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1. Introduction 

Artificial Neural Networks (ANN) provide a broad spectrum of functions which are 
required in the field of engine applications (modelling, especially for controller design, on-
board testing and diagnostics). Exhaust emissions laws are becoming progressively more 
stringent, while the pressure on fuel economy has been intensifying significantly in the last 

few years.  For diesel engines, a large number of technologies, such as, multi-pulse injection 
and variable valve actuation, show significant promise to both improve fuel economy and 
reduce exhaust emissions.   

Such technologies lead to high degree of freedom systems. Therefore, the engine management 

system has to handle this increased complexity. The traditional orthogonal grid look up tables 

will increase exponentially as the degrees of freedom increase. This will increase the 

complexity and cost of the mapping and calibration. The electronic control unit (ECU) memory 

consumption will increase in parallel. Use of non-linear functions and in particular neural 

networks is offering one important route to managing the data tables and achieving the overall 

goal of reducing the emissions and improving fuel economy. The need for speed and accuracy 

in the modelling process tends to militate against phenomenological methods 

Moreover, in the general control system design, variables, such as exhaust temperature and 
exhaust manifold pressure, are the usual feedback signals. The brake specific fuel-
consumption (BSFC) and emissions (concentration or specific) are the objective variables to 
which the controller set points are set in order to achieve minimum values. All of these 
variables can potentially be represented by black-box models. Brahma et al. proposes a 
dynamic model as the basis for a fuel path control system (Brahma et al., 2004).  Wu et al. 

demonstrated a neural network approach to represent air flow rate (Wu et al., 2004), Maass 
et al presented a NOx  prediction neural network model (Maass et al., June 2009) and Maass 
et al presented a smoke  prediction neural network model (Maass et al., November 2009].   
Real-time operation and the mapping of complex, highly non-linear and dynamic patterns 
in engine behaviour are challenges that have to be met in modern combustion engines. 
Neural networks can handle single-input single-output up to multiple-input multiple-
output problems, classification tasks and also function approximation. Their generalisation 
to unforeseen situations enables a wide application if the design of input data captures all 
the dynamics of the system. In addition, architectures and combinations of networks have a 
considerable impact on the performance level. We will address these challenging areas. 

Firstly, this chapter will address some data collection procedures, from the design of the 

experiment to neural network identification. The data acquisition for network development 
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is crucial and the design of experiments has a significant impact on the model performance 

and data collection length, especially for engine systems. We will explain how to choose 

data perturbation signal, design of experiment to achieve minimum data. We will use 

practical engine examples to demonstrate these issues. For the application to engines, the 

relation should be explainable through the chosen inputs and the choice is influenced by the 

understanding of relations between inputs and outputs. Acquisition of data needs to be 

done accurately. It needs to be determined if transient behaviour or steady-state operation 

provide sufficient features for training and validation. The more features the training data 

covers, the better the network is trained for generalisation of engine behaviour. 

Secondly, this chapter addresses architectures and combinations of networks, the 

application of ANN and combination of those in engine diagnostics and controller 

development. Combinations of ANN into groups are described achieving improved overall 

model behaviour. Here, task distribution into special subtask or error reduction through 

model redundancy can lead to the best possible result. The combination of ANN includes 

specialised networks trained for subtasks combined with others resulting in a superior task 

solution. Task distribution helps in overcoming generalisation problems by including 

redundant networks whose best result is chosen for solution of a specific task. 

Thirdly, practical application examples are shown in the domain of emission modelling and 

estimation of on-board diagnostics of NOx and PM for heavy- and medium-duty diesel 

engines (Maass et al., 2009; Maass et al., 2009). It will also cover Non-linear autoregressive 

exogenous input (NLARX) neural networks to represent intake manifold pressure, exhaust 

manifold temperature, exhaust manifold pressure to support control system development 

(Deng et al., 2010).  Neural networks are chosen due to their capability to represent complex 

and highly nonlinear input/ output relationships and can be used to represent the plant 

during control simulation, and the behaviour of nonlinear control methods.  

2. Architecture choices of neural networks 

2.1 Introduction of architectures 
The choice of network architecture is dependent on the problem. Classification, linear or 

non-linear problems, with or without underlying system dynamics guides the choices of 

network composition and the topology. In general it can be distinguished between three 

types of networks: 

• Single-Feedforward Networks (SLFN) 

• Multi-Layer Feedforward Networks (MLFN) 

• Recurrent Networks (RNN). 

