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1. Introduction    

Needle-punched nonwoven is an industrial fabric used in wide range of applications areas. 
The physical structure of needle-punched nonwoven is very complex in nature and 
therefore engineering the fabric according the required properties is difficult. Because of 
this, the basic mathematical modeling is not very successful for predicting various 
important properties of the fabrics. 
In recent days, artificial neural networks (ANN) have shown a great assurance for modeling 
non-linear processes. Rajamanickam et al., 1997 and Ramesh et al., 1995 used ANN to model 
the tensile properties of air jet yarn. The ANN model had also been used to model to assess 
the set marks and also the relaxation curve of yarn after dynamic loading (Vangheluwe et 
al.,  1993 and 1996). Luo & David, 1995 used the HVI experimental test results to train the 
neural nets and predict the yarn strength. Researchers also made an attempt to build models 
for predicting ring or rotor yarn hairiness using a back propagation ANN model by Zhu & 
Ethridge, 1997. Fan & Hunter, 1998 developed ANN for predicting the fabric properties 
based on fibre, yarn and fabric constructional parameters and suggested the suitable 
computer programming for development of neural network model using back-propagation 
simulator. Wen et al., 1998 used back-propagation neural network model for classification of 
textile faults. Postle, 1997 enlighten on measurement and fabric categorisation and quality 
evaluation by neural networks. Park et al.,  2000 also enlightened the use of fuzzy logic and 
neural network method for hand evaluation of outerwear knitted fabrics. Gong & Chen, 
1999 found that the use of neural network is very effective for predicting problems in 
clothing manufacturing. Xu et al.,  1999 used three clustering analysis technique viz. sum of 
squares, fuzzy and neural network for cotton trash classification. They found neural 
network clustering yields the highest accuracy, but it needs more computational time for 
network training. Vangheluwe et al.,  1993 found Neural nets showed good results assessing 
the visibility set marks in fabrics. The review of literature shows that the ANN model is a 
powerful and accurate tool for predicting a nonlinear relationship between input and output 
variables. 
Jute, polypropylene, jute-polypropylene blended and polyester needle punched nonwoven 
fabrics have been prepared using series of textile machinery normally used in needle-
punching process for preparation of the fabric samples. Textile materials are compressive in 
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nature. It has been reported by various authors that the effect of compression behaviour of 
jute-polypropylene (Debnath & Madhusoothanan, 2007) and polyester (Midha et al., 2004) is 
largely influenced by fibre linear density, blend ratios of fibres, fabric weight, web laying 
type, needling density and depth of needle penetration. Kothari & Das, 1992 and 1993 
explained that the compression behaviour of needle-punched nonwoven fabrics is 
dependent on fibre fineness, proportion of finer fibre present in different layers of 
nonwoven fabrics, and fabric weight for polyester and polypropylene fibres. In the present 
study, some of these important factors, viz. fabric weight, blend proportion, three different 
types of fibres and needling density, have been taken into consideration for modeling of the 
compression behaviour. Jute, polypropylene and polyester fibres have been used in this 
study. Woollenisation of jute has been done to develop crimp in the fibre. This study also 
elaborates the effect of number of hidden layers and simulation cycles for jute-
polypropylene blended and polyester needle-punched nonwoven fabrics. Different fabric 
properties like fabric weight, needling density, blend composition of the fibres are the basic 
variables selected as input variables. The output variables are selected as air permeability, 
tensile, and compression properties. 
Under tensile properties, tenacity and initial modulus of jute-polypropylene blended needle 
punched nonwoven fabric both in machine (lengthwise) and transverse (width wise) 
directions have been predicted accurately using artificial neural network. Empirical models 
have also been developed for the tensile properties and found that artificial neural network 
models are more accurate than empirical models. Prediction of tensile properties by ANN 
model shows considerably lower error than empirical model when the inputs are beyond 
the range of inputs, which were used for developing the model. Thus the prediction by 
artificial neural network model shows better results than that by empirical model even for 
the extrapolated input variables. 
The jute-polypropylene blended needle-punched nonwoven fabric samples were produced 
as per a statistical factorial design for prediction of air permeability. The efficiency of 
prediction of two models has been experimentally verified wherein some of the input 
variables were beyond the range over which the models were developed. The predicted air 
permeability values from both the models have been compared statistically. An attempt has 
also been made to study the effect of number of hidden layer in neural network model. The 
highest correlation has been found in artificial neural network with three hidden layers. The 
neural network model with three hidden layer shows less prediction error followed by two 
hidden layers, empirical model and artificial neural network with one hidden layer. 
Artificial neural network model with three hidden layers predicts the value of air 
permeability with minimum error when inputs are beyond the range of inputs used for 
developing the model. 
Initial thickness, percentage compression, thickness loss and percentage compression 
resilience are the compression properties predicted using artificial neural network model of 
needle-punched nonwoven fabrics produced from polyester and jute-polypropylene blended 
fibres varying fabric weight, needling density, blend ratio of jute and polypropylene, and 
polyester fibre. A very good correlation (R2 values) with minimum error between the 
experimental and the predicted values of compression properties have been obtained by 
artificial neural network model with two and three hidden layers. An attempt has also been 
made for experimental verification of the predicted values for the input variables not used 
during the training phase. The prediction of compression properties by artificial neural 
network model in some particular sample is less accurate due to lack of learning during 
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training phase. The three hidden layered artificial neural network models take more time for 
computation during training phase but the predicted results are more accurate with less 
variations in the absolute error in the verification phase. This study will be useful to the 
industry for designing the needle-punched nonwoven fabric made out of jute-polypropylene 
blended or polyester fibres for desired fabric properties. The cost for design and development 
of desired needle-punched fabric property of the said nonwovens can also be minimised. 

