential distribution 

with mean 100. RSS medium-scale path loss is a zero mean Gaussian distribution with 

standard deviation 20 and small-scale path loss is a Rayleigh distribution with 
2 79.7885ssσ = . The home BS is located at (0,0). 

Simulation 1, when the NLOS and measurements error are added to the TOA, we utilize 
(Wylie, 1996) to reconstruct LOS. Fig.20. shows the results. From the results, we can see that 
NLOS error is the major effect to bias the true range up to 900m. Due to NLOS, at most of 
the time, the measurements are much larger than the true range. After the reconstruction, 
the corrected range is near the true range and float around the true range. 
Simulation 2, when the medium-scale path loss and small-scale path loss are added to the 
RSS, we utilize (Wylie, 1996) to reconstruct LOS. Fig.21. shows the results. From the results, 
we can see that the small-scale error (NLOS error) is the major effect to bias the true range 
up to 700m. Due to the NLOS, at most of the time, the measurements are much larger than 
the true range. After the reconstruction, the corrected range is near the true range and float 
around the true range. 
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Fig. 20. TOA LOS reconstruction from NLOS measurements 

 

Fig. 21. RSS LOS reconstruction from NLOS measurements 

Simulation 3 is about the localization improvement. The results are shown in Fig.22. It 
indicates that the standard variance of the proposed method is smaller than any of TOA or 
RSS. HLMR technique is able to significantly reduce the estimation bias when compared to 
the classic NLOS mitigation method shown by (Wylie, 1996). By statistical calculation, the 
mean of TOA standard variance by (Wylie, 1996) is 37.382m, while the data fusion aided 
method is 17.695m. The stability is more than one time higher. Fig.23. demonstrates the 
Euclidean distance between the true range and estimation range by data fusion based 
method, TOA and AOA. The mathematical expressions are given in (39)(40)(41). By 
statistical calculation, the Euclidean distance of TOA is 37.44, the proposed method is 3.1318 
which is ten times more accurate. 
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Fig. 22. Standard variance of estimation range 

 

Fig. 23. Euclidean distance between true range and estimation range 
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r d
=
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N
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1

( )
ii

i

r d
=

− = −∑RSSr d   (41)  

3.3 UWB precise real time location system 
Reliable and accurate indoor positioning for moving users requires a local replacement for 

satellite navigation. Ultra WideBand (UWB) technology is particularly suitable for such local 

systems, for its good radio penetration through structures, the rapid set-up of a stand-alone 

system, tolerance of high levels of reflection, and high accuracy even in the presence of 

severe multipath (Porcino, 2003).  
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3.3.1 UWB localization challenges 
UWB technology is defined by the Federal Communications Commission (FCC) as any 

wireless transmission scheme that occupies a fractional bandwidth / 20%cW f ≥ where W is 

the transmission bandwidth and fc is the band center frequency, or more than 500 MHz of 
absolute bandwidth. FCC approved the deployment of UWB on an unlicensed basis in the 
3.1-10.6GHz band with limited power spectral density as shown in Fig.24.  
UWB signal is a kind of signals which occupies several GHz of bandwidth by modulating an 
impulse-like waveform. A typical baseband UWB signal is Gaussian monocycle obtained by 
differentiation of the standard Gaussian waveform (Roy, 2004). A second derivative of 
Gaussian pulse is given by 

 

22π( )
2( ) [1 4π( ) ]e d

t

T

d

t
p t A

T

−
= −   (42) 

Where the amplitude A can be used to normalize the pulse energy. Fig.25 shows the time 
domain waveform of (42). From Fig.25, we see that the duty cycle (the pulse duration 
divided by the pulse period) is really small. In other aspect of view, UWB signal is sparse in 
time domain. The Fourier transform (Fig.26) is occupied from near dc up to the system 
bandwidth BS≈1/Td.  

