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Intelligent Vibration Signal Diagnostic System 
Using Artificial Neural Network 

Chang-Ching Lin 
Tamkang University Tamshui, Taipei County, 

 Taiwan 

1. Introduction 

In today’s sophisticated manufacturing industry maintenance personnel are constantly 
forced to make important, and often costly, decisions on the use of machinery. Usually, 
these decisions are based on practical considerations, previous experiences, historical data 
and common sense. However, the exact determination of machine conditions and accurate 
prognosis of incipient failures or machine degradation are key elements in maximizing 
machine availability. 
The practice of maintenance includes machine condition monitoring, fault diagnostics, 
reliability analysis, and maintenance planning. Traditionally, equipment reliability studies 
depend heavily on statistical analysis of data from experimental life-tests or historical failure 
data. Tedious data collection procedures usually make this off-line approach unrealistic and 
inefficient for a fast-changing manufacturing environment (Singh & Kazzaz, 2003). Over the 
past few decades technologies in machine condition monitoring and fault diagnostics have 
matured. Many state-of-the-art machine condition monitoring and diagnostic technologies 
allow monitoring and fault detection to perform in on-line, real-time fashion making 
maintenance tasks more efficient and effective. Needless to say, new technologies often 
produce new kinds of information that may not have been directly associated with the 
traditional maintenance methodologies. Therefore, how to integrate this new information 
into maintenance planning to take advantages of the new technologies has become a big 
challenge for the research community. 
From the viewpoint of maintenance planning, Condition Based Maintenance (CBM) is an 
approach that uses the most cost effective methodology for the performance of machinery 
maintenance. The idea is to ensure maximum operational life and minimum downtime of 
machinery within predefined cost, safety and availability constraints. When machinery life 
extension is a major consideration the CBM approach usually involves predictive 
maintenance. In the term of predictive maintenance, a two-level approach should be 
addressed: 1) need to develop a condition monitoring for machine fault detection and 2) 
need to develop a diagnostic system for possible machine maintenance suggestion.  
The subject of CBM is charged with developing new technologies to diagnose the machinery 
problems. Different methods of fault identification have been developed and used 
effectively to detect the machine faults at an early stage using different machine quantities, 
such as current, voltage, speed, efficiency, temperature and vibrations. One of the principal 
tools for diagnosing rotating machinery problems is the vibration analysis. Through the use 
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of different signal processing techniques, it is possible to obtain vital diagnostic information 
from vibration profile before the equipment catastrophically fails. A problem with 
diagnostic techniques is that they require constant human interpretation of the results. The 
logical progression of the condition monitoring technologies is the automation of the 
diagnostic process. The research has been underway for a long time to automate the 
diagnostic process. Recently, artificial intelligent tools, such as expert systems, neural 
network and fuzzy logic, have been widely used with the monitoring system to support the 
detection and diagnostic tasks. 
In this chapter, artificial neural network (ANN) technologies and analytical models have 
been investigated and incorporated to present an Intelligent Diagnostic System (IDS), which 
could increase the effectiveness and efficiency of traditional condition monitoring diagnostic 
systems. 
Several advanced vibration trending methods have been studied and used to quantify 

machine operating conditions. The different aspects of vibration signal and its processing 

techniques, including autoregressive (AR) parametric modeling and different vibration 

trending methods are illustrated. An example of integrated IDS based on real-time, multi-

channel and neural network technologies is introduced. It involves intermittent or 

continuous collection of vibration data related to the operating condition of critical machine 

components, predicting its fault from a vibration symptom, and identifying the cause of the 

fault. The IDS contains two major parts: the condition monitoring system (CMS) and the 

diagnostic system (DS). A neural network architecture based on Adaptive Resonance 

Theory (ART) is introduced. The fault diagnostic system is incorporated with ARTMAP 

neural network, which is an enhanced model of the ART neural network. In this chapter, its 

performance testing on simulated vibration signals is presented. An in-depth testing using 

lab bearing fault signals has been implemented to validate the performance of the IDS. The 

objective is to provide a new and practicable solution for CBM. 