2. Materials and methods 

2.1 Materials 

Polypropylene fibre of 0.44 tex fineness, 80 mm length; jute fibres of Tossa-4 grade and 
polyester fibre of 51 mm length and 0.33 tex fineness fibre of  were used to prepare the fabric 
samples. Some important properties of fibres are presented in Table 1. Sodium hydroxide 
and acetic acid were used for woollenisation of the jute. 
 

Property Jute Polypropylene Polyester 

Fibre fineness (tex) 2.08 0.44 0.33 

Density (g/cm3) 1.45 0.91 1.38 

Tensile strength (cN/tex) 30.1 34.5 34.83 

Breaking elongation (%) 1.55 54.13 51.00 

Moisture regain (%) at 65% RH 12.5 0.05 0.40 

Table 1. Properties of jute, polypropylene and polyester fibres 

2.2 Methods 
2.2.1 Preparation of jute, jute-polypropylene blended and polyester fabrics 

The raw jute fibres do not produce good quality fabric because there is no crimp in these 
fibres. To develop crimp before the fabric production, the jute fibres were treated with 18% 

(w/v) sodium hydroxide solution at 30°C using the liquor-to-material ratio of 10:1, as 
suggested by Sao & Jain, 1995. After 45 min of soaking, the jute fibres were taken out, 
washed thoroughly in running water and treated with 1% acetic acid. The treated fibres 
were washed again and then dried in air for 24 h. This process apart from introducing about 

2 crimps/cm also results in weight loss of ∼ 9.5%. 
The jute reeds were opened in a roller and clearer card, which produces almost mesh-free 
stapled fibre. The woollenised jute and polypropylene fibres were opened by hand 
separately and blended in different blend proportions (Table 2). The blended materials were 
thoroughly opened by passing through one carding passage. 
The blended fibres were fed to the lattice of the roller and clearer card at a uniform and 
predetermined rate so that a web of 50 g/m2 can be achieved. The fibrous web coming out 
from the card was fed to feed lattice of cross-lapper and cross-laid webs were produced with 

cross-lapping angle of 20°. The web was then fed to the needling zone. The required 
needling density was obtained by adjusting the throughput speed. 
Different web combinations, as per fabric weight (g/m2) requirements were passed through 
the needling zone of the machine for a number of times depending upon the punch density 
required. A punch density of 50 punches/cm2 was given on each passage of the web, 
changing the web face alternatively. The fabric samples were produced as per the variables 
presented in Table 2. 
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Fabric 
code 