A. CRLB for time delay estimation  

The CRLB defines the best estimation performance, defined as the minimum achievable 
error variance, which can be achieved by using an ideal unbiased estimator. It is a valuable 
tool in evaluating the potential of UWB signals for TOA estimation. In this section, we will 
derive the expression of the CRLB of TOA estimation for UWB signals. 
Consider the signal in (42) is sampled with a sampling period Ts. The sequence of the 
samples is written as 

                                                                  ( )n n nr s wτ= +  (43) 

The joint probability of rn conditioned to the knowledge of delayτ : 

                                     2 22
2

1

1
( ) (2 ) exp( ( ( ) ))

2

N N

n n n
n

p r r sτ πσ τ
σ

−

=

= − −∑   (44) 

Where N is the number of samples, 2σ is the variance of rn. 

In order to get the continuous probability of (44) 

                                       2
2 2

2 0

( ) lim ( )

1
(2 ) exp( ( ( ) ( ; )) )

2

n
N

N
T

p r p r

r t s t dt

τ τ

πσ τ
σ

→+∞

−

=

= − −∫
  (45) 

The log-likelihood function of (45)  

 2 22
2 0

1
ln ln(2 ) ( ( ) ( ; ))

2

N
T

p r t s t dtπσ τ
σ

−
= − −∫  (46) 
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Fig. 24. UWB spectral mask  
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Fig. 25. UWB signal in time domain 
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Fig. 26. UWB signal in frequency domain 
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The second differentiation of (46) is  

 

2

2 2 0

T 2
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The average value of (47)  
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The minimal achievable variance for any unbias estimation (CRLB) is thus: 
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Where  
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∫∫

∫
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  (49) 

The equality holds if ( ; )f kS f τ= , where k is an arbitrary constant. E/N is the signal to noise 

ratio, and S(f) is the fourier transform of the transmitted signal. 
Inequation (49) shows that the accuracy of TOA is inversely proportional to the signal 

bandwidth. Since UWB signals have very large bandwidth, this property allows extremely 

accurate TOA estimation. UWB signal is very suitable for TOA estimation. However, there 

are many challenges in developing such a real time indoor UWB positioning system due to 

the difficulty of large bandwidth sampling technique and other challenges. 

3.3.2 Compressive sensing based UWB sampling method 
As discussed above, due to a large bandwidth of a UWB signal, it can’t be sampled at 

receiver directly, how to compress and reconstruct the signal is a problem. To solve this 

problem, this section gives a new perspective on UWB signal sampling method based on 

Compressive Sensing (CS) signal processing theory (Candès, 2006; Candès,2008; Richard, 

2007). 
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CS theory indicates that certain digital signals can be recovered from far fewer samples than 
traditional methods. To make this possible, CS relies on two principles: sparsity and 
incoherence. 
Sparsity expresses the idea that the number of freedom degrees of a discrete time signal may 
be much smaller than its length. For example, in the equation x=ψα, by K-sparse we mean 
that only K≤ N of the expansion coefficients α representing x=ψα are nonzero. By 
compressible we mean that the entries of α, when sorted from largest to smallest, decay 
rapidly to zero. Such a signal is well approximated using a K-term representation.  
Incoherent is talking about the coherence between the measurement matrix ψ and the 
sensing matrix Φ. The sensing matrix is used to convert the original signal to fewer samples 
by using the transform y=Φx =ΦΨα as shown in Fig.27. The definition of coherence is 

1 ,
( , ) . max ,k j

k j n
nμ φ ϕ

≤ ≤
Φ Ψ = . It follows from linear algebra that is ( , ) [1, ]nμ Φ Ψ ∈ . In CS, it 

concerns about low coherence pairs. The results show that random matrices are largely 
incoherent with any fixed basis Ψ. Gaussian or ±1 binaries will also exhibit a very low 
coherence with any fixed representation Ψ.  
Since M <N, recovery of the signal x from the measurements y is ill-posed; however the 
additional assumption of signal sparsity in the basis Ψ makes recovery possible and 
practical.  
The signal can be recovered by solving the following convex program as shown in Fig. 27. 
α = arg min ||α||1  s.t. y = ΦΨα.        

And M should obey 2. ( , ). .logM C K Nμ≥ Φ Ψ , where C is a small constant, K is the number of 

non-zero elements, N is the length of the original signal. 