Essentially, this chapter presents an innovative method to synthesize low level information, 
such as vibration signals, with high level information, like signal patterns, to form a rigorous 
theoretical base for condition-based predictive maintenance. 

2. Condition monitoring system 

The condition monitoring system developed contains four modules (see Fig. 1): data 

acquisition, Parameters Estimation (PE), Performance Monitoring (PM), and Information 

Display and Control (IDC). The entire system was coded using C programming language. 

We have developed a user friendly graphic interface that allows for easy access and control 

in monitoring an operating machine. The system has been tested and verified on an 

experimental lab setting. The detailed procedure of ISDS and programming logic is 

discussed in the following sections. 

2.1 Data acquisition module 

The data acquisition module is more hardware related than the other modules. Vibration 
signals were acquired through accelerometers connected to a DASMUX-64 multiplexer 
board and a HSDAS-16 data acquisition board installed in a PC compatible computer. The 
multi-channel data acquisition program controlling the hardware equipment has been 
coded. 
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Fig. 1. Overview of intelligent diagnostic system 

2.2 Programming logic for Parameter Estimation (PE) module 

The parameter estimation module is designed to estimate the parameters of the normal 
condition of a machine. It provides a procedure to set up the machine positions considered 
to be critical locations of the machine. The PE module must be executed before running the 
PM module. The information to be calculated in the PM module needs to be compared to 
the base-line information generated in the PE module. 
The normal operating condition of a machine position is usually defined by experience or 
from empirical data. Generally speaking, a particular operation mode of a machine is 
selected and then defined as a “normal condition”. However, this normal condition is not 
unchangeable. Any adjustment to the machine, such as overhaul or other minor repairs, 
would change its internal mechanisms. In this case, the normal condition must be redefined, 
and all the base-line data of the monitored positions on the machine need to be reset. 
The PE procedure starts with specifying the ID of a machine, its location ID, and several other 
parameters related to each position, such as channel number and sampling rate. Then the 
upper control limits of the Exponentially Weighted Moving Average (EWMA) (Spoerre, 1993) 
and Root Mean Square (RMS) (Monk, 1972; Wheeler 1968) vibration trending indices are 
determined and an adequate Autoregressive (AR) order is computed. The AR time series 
modelling method is the most popular parametric spectral estimation method which translates 
a time signal into both frequency domain and parameter domain (Gersch, 1976). Once the AR 
order is determined, the AR parameters can be estimated through several normal condition 
signals collected from the particular position. A major issue with the parametric method is 
determining the AR order for a given signal. It is usually a trade-off between resolution and 
unnecessary peaks. Many criteria have been proposed as objective functions for selecting a 
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“good” AR model order. Akaike has developed two criteria, the Final Prediction Error (FPE) 
(Akaike, 1969 ) and Akaike Information Criterion (AIC) (Akaike, 1974). The criteria presented 
here may be simply used as guidelines for initial order selection, which are known to work 
well for true AR signals; but may not work well with real data, depending on how well such 
data set is modelled by an AR model. Therefore, both FPE and AIC have been adapted in this 
research for the AR order suggestion. 
 
 

Yes

No

Begin Parameter Estimation (PE) module

Enter machine ID,  position ID, channel number, sampling rate

Initialize A/D Board

Search AR order

Acquire signals

Compute AR order using AIC, FPE criteria

Enter AR order

Yes

No

Acquire signals

Calculate AR parameters

Calculate EWMA-UCL, RMS-UCL, ON/OFF threshold

Close setup file

Open setup file

Start Performance Monitoring (PM) Module

Set up another position

Update setup log file

 
 