Fabric 
weight 
g/m2 

Needling density 
punches/cm2 

Woollenised 
jute 
% 

Polypropylene 
fibre 

% 

Polyester 
fibre 

% 

1 250 150 40 60 - 

2 250 350 40 60 - 

3 450 150 40 60 - 

4 450 350 40 60 - 

5 250 250 60 40 - 

6 250 250 20 80 - 

7 450 250 60 40 - 

8 450 250 20 80 - 

9 350 150 60 40 - 

10 350 150 20 80 - 

11 350 350 60 40 - 

12 350 350 20 80 - 

13 350 250 40 60 - 

14 350 250 40 60 - 

15 350 250 40 60 - 

16 393 150 0 100 - 

17 440 150 0 100 - 

18 410 250 0 100 - 

19 392 350 0 100 - 

20 241 150 100 0 - 

21 310 250 100 0 - 

22 303 350 100 0 - 

23 300 150 80 20 - 

24 276 250 80 20 - 

25 205 350 80 20 - 

26 415 300 - - 100 

27 515 300 - - 100 

28 680 300 - - 100 

29 815 300 - - 100 

Table 2. Experimental design of fabric samples 

The polyester fabric samples were made from parallel-laid webs, which were obtained by 

feeding opened fibres in the TAIRO laboratory model with stationary flat card (2009a). The 

fine web emerging out from the card was built up into several layers in order to obtain 

desired level of fabric weight (Table 2). The needle punching of all parallel-laid polyester 

fabric samples was carried out in James Hunter Laboratory Fiber Locker [Model 26 (315 

mm)] having a stroke frequency of 170 strokes/min. The machine speed and needling 

density were selected in such a way that in a single passage 50 punches/cm2 of needling 

density could be obtained on the fabric. The web was passed through the machine for a 

number of times depending upon the needling density required, e.g. the web was passed 6 

times through the machine to obtain  fabric with 300 punches/cm2. The needling was done 

alternatively on each side of the polyester fabric. 
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The needle dimension of 15 × 18 × 36 × R/SP 3½ × ¼ × 9 was used for all jute-polypropylene, 
jute and polyester samples. The depth of needle penetration was also kept constant at 11 
mm in all the cases. 
The actual fabric weights of the final needle-punched fabric samples were measured 
considering the average weight of randomly cut 1 m2 sample at 5 different places from each 
sample. 

2.2.2 Measurement of tenacity and initial modulus 

The mechanical properties like tenacity and initial modulus were measured both in the 
machine and transverse directions (Debnath et al., 2000a) of the fabric using an Instron 
tensile tester (Model 4301). The size of sample and the rate of straining were chosen 
according to ATSM standard D1117-80 (sample size 7.6 cm x 2.5 cm, cross head transverse 
speed 300 mm/min). Breaking load verses elongation curves were plotted for all the tests. 
The tenacity was calculated by normalising the breaking load by fabric weight and width of 
the specimen as suggested by Hearle & Sultan, 1967. The initial modulus was calculated 
from the load elongation curves. 

2.2.3 Measurement of air permeability 

The air permeability measurements were done using the Shirley (SDL-21) air permeability 
tester (Debnath & Madhusoothanan, 2010b). The test area was 5.07 cm2. The pressure range 
= 0.25 mm and flow range = 0.04 – 350 cc/sec. The airflow in cubic cm at 10 mm water head 
pressure was measured. The air permeability of fabric samples was calculated using the 
formula (1) given below (Sengupta et al., 1985 and Debnath et al., 2006). 

 AP = 
  

AF

TA
×10−2  (1) 

Where, AP = air permeability of fabric in m3/m2/sec, AF = air flow through fabric in 
cm3/sec at 10 mm water head pressure and TA = test specimen area in cm2 for each sample. 

2.2.4 Measurement of compression properties 

The initial thickness (Debnath & Madhusoothanan, 2010a), compression, thickness loss and 
compression resilience were calculated from the compression and decompression curves. 
For measuring these properties, a thickness tester was used (Subramaniam et al., 1990). The 
pressure foot area was 5.067 cm2 (diameter = φ2.54 cm). The dial gauge with a least count of 
0.01 mm and maximum displacement of 10.5 mm was attached to the thickness tester. The 
compression properties were studied under a pressure range between 1.55 kPa and 51.89 
kPa. 
The initial thickness of the needle-punched fabrics was observed under the pressure of 1.55 
kPa (Debnath & Madhusoothanan, 2007). The corresponding thickness values were 
observed from the dial gauge for each corresponding load of 1.962 N. A delay of 30 s was 
given between the previous and next load applied. Similarly, 30 s delay was also allowed 
during decompression cycle at every individual load of 1.962 N. This compression and 
recovery thickness values for corresponding pressure values are used to plot the 
compression-recovery curves. 
The percentage compression (Debnath & Madhusoothanan, 2007), percentage thickness loss 
(Debnath & Madhusoothanan, 2009a and Debnath & Roy, 1999) and percentage 
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compression resilience (Debnath & Madhusoothanan, 2007, 2009a and 2009b), were 
estimated using the following relationships (2,3,4): 