Where the single feedforward network describes a simple mapping network it can be used 

in classification or for mapping of simple input output functionality. It is defined through a 

single layer of neurons. Hence, the knowledge storage capacity is restricted and only simple 

logic relations can be mapped. An extension of this is the multi-layer feedforward network, 

also found as multi-layer perceptron. This network architecture is defined through a 

minimum of one hidden layer of neurons. The number of hidden layers can be increased 

dependent on the problem. However, literature states (reference) that a multi-layer 

perceptron with three hidden layers is sufficient to map every continuous function by 

adding a certain number of neurons to meet required complexity. However, big growing 

networks can be ill-posed for overtraining and be difficult to implement in real-time 

applications. Therefore, recurrent structures of networks are in place that will accommodate 
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the underlying output dynamics, a feature that is of particular interest with engine 

applications. In turbocharged combustion engines intake and exhaust shows related 

dynamics through the turbine and compressor connection. Those dynamics can be taken 

into consideration with output recurrent network structures. 

The automotive sector has applied neural networks models in several different cases. Their 

main implementation is seen in control design in the area of engine operation. Hence, in 

engine development neural networks are used for control problems such as fuel injection, 

output performance or speed (Hafner et al., 2000; Ouladsine et al., 2004). In addition, 

advanced control strategies as variable turbine geometry (VGT), exhaust gas recirculation 

(EGR) or variable valve timing (VVT) have been in the focus of ANN modelling (Thompson 

et al., 2000). Nevertheless, the application is also used for virtual sensing such as emissions 

(Hanzevack, 1997; Atkinson, 2002) or as described in Prokhorov (Prokhorov, 2005)  for 

misfire detection, torque monitoring or tyre pressure change detection.  

The combustion process itself has been investigated and parameters been modelled with 

neural networks by different authors (Potenza et al., 2007; He et al., 2004). Potenza et al. 

developed a model estimating Air-to-Fuel Ratio (AFR) or in-cylinder pressure and 

temperature on the basis of crankshaft kinematics and its vibrations. In the work of He et al. 

combustion parameters and emissions are modelled under the consideration of boost 

pressure and EGR. 

Typical network structures in these investigations have been the NLARX as has also 

presented in the example application in the previous section. The NLARX structure can 

accommodate the dynamics of the system by feeding previous network outputs back into 

the input layer. It also enables the user to define how many previous output and input time 

steps are required for representing the systems dynamics best. Other network structures 

include the radial-basis function networks or single layer feedforward networks for 

classification problems such as misfire indication or component failure detection.  

This section describes the commonly applied architecture of the NLARX model. In addition 

recent investigations on combinations of artificial neural networks for more efficient 

applications are presented in a practical example for smoke emission output prediction. 

2.2 The NLARX architecture 
Amongst several architecture styles the NLARX model structure is a commonly used 

structure and is presented here. For further topologies the literature shows many examples 

as can be found in Haykin or Hagan (Haykin, 2001; Hagan, 1999). 

A typical structure of a NLARX model is illustrated in Figure 1. The inputs are represented 

by  and the outputs are described by . The inputs are represented by  and the 

outputs are described by . The formulation of this NLARX model can be described as: 

  (1) 

where  is number of past output terms used to predict the current output,  is the 

number of input terms used to predict the current output. 

Each output of an NLARX model is a function of regressors that are transformations of past 

inputs and past outputs. Usually this function has a linear block and a nonlinear block. The 

model output is the sum of the outputs of the two blocks. Typical regressors are simply 

delayed input or output variables. More advanced regressors are in the form of arbitrary 

user-defined functions of delayed input and output variables.  
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Fig. 1. Canonical representation of a NLARX model structure 

The NLARX model training can be cast as a non-linear unconstrained optimization problem:  

  
(2)

 

where  is a training data set,  represents the measured output 

which is the measured soot in the training set,  is the NLARX output,  is a 2-norm 

operation, and  is a parameter vector, where  and  is the number of 

parameters. The training process can be described as follows: Given a neural network 

described by equation 1, there is an error metric, that is referred to as performance index of 

equation 2. This index is to be minimised and represents the approximation of the network 

to some given training patterns. The task will be to modify the network parameters  to 

reduce the index  over the complete trajectory to achieve the minimal value.  

3. Data collection 

Data collection should capture as much information possible from the engine application, 

either through design of experiment or using perturbation signals. This section will discuss 

the definition of the engine test where the target of the modelling exercise is to represent 

gaseous emissions, using random signals as perturbation signals and design of experiment 

method to decide the data requirements. . 