Fig. 2. Flowchart of parameter estimation (PE) module 
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A setup file is then generated after the PE procedure is completed. This file, given a name 
that combines the machine ID and the position ID, consists of all the parameters associated 
with the specific position. The number of setup files created depends on the number of 
positions to be monitored in the PM mode, that is, each monitored position is accompanied 
by a setup file. 
In order to perform a multi-channel monitoring scheme a setup log file is also generated. 
This file contains all the names of setup files created in the PE mode. Every time a new 
position is added its setup file name is appended to the setup log file. The setup log file is 
very important. It not only determines the channels needing to be scanned when the PM 
program is executed, it also provides the PM program with paths to locate all the necessary 
information contained in the setup files. Fig. 2 shows the programming logic of the PE 
module. In practice, after the PE procedure is completed, on-line performance monitoring of 
the machine (the PM mode) begins. 

2.3 Programming logic for Performance Monitoring (PM) module 

In the PM module, vibration data arrive through the data acquisition hardware and are 
processed by AR, EWMA, ARPSD, RMS, FFT spectrum, and hourly usage calculation 
subroutines. After each calculation the current result is displayed on the computer screen 
through the Information Display and Control (IDC) module. Fig. 3 illustrates the flow chart 
of the PM programming logic. 
IDC is in charge of functions such as current information displaying, monitoring control, 
and machine status reasoning. Details of these functions are given in the following section. 

2.4 Information Display and Control (IDC) module 

Eight separate, small windows appear on the computer screen when the IDC module is 
activated. Each window is designed to show the current reading and information related to 
each calculation subroutine (e.g. AR, EWMA, ARPSD, RMS, and FFT spectrum) for the 
current position being monitored. 
Window 1 is designed to plot the current time domain data collected from the data 
acquisition equipment. Window 2 displays both the AR parameter pattern of the current 
signal and the normal condition AR parameter pattern stored in the setup file generated in 
the PE module. Window 3 plots the current EWMA reading on a EWMA control chart and 
its upper control limit. Window 4 plots the current RMS value and its upper control limit on 
a RMS control chart. Both the RMS and EWMA upper control limits are calculated in the PE 
module. Window 5 displays the hourly usage and other information of the position. The 
hourly usage of the position is calculated based on the vibration level of that position. It is 
an estimated running time of the component up to the calculating point from the time this 
position is set up. Window 6 indicates the current performance status of the position. Three 
different levels of performance status: normal, abnormal, and stop, are designed. Each status 
is represented by a different colour: a green light signals a normal condition; a yellow light 
represents an abnormal condition; and a red light indicates an emergency stop situation. 
The determination of the status of a position based on the current readings is discussed in 
the next section. Window 7 gives the current ARPSD spectrum, which is calculated based on 
the AR parameters from Window 2. Finally, Window 8 displays the current FFT spectrum 
by using the time domain data from Window 1. 
In addition to real-time information display, the IDC module also provides a user-friendly 
graphic interface for monitoring control. A user can utilize the mouse to navigate around 
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the computer screen and click on an icon to perform the specified function. For instance, to 
switch to another channel one can click on the “CH+” or “CH-” icon. Fig. 4 shows the IDC 
screen layout developed. 
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Fig. 3. Flowchart of PM and IDC modules 
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Fig. 4. Condition monitoring information display and control (IDC) Screen layout 

2.5 Vibration condition status reasoning 

Based on the criteria stored in the setup file and the current readings, the EWMA and RMS 
control charts show whether the current readings are under or above their respective upper 
control limit. If both readings are under their corresponding control limits, then the position 
is in a normal condition. However, if either one of the control readings exceeds its upper 
control limit, the performance status reasoning program would turn on the yellow light to 
indicate the abnormality of the position. In this case, the fault diagnostic system is activated. 