 Compression (%) = 
  

T0 −T1

T0

×100  (2) 

 Thickness loss (%) = 
  

T0 −T2

T0

×100  (3) 

 Compression resilience (%) =
  

Wc
,

Wc

×100  (4) 

where T0 is the initial thickness; T1, the thickness at maximum pressure; T2, the recovered 
thickness; Wc, the work done during compression; and Wc′, the work done during recovery 
process. 
The average of ten readings from different places for each sample was considered. The 
coefficient of variation was less than 6% in all the cases. 
All these tests were carried out in the standard atmospheric condition of  

65 ± 2% RH and 20 ± 2°C. The fabrics were conditioned for 24 h in the above mentioned 
atmospheric conditions before testing. 

2.2.5 Empirical model 

An empirical equation of second order polynomial (Box & Behnken, 1960) was derived to 
predict the mechanical properties (Debnath et al. 2000a) like tenacity and initial modulus, 
and physical property like air permeability (Debnath et al. 2000a)  were predicted from the 
results obtained from the samples produced using Box and Behnken factorial design. 

Y =    β0 + β1X1 + β2X2 + β3X3 + β11X1
2
+ β22X2

2
+ β33X3

2
+ β12X1X2 + β13X1X3 + β23X2X3 (5) 

Where, Y = predicted fabric property (tenacity or initial modulus or air permeability), X1 = 
fabric weight, X2 = needling density, X3 = percentage of polypropylene, β0 is the constant 
and βi is the coefficient of the variable Xi. The predicted values of fabric properties were then 
compared with the actual values and error (6) was calculated. 

 E (%)= 
  

A −P

A
×100 (6) 

Where, E is error in percentage, A is the actual experimental values and P is the predicted 
values from models. 

2.2.6 Artificial neural network model 

The physiology of neurons present in biological neural system such as human nervous system 
was the fundamental idea behind developing the ANNs. This computational model was 
trained to capture nonlinear relationship between input and output variables with scientific 
and mathematical basis. In recent days, commonly used model is layered feed-forward neural 
network with multi layer perceptions and back propagation learning algorithms (Vangheluwe 
et al., 1993, Rajamanickam et al., 1997, Zhu & Ethridge, 1997 and Wen et al., 1998). 
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The ANNs are computing systems composed of a number of highly interconnected layers of 
simple neuron like processing elements, which process information by their dynamic 
response to external inputs. The information passed through the complete network by linear 
connection with linear or nonlinear transformations. The weights were determined by 
training the neural nets. Once the ANN was trained, it was used for predicting new sets of 
inputs. Multi layer feed-forward neural network architecture (Figure 1) was used for 
predicting the tenacity, initial modulus, air permeability, initial thickness, percentage 
compression, thickness loss and compression resilience properties of fabrics (Debnath et al., 
2000a, 2000b and Debnath & Madhusoothanan, 2008). The circle in Figure 3.5 represents the 
neurons arranged in five layers as one input, one output and three hidden layers. Three 
neurons in the input layer, three hidden layers, each layer consisting of three neurons and 
one neuron in the output layer. HL-1, HL-2 and HL-3 are 1st, 2nd and 3rd hidden layers 
respectively, whereas  i and j are two different neurons in two different layers. The neuron 
(i) in one layer was connected with the neuron (j) in next layer with weights (Wij) as 
presented in the Figure 1. 
The data were scaled down between 0 and 1 by normalizing them with their respective 
values. The ANN was trained with known sets of input-output data pairs. 
 