Data acquisition is a key element for successful modelling of systems behaviour. In the field 

of neural network modelling the training data is crucial for creating a good generalising 

network covering a broad range of the systems behaviour. Hence, a sufficient design of 

experiments is a key for a successful neural network design.  

An efficient and sufficient training requires a data generation strategy that defines the least 

required data covering the broadest engine operation range. This data set does not 

necessarily need to contain all different operation states. If it contains the main system 
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dynamics represented in characteristic features the network would be able to generalise 

engine states in between recorded data. However, missing out extreme states in the 

operation may result in a lack of training information. Neural networks cannot extrapolate 

states that are not covered by the training data as shown in the subsection. 

Data collection can be divided into the following categories for diesel engine applications: 

1. Predefined engine tests that are used for engine calibration or meeting legislation 

requirements.  

2. Pseudo-random signal generation for engine parameters such as fuel-rail pressure or 

start of injection that explore a broader range of engine performance.  

3. Design of experiment, such as classical, space-filling or optimal design experiments. 

This section will use the examples to cover these three aspects of the data collection. 

3.1 Predefined engine tests 
New emission regulations are going to take effect within the next years in Europe and North 

America. These implementations bring more and more stringent Emission standards.  

Different regions have different engine requirement tests. The Non-Road Transient Cycle 

(NRTC) is an engine dynamometer transient driving schedule of total duration of about 

1200 seconds. The speed and torque during the NRTC test is shown in Figure 2.  It is a cycle 

that was devised by the Environmental-Protection Agency (EPA) of the United States of 

America to represent the range of operating conditions of off-highway machinery.  It is the 

standard test cycle for Tier 4 emissions standards. Normally, the motivation for this choice 

of cycle is twofold.  Firstly, experience has shown that this is one of the most challenging 

cycles in terms of emissions modelling. Secondly, engine manufacturers must conform the 

emissions legislation of which the NRTC cycle is an integral part. The current trend is to 

design engines that pass legislative emission tests by a small margin, but where that margin 

must be provably robust against deterioration in engine systems. For this the data generated 

by this cycle is of critical importance. 

 

 

Fig. 2. Non-Road-Transient-Cycle (NRTC) displayed in normalized speed and torque 

characteristics – used for generation of Data set I [Dieselnet, 2009] 
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The data used in this section originates from two independent experiments to show the 

general applicability of the proposed method of prediction. The first data set is created with 

a NRTC as it is used for certification of non-road engines meeting EPA and EU standards. In 

the second test a composition of test cycles is operated also including the NRTC. 

DATA SET I – The first data set consists of 12 inputs and the NOx emission output displayed 

in Figure 3. It is predicted on the foundation of the inputs such as: torque, boost pressure, 

engine speed, liquid pilot fuel quantity, final fuel injection, back pressure, intake manifold 

temperature, exhaust temperature, intake depression and coolant temperatures in and out. 

The data is sampled at a rate of 1Hz and recorded over the whole NRTC cycle range of 1200 

seconds. 
 

 

Fig. 3. Data set I - NOx emission output generated in NRTC mode 

 

 

Fig. 4. Test cycle composition of NRTC, ramped modal (8 points), full load and key steady 

state points 
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DATA SET II – The second data set consists of 16 inputs to predict the NOx emission output. 
The data is also sampled at 1Hz sampling frequency. The operated cycle is a composition of 
a NRTC, a ramped modal cycle, a full load and some key steady state points as it can be seen 
in Figure 4. This cycle is repeated 28 times and varied in the engine calibration maps for 
start of injection (SOI), fuel rail pressure (FRP) and fuel quantity. 

3.1.1 Data pre-processing 
Both data sets require prior processing in order to ease the training process of the NLARX 
model. In view of the data variability the sets are normalized to reduce the range of the 
inputs data. Then a further step of processing is done as follows. 
DATA SET I – The initial data set provides limited data in terms of different runs and 
variation in signal features. Consequently, the data set is re-arranged to spread features into 
sets of training and validation. The signal is first divided into quarters and then arranged 
into training sets of the first quarter & third quarter and second quarter & fourth quarter. 
The result can be seen in Figure 5. 

The figure shows a better distribution of signal characteristics. Each set contains a part with 
high frequent, high amplitudes and a lower frequency section with lower amplitudes. 
 