2.6 Condition monitoring sample session 

Data collection, in the form of vibration signals, was conducted using the following test rig 
(see Fig. 5): a 1/2 hp DC motor connected to a shaft by a drive belt, two sleeve bearings 
mounted on each end of the shaft and secured to a steel plate, an amplifier to magnify 
signals, a DASMUX-64 multiplexer board, and a HSDAS-16 data acquisition board installed 
in a personal computer. Vibration signals were collected from the bearing using 328C04 PCB 
accelerometers mounted on the bearing housings. Using the test rig, the following sample 
session was conducted. 
Assume that when the motor was turned on initially, it was running in normal condition. 
Later, a small piece of clay was attached to the rotational element of the test rig to generate 
an imbalance condition. This was used as an abnormal condition in the experiment. In the 
beginning, the setup procedure (PE) needed to be performed in order to obtain the base-li 
information. The sampling rate used was 1000 Hz and the sampling time was one second. 
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Fig. 5. The test rig for ISDS experiment 

The PE program first acquired eight samples and then took their average. Using the average 
normal signal, the AIC and FPE criteria were calculated. An AR order suggestion for the 
normal condition of the test rig was made. The AR order was fixed throughout the entire 
experiment. Once the AR order was known, the program started estimating the AR 
parameters and upper control limits of RMS and EWMA by collecting another eight data 
sets, calculating eight sets of AR parameters, and then averaging them. Finally, all 
parameters were stored in the setup file which would be used in the PM stage. An example 
of the normal condition parameters from a setup file are listed below: 

• Machine ID: TESTRG 

• Position ID: CHN1 

• Channel number: 1 

• Sampling rate: 1000 

• AR order: 32 

• AR parameters: .... 

• EWMAUCL: 0.8912 

• RMSUCL: 0.0367 
When the machine was running in normal condition the readings of EWMA were 
approximately -0.486 far below the EWMAUCL of 0.8912. The readings of RMS were about 
0.01895, and therefore, they were below the RMSUCL. As soon as an imbalance condition 
was generated the EWMA and RMS readings jumped to values of 3.3259 and 0.0504, 
respectively. The EWMA and RMS readings indicated the test rig was in an abnormal 
condition since both readings exceeded their respective control limits. 
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The machine condition monitoring mode switches to diagnostic mode when at least one 
index exceeds its control limit. Once the system is in the diagnostic system, a detailed 
automatic analysis begins to identify the machine abnormality occurred. The next section 
explains the fault diagnostic system designed for this research. 

3. ARTMAP-based diagnostic system 

3.1 Introduction to ARTMAP neural network 

The diagnostic system in this paper employs a neural network architecture, called Adaptive 

Resonance Theory with Map Field (ARTMAP). The fault diagnostic system is based on the 

ARTMAP fault diagnostic network developed by Knapp and Wang (Knapp & Wang, 1992). 

The ARTMAP network is an enhanced model of the ART2 neural network (Carpenter, 1987; 

Carpenter, 1991). The ARTMAP learning system is built from a pair of ART modules (see 

Fig. 6), which is capable of self-organizing stable recognition categories in response to 

arbitrary sequences of input patterns. These ART modules (ARTa and ARTb) are linked by 

Map Field and an internal controller that controls the learning of an associative map from 

the ARTa recognition categories to the ARTb recognition categories, as well as the matching 

of the ARTa vigilance parameter (ρ′). This vigilance test differs from the vigilance test inside 

the ART2 network. It determines the closeness between the recognition categories of ARTa 

and ARTb (Knapp, 1992). 

 

Map Field

ARTa

ARTb

Match

Tracking

ρ’

b
Training

a

Gain

 