 

Fig. 1. Neural architecture of the fabric property 

3. Results and discussion 

3.1 Modelling of tenacity and initial modulus 

The empirical and ANN models for tensile properties have been developed from the 
experimental values (Debnath et al., 2000a) of fifteen sets of selected fabric samples as 
shown in Table 3. 
The constants and coefficients of the empirical model for the fifteen fabric sample sets (Table 
3) were calculated with the help of multiple regression analysis, are given in Table 4. 
The ANN was trained up to 64,000 cycles to obtain optimum weights for the same sample 
sets used to develop emperical model (Table 3). The weights of ANN for tenacity and initial 
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modulus on both machine and transverse direction were presented in Table 5. Tables 6 and 
7 show the experimental, predicted values and their prediction error for tenacity and initial 
modulus respectively. 
The Table 6 shows a very good correlation (R2 values) between the experimental and 
predicted tenacity values by ANN than by empirical model in both the machine and 
transverse directions of the fabrics. Similar trend was also observed in the case of initial 
modulus (Table 7). 
The ANN models of tenacity and initial modulus show much lower absolute percentage 
error and mean absolute percentage error than that of empirical model (Tables 6 and 7). The 
standard deviation of mean absolute percentage error also follows the similar trend. This 
 

Fabric 
code 

Fabric weight 
g/m2 

Needling density 
punches/cm2 

Woollenised jute 
% 

Polypropylene fibre 
% 

1 250 150 40 60 

2 250 350 40 60 

3 450 150 40 60 

4 450 350 40 60 

5 250 250 60 40 

6 250 250 20 80 

7 450 250 60 40 

8 450 250 20 80 

9 350 150 60 40 

10 350 150 20 80 

11 350 350 60 40 

12 350 350 20 80 

13 350 250 40 60 

14 350 250 40 60 

15 350 250 40 60 

Table 3. Fabric samples for development of Emperical and ANN models 
 

Tenacity Initial Modulus 
 Machine 

direction 
Transverse 
direction 

Machine 
direction 

Transverse 
direction 

β0 -9.882 -9.157 -7.448E-01 -2.832E-01 

β1 1.484E-02 1.228E-02 1.925E-03 2.806E-03 

β2 3.129E-02 2.610E-02 6.544E-03 5.279E-03 

β3 1.362E-01 1.833E-01 -4.700E-03 -2.063E-02 

β11 -6.084E-06 -1.817E-06 -3.908E-06 -7.840E-06 

β22 -2.838E-05 -2.682E-05 -1.388E-05 -1.941E-05 

β33 -5.033E-04 -3.787E-04 -3.216E-05 6.992E-05 

β12 -3.068E-05 -2.155E-05 1.835E-06 1.147E-05 

β13 -5.0170E-05 -1.157E-04 1.817E-05 2.775E-05 

β23 -1.251E-04 -1.849E-04 2.242E-05 2.596E-05 

Table 4. Coefficients and constants of empirical models of tenacity and initial modulus 
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Tenacity Initial modulus 
Weights between the 

layers number Machine 
direction 

Transverse 
direction 

Machine 
direction 

Transverse 
direction 

W11 -4.053 1.185 0.379 -6.844 

W12 1.363 -2.341 11.313 1.539 

W13 2.035 5.420 2.564 -2.829 

W21 -4.530 -0.496 0.919 16.684 

W22 3.401 -0.667 -16.856 4.141 

W23 7.707 5.064 -9.534 -0.370 

W31 5.997 3.669 -4.380 -1.518 

W32 -6.298 0.890 2.876 -7.049 

1st and 2nd 

W33 -7.736 -9.883 4.257 1.298 

W11 1.207 3.113 -2.472 -0.752 

W12 1.689 -6.265 10.783 3.987 

W13 -3.273 0.630 -3.429 -2.242 

W21 -17.135 -8.309 1.478 2.702 

W22 5.736 3.556 -2.926 -0.151 

W23 10.765 2.652 0.811 6.455 

W31 3.907 -12.208 -5.815 -8.148 

W32 -6.176 5.439 3.362 -3.522 

2nd  and 3rd 

W33 4.880 -5.658 0.882 9.483 

W11 -12.307 3.779 1.784 -1.669 

W12 3.732 -5.345 6.455 4.879 

W13 -11.562 6.306 -5.127 -4.866 

W21 10.984 -2.423 -0.415 2.262 

W22 0.739 1.605 -9.454 2.647 

W23 6.466 -1.513 0.686 -2.908 

W31 2.598 -2.440 -0.643 -0.846 

W32 -13.977 3.412 4.862 -7.376 

3rd and 4th 

W33 -1.486 -4.109 0.810 7.533 

W10 1.979 4.550 2.702 5.054 

W20 12.652 -7.022 11.945 8.722 

4th and 5th 

W30 -9.348 7.491 -3.734 -4.757 

 