 
Fig. 27. Compressive sensing transform 
 

 
Fig. 28. Signal recovery algorithm 
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we utilize the temporal sparsity property of UWB signals and CS technique. There are three 
key elements needed to be addressed in the use of CS theory into UWB signal sampling: 1) 
How to find a space in which UWB signals have sparse representation 2) How to choose 
random measurements as samples of sparse signal 3) How to reconstruct the signal.  
CS is mainly concerned with low coherent pairs. How to find a good pair of Φ and Ψ in 

which UWB signals have sparse representation is the problem we need to solve. Since UWB 

signal is sparse in time domain, we choose Ψ is spike basis ( ) ( )k t t kφ δ= − and Φ is random 

Gaussian matrix.  

The mathematical principle can be formulated as 

                                                  . . ( )
t kT

p t
=

= +s G E n   k=1…N   (50) 

Where s is the sensing vector, G is random Gaussian matrix, E is spike matrix, ( )
t kT

p t
=

is the 

Nyquist samples with sample period T, total samples N. n is the additive noise vector with 

bounded energy 
2

ε≤n . 

The coherence between measurement matrix E and sensing matrix G is near 1. G matrix is 

largely incoherent with E. Therefore, in our method, the precondition of sparsity and 

incoherent are satisfied.  

                                              
1 ,

( , ) . max ,k j
k j n

u n g e
≤ ≤

=G E  (51) 

Since E is spike matrix, G.E=G.  
(50) can be simplified by 

                                                  . ( )
t kT

p t
=

= +s G n   k=1…N  (52) 

In (52), the CS method is simplified, and the multiply complexity is reduced by MN2. 

Therefore, the UWB signal is suitable for CS, moreover it makes CS simpler and reduces the 

computation complexity. 

The recovery algorithm is 

                                    
1 2

arg  min ( )  such that . ( )
t kT t kT

p t p t ε
= =

− ≤G s  (53) 

The recovery multiply complexity is reduced by N2. 
Theorem: 

Fix ( ) N

t kT
p t

=
∈{ , and it is K sparse on a certain basis Ψ . Select M measurements in 

theΦ domain uniformly at random. Then if 

                                                          2. ( , ). .logM c K Nμ≥ Φ Ψ  (54) 

For some positive constant c, the solution to (10) is success with high probability. From (54), 

we see that M is proportional to three factors: ,  and K Nμ . If and Nμ are fixed, the sparser K 

can reduce the measurements needed to reconstruct the signal. From Fig.29, we see that the 

spike basis can recover the signal. 
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Fig. 29. Reconstructed signal from measurementsat 20% of the Nyquist rate 

In this part, examples are done to show the comparison of the proposed method with 
traditional methods. 
In all of the examples, the transmitted signal is expressed as 

2 2
9 9

( ) (1 4 ( ) ) exp( 2 ( ) )
0.2 10 0.2 10

t t
s t π π− −= − × −

× ×
. 

The bandwidth of the signal is 2.5GHz, and the traditional sampling frequency is 5GHz. 

A. Example 1 (in LOS environment) 

In the first example, we assume that the signal is passed through Rician channel and the 
number of multipath is six. In the first simulation (see Fig.30), we set the observed time is 
0.2um. Fig.30(a) shows the UWB signal without channel interference. Fig.30(b) shows the  
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Fig. 30. (a) Ideal reconstructed UWB signal (b) Reconstructed UWB signal with Nyquist rate 
(c) Reconstructed UWB signal with 10% of the Nyquist rate  
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Fig. 31. (a) Ideal reconstructed UWB signal (b) Reconstructed UWB signal with Nyquist rate 
(c) Reconstructed UWB signal with 30% of Nyquist rate  

reconstructed UWB signal at Nyquist sampling rate. Fig30(c) shows the reconstructed signal 
by 10% of the Nyquist sampling rate. The time delay error of both methods is about 1nm.  
In the second simulation (see Fig.31), we shorten the observed time to 0.02um, all of the 
other parameters are the same. Fig.31(c) shows the measurement we need to reconstruct the 
signals is up to 30%. And much more details of the signal can be seen. And the time delay 
error is 1nm.  
Comparing these two simulations, the conclusion is that 1) by using 10% of Nyquist 
sampling rate, the accuracy of TOA estimation is the same as that by using full Nyquist rate. 
2) By enlarging the sampling rate by 30%, more detail information of the signal can be 
recovered. However, for TOA estimation, we do not need to recover the full signal but the 
peak location of the signal which makes the use of 10% Nyquist sampling rate possible. 