Fig. 6. ARTMAP architecture 

A modified ARTMAP architecture has been adopted in this paper in order to perform the 
supervised learning. The modified ARTMAP architecture is based on the research by Knapp 
and Huang, which replaces the second ART module (ARTb) by a target output pattern 
provided by the user (Huang, 1993; Knapp, 1992). The major difference between the 
modified ARTMAP network and the ART2 network is the modified ARTMAP permits 
supervised learning while ART2 is an unsupervised neural network classifier. Fig. 7 shows 
the modified ARTMAP architecture. 
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3.2 Performance analysis of ARTMAP-based diagnostic system 
The performance of the ARTMAP-based diagnostic system was validated by employing 
vibration signals from test bearings. A small adjustment was made on the experimental test 
rig shown in Figure 5. The two sleeve bearings were replaced by two ball bearings with steel 
housings. The new setup allows easy detachment of the ball bearing from the housing for 
exchanging different bearings. Figure 8 shows the modified experimental setup. 
Six bearings with different defect conditions were made. Table 1 describes these defective ball 
bearings. A two-stage vibration data collection was conducted for each bearing. Five sets of 
vibration signals were collected in the first batch, three sets in the second batch. A total of eight 
sets of vibration signals were collected under each defect. Therefore, there were a total of 48 
data sets. All time domain vibration signals were transformed and parameterized through the 
ARPSD algorithm. The AR order used was 30. Thus, the dimension number for each AR 
parameter pattern was 31 (i.e., 30 AR parameters plus one variance). These 48 AR parameter 
patterns were used to train and test the ARTMAP-based diagnostic system. 
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Fig. 7. Modified ARTMAP architecture 
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Bearing # Defect 

1 Good bearing 

2 White sand in bearing 

3 Over-greased in raceway 

4 One scratch in inner race 

5 One scratch in one ball 

6 No grease in raceway 

Table 1. Test ball bearings 

 

Pattern Bearing Number 

Number 1 2 3 4 5 6 

 1 Train Train Train Train Train Train 

 2 1 3 2 6 3 1 4 2 5 6 6 2 

Batch 1 3 1 6 2 6 3 1 4 2 5 4 6 1 

 4 1 6 2 6 3 1 4 2 5 4 6 2 

 5 1 6 2 6 3 1 4 2 5 6 6 1 

 1 1 3 2 6 3 1 5 4 5 4 6 5 

Batch 2 2 1 3 2 6 3 1 5 4 5 4 6 5 

 3 1 3 2 6 3 1 5 4 5 4 6 5 

Table 2. Bearing test results of ARTMAP-based ISDS 

Note that the 512 frequency components in each ARPSD spectrum were compressed to only 
31 parameters in each AR model indicating the system dealt with a significantly reduced 
amount of data; this is extremely beneficial in real-time applications. 
Fig. 8 shows the plots of AR parameter patterns from the six defective bearings. The first 
column displays the six training patterns, which is the first one of the eight data sets from 
each bearing type. The second column illustrates some of the other seven test patterns, 
where the solid lines represent data from the first collection batch and the dotted lines are 
from the second batch. As can be seen from Fig. 8, the profiles of the AR parameter patterns 
within each group are very similar. Only a few deviations can be seen between the first and 
second batches. The deviations come from the very sensitive but inevitable internal 
structure changes of the setup during the bearing attachment and detachment operations 
between the two data collections. 
The experimental procedure began with using the first pattern of all the conditions for 
training and then randomly testing the other seven patterns. In addition, the modified 
ARTMAP network was designed to provide two suggested fault patterns (i.e., the outputs of 
the first two activated nodes from the F2 field). Table 2 summarizes the test results on 
diagnosing the 42 test patterns. The first column of Table 2 for each bearing type is the first 
identified fault from the network. It shows only 3 of the 42 test cases were mismatched in 
the first guess but they were then picked up correctly by the network in the second guess 
(see bold-face numbers in Table 2). Interestingly, these three mismatched patterns were from 
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the second batch. If the profiles of Bearings 4 and 5 in the second batch (the dotted profiles 
in the second column of Fig. 8) were compared, then one could see the test patterns of 
Bearing 4 from the second batch were much closer to the training pattern of Bearing 5 than 
that of Bearing 4. This is why the network recognized the test patterns of Bearing 4 as 
Bearing 5 in its first guess. These test results clearly display the capability and reliability of 
the ARTMAP-based diagnostic system and the robustness of using AR parameter patterns 
to represent vibration signals. For the efficiency of the ARTMAP training, the training time 
of one 31-point AR parameter pattern was less than one second on a PC. 
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Fig. 8. AR parameters patterns of defective bearings 