 

Fig. 5. Pre-processed NOx output signal. Rearranged and composed training and validation set 

 

 

Fig. 6. Data set II training cycle of NOx target output 
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DATA SET II – The second data set is split into a training set represented by the first cycle 
and the residual 27 cycles serve as validation sets individually. Each cycle varies slightly in 
its range due to the fact of cyclic variations but more importantly that different engine 
calibration maps are used. Start of injection (SOI), fuel-rail pressure (FRP) and fuel quantity 
are changed over all 28 cycles systematically. A training output can be seen in Figure 6. 

3.1.2 Results 
The NLARX models are “teacher forced”  trained with an output target as shown before in 

Figure 4. and Figure 5.  

DATA SET I RESULTS - The neural network is fed with the training data and trained 

manually. The results are promising with R2=0.96 for the training set and R2=0.94 for the 

validation set. The correlation of predicted results with the output target is realized with the 

correlation method coefficient of determination R2 that is expressed through: 

  

(3) 

Where  describes the measured data,  the prediction and  the mean value of the output 

data. The coefficient of determination shows the explained variability of the systems output 

by the regression model. A result of =1 means an accurate model has been found whereas 

with a  value of 0 there is no correlation between the system and the model output. 

The predicted signal shows a good correspondence with the measured signal as it can be 

seen in Figure 7. 
 

 

Fig. 7. Correlation of measured NOx output with predicted neural network signal 

However, the model introduces some noise in the second half of the signal. Here, the 

measured signal fluctuates less but the prediction is characterized with an overreaction. This 

is assumed to be a side effect of the good correspondence in the more oscillatory region of 

the test. The model is trained for a more frequent change in the signal and tends to react 

“nervously”  on less varying patterns. 
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DATA SET II RESULTS – This second data set is to investigate the flexibility of the chosen 

network architecture. The data set stretches the signal spectrum not only by cycle variances 

but also with different calibration maps. For the training set a correlation of  =0.95 is 

achieved as displayed in Figure 8. 

Subsequently, this model is individually applied to the residual 27 cycles with the result 

displayed in Figure 9. It shows the  values over the 27 validation test cycles (black line). A 
 

 

Fig. 8. Correlation between measured target output and predicted output with an R2 = 0.95 

 

 

Fig. 9. Trend of prediction for 28 validation test cycles - decreasing correlation with 

increasing SOI timing (black line) and overcoming calibration variation with multiple 
training cycles (blue line) 
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general decreasing trend is recognized whose characteristic seems to result from the 

increase of SOI timing. With more advanced SOI the NOx output increases and the signal 

amplitudes rise.  This variance introduces an offset to the signal that cannot be handled by 

the present model. Hence, the calibration variance has a significant impact on the model 

performance. The other two calibration variables, FRP and fuel quantity show less impact 

on the model performance. In order to overcome this performance variance with changing 

engine calibration settings additional training data is required. Additional features teach the 

network for a broader application spectrum. The result in performance can also be seen in 

Figure 8. The  output over all 28 cycles settles above 0.95 that is an acceptable and 

sufficient result (blue line). This shows that an increase of teaching features improves the 

knowledge area of the network and underlines the importance of sufficient engine 

characteristics within a predefined test cycle. 

3.1.3 Conclusion 
This section shows the data collection for neural network training with a predefined engine 

test. It is used to create a broad spectrum of engine NOx output response of two 

independent heavy-duty diesel engines. 

Due to a limited stock of data in the first set the training and validation set is built from a 

single set of data consisting of 13 channels – 12 inputs and 1 output. As a consequence of 

this lack of data the available set is recomposed for a better distribution of signal 

characteristics. This leads through manual training of the NLARX model towards a  value 

of 0.96 and 0.94 for training and validation set respectively. 

The second data set provides a broader validation spectrum because of calibration variances 

in SOI, FRP and fuel quantity over 28 test cycles. The training results achieve an  value of 

0.97 whereas the validation value ranges between =0.88 down to =0.76. An increase in 

SOI timing causes an offset in the signal that cannot be handled by the trained model. This 

problem requires a broader featured training set that actually includes the peaks caused 

from particular input characteristics such as, for example, an increasing load demand. 

Hence, a training set of five cycles from data set II is created that covers different calibration 

settings. The correlation result improves significantly over the whole set of data with the  

value settling above 0.95. 

3.2 Random signal for data generation 
In order to capture as much dynamic information as possible, random steps are used as 

input signals. They are discrete time signals where steps of random magnitude may occur at 

sampling instants with a certain probability p. The input signal r can be expressed as 

follows: 

  
(4)

 

where  is an integer,  is a discrete time white noise process with zero mean and standard 

deviation. In the following a modelling approach is presented with following input signals: 

• Start of injection timing 

• Rail pressure 
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• Dwell time  

• Fuel ratio (quantity ratio between two pulses). 