B. Example 2 (in NLOS environment) 

In the second example, we simulate the TOA estimation of UWB signal in NLOS 
environment (the number of multipath is set to six). 
At the first simulation (see Fig.32), we set the observed time is 0.2um. Fig.32(a) shows the 
ideal received UWB signal without Rayleigh channel interference. Fig.32(b) shows the 
detected UWB signal at Nyquist sampling rate. Fig.32(c) shows the detected UWB signal at 
11% Nyquist sampling rate by using our method. We can see that Fig.32(c) can recover the 
signal (in Fig.32(b)) well, although lose some detail information. And the time delay errors 
of them are both 1nm.  
At the second simulation (see Fig.33), we shorten the observed time to 0.02um, all of the 
other parameters are the same. It is shown in Fig.33(c) that the measurement we need to 
reconstruct the signals is 35% and much more details of the signal can be seen compared 
with Fig.33(c). And the time delay error is 1nm.  
Comparing these two simulations, the conclusion is that 1) the accuracy of TOA estimation 
achieved by 11% Nyquist sampling rate is the same as that by full Nyquist sampling rate. 2) 
When more sampling rate is used, more detail information can be recovered. However, in 
TOA estimation, we do not need to recover the whole signal but the peak location of the 
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signal. Finally, we can get the TOA estimation by 11% Nyquist sampling rate and the 
drawback is that some detail information of the signal is lost. 
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Fig. 32. (a)Ideal reconstructed UWB signal (b) Reconstructed UWB signal with Nyquist rate 
(c) Reconstructed UWB signal with 11% of the Nyquist rate  
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Fig. 33. (a)Ideal reconstructed UWB signal (b)Reconstructed UWB signal with Nyquist rate 
(c) Reconstructed UWB signal with 35% of Nyquist rate  

3.3.3 Tracking system 
Fig.34. is Ubisense precise real time location system, tracking unlimited number of people 

and objects in any space of any size with 15cm 3D tracking accuracy and high reliability. In 

this system, Ubisense UWB hardware is the platform and Ethernet (wire/wireless) is used 

as a transmission network. The UWB sensors are deployed around the room, generally on 

the wall. The target is attached with a UWB tag. When the target come into the area where is 
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covered by UWB sensors, the sensors locate the target and provide location and speed 

information to the user. 

UWB tracking systems have inherent advantages over other technologies:  
a. Exceptional performance —Performs in high multi-path environments 
b. Excellent real-time location accuracy — Better than 30cm (1 foot) 
c. Long tag battery life —Up to 7 years at 1 Hz blink rate 
d. Long Range — Up to 200 meters (650 feet) with line of sight 
e. Unmatched real-time location tag throughput — Up to2700 tags/hub 
f. Fast tag transmission rates —Up to 25 times/second 
g. Fast intuitive setup — typical single location set-up in one day 
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Fig. 34. UWB real time location system 

3.4 Smart antennas technique 
Smart antennas are often used for providing accurate AOA estimation. The commonly used 
methods for AOA estimation are beam forming (BF) (Van, 1998), minimum variance 
distortionless response (MVDR), multiple signal classification (MUSIC) (Vaidyanathan, 
1995), maximum likelihood (ML) (Stoica, 1990). 

3.4.1 Array signal processing 
Before we describe the conventional methods of AOA estimation, it is necessary to present 
the array signal processing issues by smart antennas. In the array signal process, there are 
four issues of interest: 
a. Array configuration 
b. Spatial and temporal characteristics of the signal 
c. Spatial and temporal characteristics of the interference 
d. Objective of the array processing 
Here, we consider the smart antenna as a uniform linear array (ULA). For the second issue, 
we set the signal structure as a known plane-wave signal from unknown directions. The 
interference is white Gaussian noise that is statistically independent in time and space 
domain. The objective is to estimate the AOA of multiple plane-wave signals in the presence 
of noise.  
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Fig. 35. Array processing observation model 