4. Summary and conclusions 

This paper presents an integrated Intelligent Diagnostic System (IDS). Several unique 
features have been added to ISDS, including the advanced vibration trending techniques, 
the data reduction and features extraction through AR parametric model, the multi-channel 
and on-line capabilities, the user-friendly graphical display and control interface, and a 
unique machine diagnostic scheme through the modified ARTMAP neural network. 
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Based on the ART2 architecture, a modified ARTMAP network is introduced. The modified 
ARTMAP network is capable of supervised learning. In order to test the performance and 
robustness of the modified ARTMAP network in ISDS, an extensive bearing fault 
experiment has been conducted. The experimental results show ISDS is able to detect and 
identify several machine faults correctly (e.g., ball bearing defects in our case). 

5. Appendix 

5.1 Time series autoregressive (AR) parametric model 
According to the features representation requirements in signal pattern recognition, if the 
features shown by raw data are ambiguous, then it is necessary to use a preprocessor or 
transformation method on the raw data. Such a preprocessor should have feature extraction 
capability that can invariably transfer raw data from one domain to another. The objective of 
this preprocessing stage is to reveal the characteristics of a pattern such that the pattern can 
be more easily identified. 
The most important feature provided in vibration signals is frequency. Therefore, the 
characteristics of vibration signals can be shown clearly in the frequency domain. 
Traditionally, the Fast Fourier Transform (FFT) based spectral estimators are used to estimate 
the power spectral density (PSD) of signals. Recently, many parameter estimation methods 
have been developed. Among them, the autoregressive (AR) modeling method is the most 
popular (Gersch & Liu, 1976). The major advantage of using the parametric spectral estimation 
method is its ability to translate a time signal into both frequency (PSD) domain and parameter 
domain. In addition, parametric spectrum estimation is based on a more realistic assumption 
and does not need a long data record to get a high resolution spectrum. 

5.2 Parametric autoregressive spectral estimation 
Vibration signals can be treated as if they were generated from a time series random 
process. Now consider a time series xn,  

 ,   , ,0, ,nx n = −∞ ∞… …  (A.1) 

where the observed interval is from n = 1, ..., N. The autoregressive model of xn is given in 

Equation (A.2). 

 1 1 2 2n n n p n p nx a x a x a x e− − −= − − − − +…  (A.2) 

where en is the prediction error, and p is the order of the model. The parametric spectrum 

may be computed by plugging all p ak parameters into the theoretical power spectral density 

(PSD) function defined from Equation (A.3). 
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where S is the sampling rate used in data acquisition, f is the fraction of the sampling rate, p 

is the prediction lag or order of the AR model, and σ2
 is the variance. Therefore, if the 

prediction coefficients, ak, can be estimated accurately, the parametric spectrum, PAR(f), of 

the random process can be calculated correctly through Equation (A.3). 

Several approaches are available for estimating the AR model parameters. It has been 

observed that if the data consist of sinusoids with white noise, the peak location in the AR 

spectral estimate critically depends on the phase of the sinusoid (Swingler, 1980). The 

degree of phase dependence varies with different parameter estimation methods. Of all the 

AR parameter estimation methods, the modified covariance method appears to yield the 

best results (Kay, 1988). The modified covariance method appears to yield statistically stable 

spectral estimates with high resolution (Kay, 1988). For data consisting of sinusoids with 

white noise, a number of desirable properties have been observed (Kay, 1988; Marple, 1987): 

1.  The shifting of the peaks from the true frequency locations due to additive noise 

appears to be less than many other AR spectral estimators. 