Table 5. Weights of ANN model for tenacity and initial modulus 
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Tenacity in the machine direction Tenacity in the transverse direction 

Predicted 
tenacity 

(cN/Tex) 

Absolute error
(%) 

Predicted 
tenacity 

(cN/Tex) 

Absolute error 
(%) 

Fabric 
code 

Exp 
tenacity

(cN/Tex)
Emp ANN Emp ANN

Exp 
tenacity

(cN/Tex)
Emp ANN Emp ANN 

1 0.513 0.827 0.514 61.65 00.04 2.220 2.540 2.222 14.43 00.09 

2 1.357 1.214 1.355 10.57 00.20 2.000 1.775 1.961 11.23 01.97 

3 1.279 1.423 1.277 11.22 00.20 2.484 2.708 2.462 09.05 00.89 

4 0.896 0.579 0.901 35.32 00.55 1.402 1.081 1.402 22.86 00.04 

5 0.544 0.466 0.545 14.39 00.22 0.827 1.020 0.845 23.36 02.13 

6 1.837 1.743 1.838 05.15 00.01 3.819 3.530 3.818 07.56 00.02 

7 0.551 0.646 0.544 17.17 01.23 0.931 1.220 0.922 31.02 00.95 

8 1.443 1.521 1.444 05.43 00.07 2.998 2.805 2.994 06.44 00.33 

9 0.435 0.197 0.433 54.71 00.51 1.611 1.098 1.603 31.88 00.50 

10 1.996 1.774 1.996 11.12 00.01 3.916 3.885 3.914 00.81 00.07 

11 0.247 0.468 0.248 90.00 00.69 0.610 0.641 0.601 05.18 01.35 

12 0.806 1.044 1.001 29.55 24.22 1.435 1.949 1.425 35.79 00.71 

13 1.345 1.356 1.348 00.84 00.22 2.296 2.313 2.315 00.75 00.80 

14 1.391 1.356 1.348 02.51 03.11 2.609 2.313 2.315 11.33 11.28 

15 1.332 1.356 1.348 01.78 01.15 2.035 2.313 2.315 13.68 13.75 

‘R2’ values 0.879 0.990   0.911 0.994  

Mean absolute percentage error 23.43 02.16  15.03 02.33 

SD of absolute percentage error 26.34 06.15  11.34 04.21 

Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 6. Experimental and predicted tenacity values by empirical and ANN models 

indicates that the prediction by ANN model is closer to the experimental values and 
variations of error among the samples were also lower than the prediction by empirical 
model. This could be due to the fact that the prediction by empirical model is not very 
accurate when the relationship between the inputs and outputs is nonlinear (Debnath et al. 
2000a). 

3.1.1 Verification of tenacity and initial modulus models 

An attempt was made to predict the tenacity and initial modulus in machine direction and 
in transverse direction to understand the accuracy of the models. The ANNs and empirical 
models were then presented to three sets of inputs, which have not appeared during the 
modeling phase as shown in Table 8. The input variables were selected in such a way that 
one input variable is beyond the range with which the ANN was trained or empirical model 
was developed. The Table 8 indicates that the prediction errors of ANNs were lower in both 
the directions of the fabric for tenacity and initial modulus in comparison with that of 
empirical model (Debnath et al., 2000a). 
In Table 8 the predicted tenacity and initial modulus values by ANN gives higher absolute 
percentage error than the predicted values in Tables 6 and 7. This may be due to the fact that 
the selected input variables (Table 8) were beyond the range over which the empirical or 
ANN models were developed (Debnath et al., 2000a). However, in most of the cases of 
prediction ANNs give lesser absolute percentage error than the empirical model. 
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Initial modulus in the machine direction
Initial Modulus in the transverse 

direction 

Predicted 
initial modulus 

(cN/Tex) 