3.4.2 AOA estimation methods 
Before we describe the conventional methods of AOA estimation, it is necessary to present 
the mathematical model for the problem. Consider the basic case, the narrowband sources in 
the farfield of a uniform linear arrays (ULA) as shown in Fig.35. ULA consists of M omni-
directional sensors with equal spacing d, residing on the x-coordinate axis. Taking the phase 
center of the array at the origin, the position of the m-th sensor is  

pm=(m-(M+1)/2)d, m∈ {1,…M} 

The modulated signal in narrowband case can be expressed as 0( )exp( )u t j tω , where u(t) is 

the baseband signal.  
The output of the sensor at origin is 

 0 0( ) ( )exp( ( ))center centery t u t j tτ ω τ= − −  (55) 

centerτ is the delay from the source to the phase-center. After demodulating, it can be 

represented as 

 0 0( ) ( )exp( )center centery t u t jτ ω τ= − −  (56) 

Assume that the time delay relative to the origin sensor is mτ  

The output of sensor m is 

 0( ) ( )exp( ( ))m center m center my t u t jτ τ ω τ τ= − − − −  (57) 

Since the signal is narrowband, it is able to ignore the delay between the sensors. 

 0( ) ( )exp( ( ))m center center my t u t jτ ω τ τ= − − −  (58) 

By measuring time relative to the phase center, the dependence on centerτ can be dropped. 

Thus, the output of sensor m is 
tfor a single source, the complex envelope of the sensor outputs has the following form: 
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 0( ) ( )exp( )m my t u t jω τ= −   (59) 

where 1

( ( 1) / 2)
cosm

m M
d

c
τ θ− +

= −  

 0 1

( ( 1) / 2)
( ) ( )exp( ( cos ))m

m M
y t u t j d

c
ω θ− +

=   (60) 

Define 0 1( / )( ( 1) / 2) cosT
mk p c m M dω θ= − − + , 0 /k cω= , therefore, 

 ( ) ( )exp( )T
m my t u t jk p= −   (61) 

Define angle vector 1( ) exp( )Tjkθ = −a p  

Thus, for a single source, the complex envelope of the sensor outputs has the following 
form: 

 1( ) ( ) ( ) ( )t u t tθ= +y a n  (62) 

Define angle matrix 1 2( ) [ ( ) , ( ) ..., ( ) ]T T T
KA θ θ θ θ= a a a , where 1[ ,..., ]Kθ θ=θ is the vector of 

unknown emitters’ AOAs, The (m,k) element represents the kth source AOA information to 

the mth sensor. 1 2( ) [ ( ), ( ),..., ( )]'kt s t s t s t=u is the signals from K emitters. Taking noise into 

account, the final version of the model takes the following form: 

 ( ) ( ) ( ) ( )t t t= +y A θ u n   (63) 

In order to characterize the arriving signal, several time samples are required, this is the 
Snapshot Model  

 ( ) ( ) ( ) ( ),    1,2,...t t t t N= + =y A θ u n  (64) 

For simplicity, the noise is assumed to be spatially and temporally stationary and white, 
uncorrelated with the source. The covariance matrix takes the following form: 

2E[ ( ) ( )]Ht t σ=n n I  

Where I is an identity matrix. 
The covariance of the baseband signal u(t) is given by 

 
1

1
E[ ( ) ( )] lim ( ) ( )

N
H H

N
t

t t t t
N

→∞
=

= = ∑P u u u u  (65) 

N times snapshots approximation is computed by  

 
1

1
( ) ( )

N
H

t

P t t
N =

= ∑u u
&

  (66) 

The covariance of the sensor output signal y(t) is given by 

 2E[ ( ) ( )]= A( )PA ( )+H Ht t θ θ σ=R y y I  (67) 
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N times snapshots approximation is used: 

 
1

1
( ) ( )

N
H

t

t t
N =

= ∑R y y
&

  (68) 

A. Beamforming 

The beamforming method uses complex weights w on the sensors output to achieve 
maximum power. The array output thus becomes 

 ( ) ( )Hz t t= w y  (69) 

 ( ) E[ ( ) ( )]= E[ ( ) ( )] =H H H H
bfP z t z t t tθ = w y y w w Rw  (70) 

For simplicity, we assume that the source comes from the direction of 1θ , then the output 

power is given by 

 