2.  The peak location affected by initial sinusoidal phase is considerably reduced. 

3.  Spectral line splitting in which a single sinusoidal component gives rise to two distinct 

spectral peaks has never been observed. 

5.3 AR order selection 

A major issue with the parametric method is determining the AR order for a given signal. It 

is usually a trade-off between resolution and unnecessary peaks. Many criteria have been 

proposed as objective functions for selecting a “good” AR model order. Akaike has 

developed two criteria, the final prediction error (FPE) (Akaike, 1969) and Akaike 

information criterion (AIC) (Akaike, 1974). The FPE for an AR process is defined as follows: 

 ( ) 2 +( +1)
ˆFPE ( )

-( +1)
p

N p
p

N p
σ=  (A.4) 

where N is the number of data samples, p is the order, and ,?^ p

2
 is the estimated variance at 

order p. The order p selected is the one for which the FPE value is the minimum. The AIC for 

an AR process has the following form: 

 ( ) ( ) ( )2ˆAIC ln lnpp N p Nσ= +  (A.5) 

The criteria presented here may be simply used as guidelines for initial order selection, 

which are known to work well for true AR signals; but may not work well with real data, 

depending on how well such data set is modeled by an AR model. Therefore, both FPE and 

AIC have been adapted in this research for the AR order suggestion. 

Figure 3.3 displays an example of FPE and AIC criteria map. The signal used here is the 
same one shown in Figure 3.2. All rescaled FPE(p) and AIC(p) values at different AR order p 
are calculated and plotted in Figure A.1. The order searching range is from 1 to 80. The AIC 
reaches its minimum at p equal to 49. With the FPE, the minimum values are obtained when 
AR order is 59. Comparing these two orders by looking at their AR spectra, an order of 49 is 
able to produce a relatively good resolution spectrum while an order of 59 does not improve 
the resolution by much. Therefore, 49 may be selected as the AR model order for this signal. 
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Fig. A.1 Criteria map of FPE and AIC 

Estimate AR Parameters

Modified covariance method

=> Parameters = a1... ap

Select AR Model Order

AIC, FPE criterion

=> Order = p

Compute ARPSD

=> AR Spectrum 

Acquire Data

Samples = N

Sampling rate = S 

Order Closing 

Adjust order

Compute Variance

=> Variance = σ2

 

Fig. A.2 AR parameters and PSD estimation flow chart 
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Fig. A.2 summarizes the flow chart of calculating AR parameters and ARPSD to conclude 
this section. 

5.4 Trending techniques for vibration condition 

In order to monitor the condition of a machine throughout its operational life, several 
vibration trending techniques have been investigated. Vibration trending indices allow the 
relative machine condition to be plotted with respect to time. From the trending plot most 
gradual changes relating to the condition of machines can be detected. 
Each signal could have more than one trending index associated with it. Furthermore, each 
trending index, which may be treated as a different aspect of the signal, carries different 
sensitivities for different machine fault types. In the case of vibration, several trending 
monitoring techniques have been developed and studied (Mathew, 1989; Dyer & Stewart, 
1978; Mathew & Alfredson, 1984; Spoerre, 1993). In this instance, EWMA (Exponential 
Weighted Moving Average), RMS (Root Mean Square). The mathematical description of 
each method is given in the following sections. 

5.5 ART2 neural network 

Adaptive Resonance Theory (ART) is first introduced by Grossberg in 1976 (Grossberg, 1976a). 
This theory emerged through an analysis of neural networking mechanisms, namely, the 
hypothetical STM (Short-Term Memory) and the LTM (Long-Term Memory) architectures of 
the human brain. The theory has been claimed to be capable of self-organizing and self-
stabilizing learning in real time in an arbitrarily changing complex input environment 
(Banquet & Grossberg, 1987; Grossberg, 1976a; Grossberg, 1976b). Over the years, ART has 
steadily developed as a physical theory to explain cognitive information processing and has 
been applied to many pattern classification problems (Carpenter et al., 1991). 
The architecture designed by the ART algorithm performs pattern clustering and is trained 
without supervision. Analyses showed this type of top-down feedback learning scheme 
could significantly overcome the problem of unstable learning, such as local minimum 
problem in the back propagation algorithm (Grossberg, 1987a).  