Absolute 
error 
(%) 

Predicted 
initial modulus

(cN/Tex) 

Absolute 
error 
(%) 

Fabric 
code Exp 

(cN/Tex)

Emp ANN Emp ANN

Exp 
(cN/Tex)

Emp ANN Emp ANN 

1 0.396 0.307 0.394 22.44 00.38 0.550 0.377 0.556 31.42 01.11 

2 0.736 0.589 0.736 19.96 00.08 0.451 0.377 0.433 16.46 04.12 

3 0.271 0.418 0.270 54.19 00.30 0.444 0.518 0.445 16.75 00.36 

4 0.685 0.773 0.685 12.97 00.00 0.804 0.976 0.805 21.51 00.19 

5 0.494 0.542 0.495 09.76 00.12 0.400 0.578 0.422 43.77 05.40 

6 0.418 0.606 0.420 44.85 00.36 0.551 0.623 0.552 13.05 00.20 

7 0.805 0.617 0.804 23.30 00.06 0.906 0.834 0.908 07.93 00.18 

8 0.874 0.826 0.874 05.51 00.02 1.279 1.104 1.278 13.70 00.06 

9 0.325 0.365 0.326 12.50 00.34 0.529 0.527 0.520 00.45 01.74 

10 0.511 0.412 0.511 19.33 00.02 0.480 0.581 0.479 21.01 00.27 

11 0.496 0.594 0.496 19.89 00.00 0.753 0.652 0.752 13.40 00.12 

12 0.861 0.820 0.860 04.72 00.09 0.912 0.914 0.908 00.25 00.43 

13 0.644 0.700 0.718 02.34 04.94 0.836 0.835 0.847 00.13 01.40 

14 0.688 0.700 0.718 01.64 04.23 0.815 0.835 0.847 02.47 04.04 

15 0.727 0.700 0.718 03.73 01.23 0.854 0.835 0.847 02.21 07.71 

‘R2’ values 0.703 0.997   0.803 0.997  

Mean absolute percentage error 17.14 00.81   13.63 01.36 

SD of absolute percentage error 15.23 01.57   12.48 01.73 

Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 7. Experimental and predicted initial modulus values by empirical and ANN models 

3.2 Modelling of Air permeability 

The emperical and ANN models were developed from selected fifteen sets of fabric samples 
as shown in Table 3. The empirical model (7) derived using Box and Behnken factorial 
design for predicting the air permeability is given below. 
 

AP = – 8.54E-3X1 +2.695E-3X2 – 4.58E-2X3 +3.05E-6X12 +9.925E-6X22 +3.578E-4X32 
– 1.79E-5X1X2 +5.076E-5X1X3 – 3.846E-5X2X3   + 5.401 

(7) 

 

Where, AP= air permeability (m3/m2/s)  X1 = fabric weight (g/m2), X2 = needling density 

(punches/cm2) and X3 = percentage polypropylene content in the blend ratio of 

polypropylene and woollenised jute. Since the coefficient of determination (R2 = 0.97) value 

is very high, we can conclude that the empirical model fits the data very well. 

During training the ANN models for air permeability, the minimum prediction error for all 

ANN models was obtained within 40,000 cycles (Debnath et al., 2000b). Table 9 depicts the 

interconnecting weights used for calculating the air permeability of ANN model with three 

hidden layers, where, Wmn – Interconnecting weights between the neuron (m) in one layer 

and neuron (n) in next layer. 
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Tenacity (cN/Tex) Initial Modulus (cN/Tex) 

Prediction AE (%) Prediction AE (%) 
Fabric 
code 

D Exp 
 Emp ANN Emp ANN

Exp 
Emp ANN Emp ANN 

MD 1.6730 1.9886 1.9960 18.86 19.31 0.4968 0.4445 0.4750 10.53 04.38 
16 

CD 3.7860 4.6575 3.9150 23.02 03.41 0.3123 0.7559 0.2366 142.0 24.24 

MD 2.2947 1.4784 1.9958 35.57 13.02 0.8467 0.8582 0.8401 01.36 00.77 
18 

CD 4.3700 3.3917 3.9157 22.38 10.40 1.2551 1.2542 1.2434 00.07 00.93 

MD 0.0240 -2.2031 0.0221 - 07.91 0.3194 0.3875 0.2968 21.32 7.08 
21 

CD 0.0850 -2.3606 0.0975 - 14.71 0.9759 0.8271 1.0112 15.24 3.62 

D – Test direction of sample; MD - Machine direction; CD – Cross direction, Exp – 
Experimental; 