These signals are used to predict exhaust temperature and pressure, compressor mass-air 

flow and the NOx output of an engine. Figure 10 and Figure 11 show the random input 

signals of start of injection timing and fuel-rail pressure for both training and validation 

purposes. They are representative for the four generated input signals. These figures show 

the random frequency and amplitude changes of SOI and FRP. 

 

 

Fig. 10. Random signal of SOI for training and validation 

 

 

Fig. 11. Random signal of FRP for training and validation 
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The experiment plan was designed to cover the whole range of fuel injection space as 

models are effective in interpolating within the range of the training data, but not 

extrapolating beyond the range.  With the engine running at speed of 1440 rpm and torque 

of 466 Nm, the injection timing spanned a range from -3 degree to 6 degree before top dead 

center (BTDC), rail pressure from 45 MPa to 75 MPa, dwell from 0.4 ms to 0.5 ms, fuel ratio 

from 0.5 to 1. Data logged for 2000 seconds was used for training purpose and data logged 

for a period of 2500 seconds data was used for validation.   

3.2.1 Results 
The results are summarized in Table 1. Four combinations of input and output are tested. 

Each output is predicted on the basis of all four inputs. Hence, four different models are 

created and trained. The correlation of the predicted results with the actual measured results 

is quantified using the correlation coefficient, R2 (see (1)). 

 

Test Output R2 Validation  

  Training  Validation Fig. 

1 Exhaust manifold temperature 0.9998 0.9997 11

  

2 Compressor mass flow 0.9998 0.9997 12 

3 Exhaust manifold pressure 0.9957 0.9936 13 

4 NOx 0.9999 0.9999 14 

Table 1. Results for NLARX models for random signal training 

 

 

Fig. 12. Correlation of engine exhaust temperature with predicted neural network signal 
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The results show that the NLARX network is well able to represent the fuel path behaviour.  

The NLARX model has shown itself useful as a way of representing engine behaviour and 

that could be used as the basis for a diagnosis algorithm or as a fast measurement.   

 

 

 

Fig. 13. Correlation of engine compressor mass-air flow with predicted neural network signal 

 

 

 

 

Fig. 14. Correlation of engine exhaust pressure with predicted neural network signal 
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Fig. 15. Correlation of engine NOx with predicted neural network signal 

3.2.2 Conclusions 
The investigation of fuel path dynamics in regard to the development of a fuel path control 

algorithm is a novel field of study.  This section has shown some initial results intended to 

support control systems development. The data generated for network training is created 

with a random signal that is used to perturb engine operation and create a variance in the 

engine response for exhaust manifold temperature and pressure, engine compressor mass-

air flow and the NOx output. The inputs SOI, fuel rail pressure, dwell timing between 

injection events and the fuel ratio are varied over a reasonable range at a fixed operation 

point.  This can be applied for several operation points in order to create wider engine 

behaviour characteristic. Those points can then be used for teaching a single neural network 

or a combination of networks applied for specific tasks.  

A single NLARX model is used for each output parameter measured: exhaust temperature, 

compressor mass air-flow, exhaust pressure and NOx.  The models demonstrate excellent 

performance at the operating conditions judged by correlation coefficients close to unity. 

Further work is required to evaluate the potential for the NLARX model to represent 

behaviour across a number of operating points.  Such a non-linear model is capable of 

supporting diagnosis processes as well as being a fast model for controls design and 

evaluation. 

3.3 Design of experiment for data generation 
This section shows using a design of experiment method to minimise the test and collect 
informative data for neural networks training and validation.  
Figure 16 shows the schematic diagram of a diesel engine. The original engine used for 
generation of neural network training and validation data is a Caterpillar C6.6 heavy-duty 
diesel engine with EGR, VGT and VVT function. This engine is modelled in Dynasty 9.4.1 in 