1 1 1 1

2
1 1 1 1

2
1 1 1 1

2
2

1 1 1
2

E[ ( ) ( ) ] E[ ( ) ( )]

   = E[( ( ) ( ) ( ))( ( ) ( ) ( ))]

    = [ ( )E[ ( ) ( ) ] ( ) ]

    = ( )E[ ( ) ( ) ] ( )

    = ( ) E[ ( ) ( ) ]

H H H H

H H H H

H H H

H H H H

H H H

P t t t t

u t t u t t

u t u t

u t u t

u t u t

θ θ

θ θ σ

θ θ σ

θ σ

= =

+ +

+

+

+

w y y w w y y w

w a n a n w

w a a I w

w a a w w Iw

w a w w I

  (71) 

From the above equation, it is observed that when 1( )θ=w a , the power is maximum. From 

the view of physical concept, the maximum power is achieved by steering at the direction 

from which the waves are arriving. 
The normalized form of w is given by  

 
( )

( )

θ
θ

=
a

w
a

  (72) 

Thus, the output power takes the form: 

 
2

( ) ( )
( )

( )

H

bfP
θ θθ
θ

=
a Ra

a
 (73) 

In practice, the N times snapshots are used to compute the power 

 
2

( ) ( )
( )

( )

H

bfP
θ θθ
θ

=
a Ra

a

&&
  (74) 

Where 
1

1
( ) ( )

N
H

t

t t
N =

= ∑R y y
&

 

Beamforming is a very simple and robust approach, which is widely used in practice. 
However, the method performance cannot be improved by increasing SNR or observation 
time. 
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B. Minimum variance distortionless response (MVDR) 

The classical beamforming method has weights which are independent of the signals and 

noise.         

The idea of MVDR is to use the estimated signal and noise parameters to improve the 

performance. It attempts to minimize the variance due to noise, while keeping the gain in 

the direction of steering equal to unity: 

( ) arg min ( ),  subject to ( ) 1H H
wθ θ= =w w Rw w a   

The solution of this optimization problem can be shown to have the following form: 

 
1

1

( )

( ) ( )H

θ
θ θ

−

−=
R a

w
a R a

 (75) 

The resulting spectrum has an expression as: 

 
1 1

1 2 1

( ) ( ) 1
( )  = =

[ ( ) ( )] ( ) ( )

H

opt opt H H
P

θ θθ
θ θ θ θ

− −

− −=
a R RR a

w Rw
a R a a R a

 (76) 

The main benefit of this method is a substantial increase in resolution compared with 

beamforming. The resolution increases without limit as SNR or the observation time are 

increased. Shortcomings include an increase in the amount of computation compared to 

beamforming, poor performance with small amounts of time-samples and inability to 

handle strongly correlated or coherent sources. 

C. Multiple signal classification (MUSIC) 

The MUSIC method is the most prominent member of the family of eigen-expansion based 

source location estimators. The underlying idea is to separate the eigenspace of the 

covariance matrix of sensor outputs into the signal and noise components using the 

knowledge about the covariance of the noise. The sensor output correlation matrix admits 

the following decomposition: 

 2= A( )PA ( )+ =H H H H
s s s n n nθ θ σ = +R I UΛU U Λ U U Λ U  (77) 

U andΛ form the eigenvalue decomposition of R, and ,s sU Λ are the partitions of signal 

subspace, ,n nU Λ  are the partitions of noise subspace, nΛ equals to 2σ 。Provided 

that  A( )PA ( )Hθ θ has rank K. The number of sources, K has to be strictly less than the 

number of sensors M. R has K eigenvalues which are due to the combined signal plus noise 

subspace, and M-K eigenvalues due to the noise subspace. Due to the orthogonality of 

eigensubspaces corresponding to different eigenvalues for Hermitian matrices, the noise 

subspace is orthogonal to the direction vector of signals, thus 

 ( ) 0H
n θ =U a   (78) 

MUSIC spectrum is obtained by putting the squared norm of this term into the 

denominator, which leads to very sharp estimates of the positions of the sources 
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1

( )
( ) ( )

MUS H H
n n

P θ
θ θ

=
a U U a

 (79)  

In contrast with the previously discussed techniques, MUSIC spectrum has no direct 
relation to power, also it cannot be used as a beamformer, since the spectrum is not obtained 
by steering the array. MUSIC provides a consistent estimate of the locations of the sources, 
as SNR and the number of sensors go to infinity. Despite the dramatic improvement in 
resolution, MUSIC suffers from a high sensitivity to model errors, such as sensor position 
uncertainty. Also, the resolution capabilities decrease when the signals are correlated. When 
some of the signals are coherent, the method fails to work. The computational complexity is 
dominated by the computation of the eigenexpansion of the covariance matrix. 