5.6 Basic concept of the adaptive resonance theory 
The basic ART architecture includes two subsystems, an attentional subsystem and an 
orienting subsystem. When learning or classification occurs within the ART architecture 
these two functionally complementary subsystems are activated to process familiar and 
unfamiliar patterns. Fig. A.3 illustrates the anatomy of the ART attentional-orienting system. 
At first, familiar patterns are processed within the attentional subsystem, which is built up 
from a competitive learning network. The second subsystem, the orienting subsystem, resets 
the attentional subsystem when a unfamiliar pattern occurs. Interactions between these two 
subsystems help to express whether a novel pattern is familiar and well represented by an 
existing category code, or unfamiliar and in need of a new category code. 

In the attentional subsystem two successive stages, the feature representation field (F1) and 

the category representation field (F2), encode input patterns into a form of short term 

memory. Bottom-up and top-down pathways between F1 and F2 contain long term memory 

traces. Those traces are represented as weight vectors Bij and Tji in Fig. A.3 When a new 

input pattern arrives, it is then transformed into an activating pattern as an STM form in F1. 

This STM pattern is then multiplied, or gated, by the pathway’s bottom-up LTM traces. 

www.intechopen.com



Intelligent Vibration Signal Diagnostic System Using Artificial Neural Network   

 

437 

After the LTM gated signal reaches F2, the signal is quickly transformed by interactions 

among the nodes in F2. The resulting pattern is then stored as another STM in F2. Just like 

the new pattern gated by the bottom-up adaptive filter, the STM pattern in F2 is gated by 

the top-down LTM traces and summed up as an internal pattern which is then called a top-

down template, or learned expectation to F1. As soon as a top-down template is generated, 

F1 acts to match the top-down template against the current STM pattern in F1. If a mismatch 

occurs in F1, the orienting subsystem is engaged, thereby leading to deactivate the current 

STM in F2. After that, a new active STM pattern in F2 is produced. This generates a new top-

down template pattern through top-down traces again. The search ends when an STM 

pattern across F2 reads out a top-down template which matches the current STM in F1 to the 

degree of accuracy required by the level of the vigilance parameter. In this case, the bottom-

up and top-down LTM traces are adaptively adjusted according to the current internal STM 

in F1. Otherwise, a new classification category is then established as a bottom-up code and a 

new top-down template is learned. 
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LTM
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F1 STM

F2 STM F2  
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Control
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Control

++

+ +

-
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+

-

+

+

Orienting 
Subsystem

Attentional 
Subsystem

ρ Vigilance 
Test

 
(Adapted from Carpenter and Grossberg, 1987b) 

Fig. A.3 typical ART module. 

By this fashion, a rapid series of the STM matching and resets may take place. Such an STM 
matching and reset series controls the system's hypothesis testing and search of the LTM by 
sequentially engaging the novelty-sensitive orienting subsystem. 

www.intechopen.com



 Artificial Neural Networks - Industrial and Control Engineering Applications 

 

438 

5.7 ART2 system dynamics  

The mathematical representation of ART2 dynamics is discussed in this section. Fig. A.4 

illustrates an ART2 architecture that includes the principal components of ART modules, the 

attentional subsystem, and the orienting subsystem. In the attentional subsystem, there are 

three separate fields: an input preprocessing field, F0, an input representation field, F1, and 

a category representation field, F2. Fig. A.4 also displays the ART2 dynamics by arrows, 

circles, and filled circles where arrows represent the processing directions and filled circles 

represent the normalization operations (i.e., Euclidean Normalization). 
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Fig. A.4 ART2 architecture. 
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