order to simulate cost effective the engines behaviour. Dynasty is a dynamic simulation tool 
designed for modelling, simulation and analysis of physical systems in both transient and 
steady state conditions. During the simulation study, the fuel injection timing and quantity 
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are held constant.  The data for both neural network training and validation are extracted 
using the Dynasty simulation software. Figure 17 shows the intake and exhaust valve lift. 
Both inlet and exhaust valve profiles can be changed freely either in the transient or steady 
state during the simulation. 
The experiment plan is designed to cover the whole operating range of the engine. The 
engine speed spanned a range from 660 RPM to 2000 RPM, torque from 45 Nm to 1000 Nm, 
EGR from 0.1 to 0.9, VGT from 0 to 1, inlet valve phase shift from 330 degrees to 360 degrees  
and exhaust valve phase shift from 100 degrees to 140 degrees. The experiment was 
designed by using the stratified Latin hypercube design method available within the Matlab 
R2009b Model Based Calibration Toolbox. This design method belongs to the space-filling 
design style that is used for modelling processes where the system understanding is 

rudimentary. The purpose is to cover most of the operating range. This design created a 
total of 196 test points for all parameters. 168 of these test points were used for training 
purpose and 28 test points were used for validation purpose.  

 

 

Fig. 16. Schematic drawing of a diesel engine and auxiliaries 

 

 

Fig. 17. Valve-Lift profile for inlet and exhaust valve 
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Additional designs of experiments styles are the classical approach and an optimal 

approach. The classical approach has been used for simple operation areas with a small 

number of parameters. . In case of an optimal design of experiments the system knowledge 

is high and the desired model type is already known. The stratified Latin hypercube design 

enables the definition of how many operation points per parameter are of interest and leads 

to an even representation of the multidimensional operation hypercube created by the six 

parameters in this case. 

3.3.1 Results 
The first neural network has one output: intake manifold pressure; and six inputs: engine 

speed, torque, EGR, inlet valve phase and exhaust valve phase. The results are promising 

with =1 for the training set and =0.9925 for validation set. 

Figure 18 shows that the intake manifold pressure predicted from the neural network 

correlates closely with the generated signal of the Dynasty simulation. 

The second neural network is designed to predict BSFC based on six inputs: engine speed, 

torque, EGR, inlet valve phase and exhaust valve phase. The results are promising with 

=1 for the training set and =0.9975 for the validation set. It can be seen in Figure 19 the 

predicted BSFC output of the neural network shows a good correspondence with the 

measured BSFC from the Dynasty model. 

 

 

Fig. 18. Correlation of engine intake manifold pressure with predicted neural network signal 

 

 

Fig. 19. Correlation of engine BSFC with predicted neural network signal 
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3.3.2 Conclusion 
The design of experiments is a powerful tool in the optimisation of the modelling process. 

Progressively more complex system architectures make it difficult and eventually 

impossible to cover each operating point. Depending on the system knowledge different 

strategies for designing an experiment dictate the sampling coverage for successful 

modelling processes. The often small knowledge base of parameters effects on the systems 

response makes the space-filling design style in particular useful for neural network design. 

This approach allows an even distribution across the operating window and hence covering 

the main response characteristic for all parameters. 

In this particular case for both training and validation data, the sampling points need to be 
increased significantly. The test points cover a minor operating range of the engine and in 

order to use neural networks for prediction their generalisation capability has to be 
increased by additional engine operation characteristics. The approach is presented for the 
demonstration of a design of experiment and how to use the data in teaching a NLARX that 
can predict intake manifold pressure and BSFC. 

4. Combining Neural Networks 

The complexity of today’s systems makes it occasionally impossible to find a sufficiently 
performing single network composition, even in the case of a highly complex recurrent 
structure. Hence, the combination of networks has become popular where tasks are either 
distributed across separate networks or competitive structures with redundant networks are 
created (Sharkey, 1999). The literature distinguishes between modular and ensemble 
structures. Modular applications are defined by the fact that each network is trained for a 
subtask and all networks together form a superior solution. In an ensemble networks are 
trained differently or show different topological features but are predicting all the same 

output. A superior decision instance compares the results and votes for the best 
performance. This approach can create a more reliable performance since the optimum can 
be chosen from a variety of results. A third approach is the combination of modular 
structures and ensembles.  In the following example a parallel neural network structure is 
composed where three individual NLARX networks are used in order to predict a superior 
signal that is a combination of all three. Similar to the previous NOx example, here the 
smoke emissions are investigated and the behaviour is modelled by a neural network 
structure. The smoke signal represents in this case the solid component of particulate 
emissions. Smoke is assumed to be a good proxy for this emission formation. 

The experiment for data generation was conducted on a heavy-duty diesel engine that is run 

under the conditions of an NRTC. It is applied to generate emission data for training and 

validating the neural network which is presented in the graph in Figure 20. The smoke 

output signal is predicted on the basis of 12 inputs such as torque, boost pressure, engine 

speed, liquid pilot fuel quantity, final fuel injection, back pressure, intake manifold 

temperature, exhaust temperature, intake depression and coolant temperatures for flows in 

and out. All parameters were used from the beginning and investigated and revised for 

their impact on the model. 