D. Sparsity angle sensing (SAS) 

Many algorithm design challenges arise when the sources are close, Signal to Noise Ratio is 

low, correlated and coherent sources, less number of time samples. To improve the 

estimation performance and robustness, sparsity-based signal processing techniques for 

AOA estimation have been popularity. 

To cast this problem into a sparse representation problem, the basic steps are: 

1. Construct a known vector θ#  which is the expansion of vector θ considering all possible 

source locations. Let θ#  be filled with N vectors{ }1 ,..., Nθ θ which are the possible 

locations of unknown emitters. ( )θΔ # is the ideal spatial resolution ability. 

2. Fill each column of ( )θA# # with each potential emitter location: 1 2[ ( ), ( ),..., ( )]Nθ θ θ=A a a a# # # # . 

Suppose the number of sensor arrays is M, the number of all possible emitters is N, the 

number of real unknown emitters is K. A# is a M×N matrix. The relationship among M, 
N and K is K<M<N.  

3. Reconstruct the output signal model as 

( ) ( ) ( ) ( )t t t= +y A θ u n
& &

 

Where 1 2( ) [ ( ), ( ),... ( )]Nt u t u t u t=u
&

represents a N virtual transmitted signal vector in 

which only the signal corresponding to the true angle directions are non-zero, other 

directional signals are zero, which means
0

( )t K=u
&

 

4. The nonzero elements of 1 2( ) [ ( ), ( ),... ( )]Nt u t u t u t=u
&

 corresponds to the estimated AOAs. 

Thus, the AOA estimation could be transfered to the estimation o ( )tu
&

. First to 

solve ( )tu
&

and then get the AOAs. 

5. ( )tu
&

can be solved by l1-denoise optimization algorithm with quadratic constraints. 

 
1 2

min ( )   subject to ( ) ( ) ( )t t t ε≤u y - A θ u
&& &

 (80) 

where
1

1

( ) ( )
K

i
i

t u t
=

=∑u
&

, ε is the error threshold. 

Several experimental results are shown by comparing four AOA estimation approaches: BF, 

MVDR, MUSIC and SAS. 
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In Fig.36., the SNR is -7dB and the distance between two sources are 20°, all the methods are 
able to solve the two sources. In Fig.37., the SNR is still -7dB, but the distance between two 
sources are close to 10° separation, the BF method begins to merge the two peaks while the 
other three methods are able to solve two sources. In Fig.38., when the two sources are close 
to 4° separation, SNR is -1dB, BF, MVDR and MUSIC all emerge except SAS. Four 
approaches are compared and the results demonstrate that SAS outperforms the other three 
approaches in terms of robustness and spatial resolution. 
 

 

Fig. 36. Spatial spectra for BF, MVDR, MUSIC and SAS. SOAs: 57°and 77°.SNR=-7dB 
 

 

Fig. 37. Spatial spectra for BF, MVDR, MUSIC and SAS. AOAs: 60°and 70°.SNR=-7dB 
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Fig. 38. Spatial spectra for BF, MVDR, MUSIC and SAS. AOAs: 73°and 77°,SNR=-1dB  

4. Conclusion 

This chapter is focused on the design and analysis of wireless positioning systems. An 
overview of basic principles, latest developed systems and state of the art signal processing 
techniques for wireless positioning are presented. This chapter aims to provide the concepts 
related to localization systems as well as the methods to localize terminals in different 
wireless networks. As an important part of the chapter, potential challenges and new 
techniques for wireless positioning are provided to the readers. The authors hope that this 
chapter will help readers identify the key technical challenges in wireless positioning and be 
interested in this emerging area. 
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