The initial output signal shows two characteristic halves. In the first half strong fluctuations 

and high peaks are present, whereas the second half displays a much flatter characteristic 

with small oscillations. The approach of modelling and estimating the signal requires a 

training and validation data set. Therefore the signal is bisected. However, a training set 

requires preferably a broad spectrum of features provided by the signal. The signal is first 
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divided into quarters accordingly and then newly-arranged. As a result the training and 

validation set cover a high oscillating part with high peaks and a flat, low oscillating part –

Figure 20. Every set consists of a correspondingly split smoke output and twelve inputs. As 

well as the data partitioning a normalisation process is applied to the inputs and output. 

 

 

Fig. 20. Processed smoke output signal 

In an initial approach of modelling the signal with an single NLARX network it was 

recognised that noise is introduced by the model. This occurs especially then, if the signal 

contains large amplitudes and high-frequencies. In Figure 21 the modelling results of a 

single NLARX model are plotted over the measured signal. The early phase of the signal is 

well predicted. However, in the second phase of the characteristic the prediction data starts 

oscillating in high-frequencies as well as an underlying lower frequency. The model 

becomes unstable. This is assumed to be forced by the training on high amplitudes in the 

first stage and hence the development of a hypersensitive behaviour. Other approaches are 

known to overcome those issues such as fuzzy logic and wavelet networks (Parasuraman & 

Elshorbagy, 2005). They offer a much better response to highly fluctuating signals. 

Among those approaches, Guoyin et al. (Guoyin & Hongbao, 1995) introduced three classes 

of parallel network systems. Here, a parallel network system with multiple tasks is chosen. 

Lee (Lee, 1997) states that due to the approach of more than one network the risk of settling 

in a local minimum decreases. Additionally, the performance increases due to the fact that 

particular networks handle a specific subspace instead of dealing with the whole problem. 

In the current work the signal is divided into different vertical layers. Consequently the 
amplitudes are cut and the frequency of the residual signal part is decreased. With lower 
frequencies the NLARX model promises satisfying results regarding performance and cost. 

By trial and error three layers are determined as a reasonable degree of divisions. The first 

layer called lower layer (LL) contains the signal noise and low frequencies. The remaining 

part is split into a mid layer (ML) and a top layer (TL). The ML covers a part of the signal 

with a medium density of oscillations and peaks in the smoke value up to y=0.3. The 

residual signal peaks are covered by the TL. Its characteristic is marked by only a few single 

peaks, the occurrence of which is not distracted by noise or smaller peaks. The division 

borders in this approach are chosen as outlined in Table 2 and illustrated in Figure 22. 
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Fig. 21. Single NLARX model: measured output signal correlated versus predicted output 

signal   

 

 0   LL  0.035  =>  LLyΔ = 0.035   

0.035 < ML < 0.3   => MLyΔ  = 0.265   

0.3 < TL < 1   => TLyΔ = 0.7   

Table 2. Division borders of layer approach 

Each division is processed and estimated independently. This leads to a parallel processing 

model structure as shown in Figure 23. The input vector U with its twelve input signals is 

used for all three independent layers whereas the predicted output is split into the three 

divisions, top, mid and low. After estimation they are combined to  and compared 

against the overall measured output. 

 

 

Fig. 22. Layer approach with correlating divisions 
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Fig. 23. Scheme of applied parallel model structure 

Results - An estimation is processed by initially training and then validating an artificial 

neural network with the corresponding signals. Every layer is estimated independently. The 

NLARX-model are initialised with an arbitrarily state and taught with the corresponding 

training data set. Based on this data the NLARX-model is designed to estimate the desired 

output signal. The designing process consists of changing the design parameters in Matlab 

R2009b by teacher-forced learning until a satisfactory result is achieved. The design 

parameters are the input/ output delays. 

The lower part is marked by 1) the lowest values of the higher oscillations of the signal and 

2) small oscillations that are introduced by noise. By cutting off a lower part of the signal a 

more homogeneous distribution of the height of oscillations is created. This enables a better 

estimation with the chosen NLARX approach. 

The training of the network generates a correlation between the measured and estimated 

signal of =0.97. Validating the network leads to a performance of =0.95 which 

demonstrates the practicability of the chosen design. However, the model introduces 

additional noise to the signal. This effect is discussed in more detail in the following sections. 

The middle layer represents the central section of the high peaks and the medium peaks. 

The lowest values of the large signal excursions are included in the lower layer. Through 

training the NLARX model achieves a correlation of =0.93 with the measured signal. The 

model's quality is confirmed by the validation set, which achieves a performance of =0.9. 

The performance is predictably lower than in the first layer due to the higher frequencies. 

Higher frequencies occur because of an expanded range of y-values. 

The characteristic of the graph is marked by noise in the second, low oscillating part of the 

signal. It is assumed that this noise is introduced as a result of the network design. There is a 

fast response identified by the network when managing high oscillating signals. In 

consequence, this leads to an oscillating estimation signal. 

The top layer covers the high peaks of the signal. Consequently high frequencies are 

introduced and a lower correlation performance is expected. The design process achieves a 

result of =0.83 compared to a =0.92 for the validation data. Validation shows a better 

result because the main peaks of the validation signal are predicted well, whereas the 

training signal shows some missing details in the middle part for three consecutive spikes. 
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Fig. 24. Overall Performance: Training and validation sets estimation of measured and 

predicted signal 

The overall estimation is achieved by adding the three estimated signals together and 

correlating it with the measured output – see Table 3. The comparison of the measured and 

predicted signal shows a distribution around the linear correlation in Figure 25. The reason 

that a cluster of points forms close to the origin is due to the fact that the most of the data 

samples are measured in the lower data scope. However, the results of overall correlations 

of the smoke output signal are =0.97 and =0.96 for training and validation set 

respectively as illustrated in Figure 24. It can be seen that parts intially classified as difficult 

due to big amplitude differences and high frequencies are modelled well. The patterns of 

high peaks and high density of oscillations show appropriate correlations. However, the 

flatter parts are marked by the introduction of noise through the model design as mentioned 

earlier. 

 

 

Fig. 25. Overall Performance: Training and validation sets estimation in correlation to 

measured data 
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Layer NLARX-Model  

  train   valid  

TL 0.8330   0.9163 

ML 0.9328   0.9006 

LL 0.9743   0.9164 

 Total 0.9706   0.9616   

Table 3. RMS performance indication 

Conclusion – Here a parallel neural network structure is presented to predict the smoke 

output of a diesel engine based on NLARX-models. The model is chosen due to its good 

generalisation. Its weakness of not being capable of high-frequency signals which is shown 

with a single NLARX model for comparison, is overcome by an approach of frequency 

filtering. 

The NLARX architecture is cut into different layers to reduce the frequency bands resulting 

in a better overall performance. A lower layer for the signal scope that covers noise and the 

base of higher peaks, followed by a middle layer for medium density of oscillations and a 

top layer for the peak tops. This approach demonstrates the application of network 

combination. Three independent networks trained for different tasks can predict if 

combined the overall signal at a sufficient performance. 

Another approach is the training of three networks with the same task just slightly different 

training data and in case of the prediction performance the network with the best 

performance wins. Here, the networks are redundant and a competitive approach is used to 

find the optimum output. 

5. Summary 

The chapter presents the application of artificial neural networks on engine applications. 

Several practical examples show the applicability of artificial neural networks in the domain 

of virtual sensing and control development support. 

A critical part of for a successful modelling of engine behaviour is the generation of 

comprehensive system characteristic. The better the training data describes the system 

dynamics the better the generalisation capability of the model. A crucial part is the planning 

of data generation. Here the chapter presents three differen approaches: 

• Predefined engine tests such as the NRTC for off-highway diesel applications 

• Random control signal generation for engine response measurements 

• Systematic design of experiment approach. 

Another crucial part is the choice of the right model structure for the problem at hand. The 

chapter presents a recurrent network structure that is applicable for highly non-linear and 

dynamic systems. The NLARX network is presented in several different applications. A 

successful implementation can be seen in the virtual sensing of diesel engine emissions. 

However, the network has also been implemented for combustion modelling. 

A last part describes the investigation of combinations of networks. Increasing complexity of 

systems leads to difficulties of finding cost effective network structures in view of training 

and operation costs. An approach is presented where a superior task, the prediciton of 

smoke emissions of a diesel engine is split into three individual tasks solved by independent 

network compounds. Other approaches can be implemented with competetive structures of 

redundant networks whose results are competing against each other. 
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Artificial neural networks can be a powerful tool for monitoring of engine operation or the 

design of controller applications. However, the correct training data and the optimal design 

are crucial for a successful modelling process.  
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