Emp – Empirical model and ANN – Artificial Neural Network model, AE – Absolute error 

Table 8. Experimental verification of predicted results (tenacity and initial modulus) 

 

Weights between the layers 1st and 2nd 2nd and 3rd 3rd and 4th 

W11 6.110 -21.555 -2.205 
W12 1.811 11.242 -0.073 
W13 -9.048 0.859 -2.135 
W21 -14.213 -2.992 -0.163 
W22 8.363 0.675 -23.549 
W23 -3.274 4.588 -25.085 
W31 -11.762 -10.013 16.168 
W32 1.202 -13.005 -4.871 

 

W33 -11.006 -2.470 -11.349 
W10 W20 W30 Weights between 4th and 5th layers 

10.465 -8.925 5.433 

Table 9. Weights of ANN model with three hidden layers for air permeability 

The Table 10 shows the correlation between experimental and predicted values of air 
permeability. It is clear that the ‘R2’ values for ANN of three hidden layers were maximum 
followed by empirical model, two layers and single hidden layer ANN respectively. From 
the Table 10 it can also be observed that the average absolute error was found minimum 
while using ANN with three hidden layers, followed by ANN with two hidden layers, 
empirical model and ANN by single hidden layer respectively. The standard deviation of 
absolute error also follows the same trend. The ANN model with single hidden layer has 
low correlation between the experimental and predicted values (Debnath et al., 2000b). This 
may be because the ANN with one hidden layer has only two neurons. Both the number of 
neurons and the hidden layers are responsible for the accuracy in the predicted model. The 
ANN with three hidden layers shows the best, predicted results. The empirical model is not 
as good as ANN of three hidden layers. Though, the correlation between the experimental 
and predicted values of empirical model is higher than ANN model with two hidden layers, 
but the mean percentage absolute error is quite high in the case of empirical model than 
ANN with two or three hidden layers. This is probably due to the fact that the empirical 
model may require a larger sample size when the relationship between input and output 
variables is nonlinear (Fan & Hunter, 1998). 
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Empirical 
Model 

Artificial neural network models 
Fabric 
code 

Exp 
AP 

Pre AP AE, %
1 HL Pre 

AP 
AE, % 2 HL Pre AP AE, % 3 HL Pre AP AE, % 

1 2.285 2.368 03.36 2.426 06.71 2.516 10.10 2.311 01.15 

2 2.659 2.543 04.39 2.629 01.27 2.672 00.47 2.671 00.42 

3 1.308 1.585 11.40 1.467 12.19 1.506 15.13 1.334 01.98 

4 0.966 0.617 36.10 1.425 47.45 0.887 08.21 0.962 00.49 

5 2.663 2.495 06.30 2.244 15.72 2.580 03.10 2.665 00.07 

6 2.682 2.503 06.67 2.620 02.31 2.612 02.61 2.670 00.47 

7 0.786 0.725 07.74 1.379 75.38 0.901 14.66 0.796 01.22 

8 1.262 1.391 10.19 1.519 20.31 1.366 08.19 1.395 10.54 

9 1.856 1.693 08.75 1.534 17.35 1.639 11.67 1.898 02.26 

10 2.361 2.058 12.81 2.197 06.96 2.216 06.15 2.382 00.89 

11 1.627 1.664 02.25 1.732 06.45 1.684 03.45 1.701 04.54 

12 1.824 1.722 05.63 2.015 10.46 1.867 02.31 1.826 00.09 

13 1.675 1.542 07.93 1.676 00.05 1.674 00.70 1.677 00.14 

14 1.677 1.542 08.02 1.676 00.05 1.674 00.17 1.677 00.04 

15 1.672 1.542 07.79 1.676 00.20 1.674 00.07 1.677 00.29 

‘R2’ 00.97  00.82  00.96  00.99  

Mean Absolute Error 
(%) 

09.28  14.85  05.79  01.58 

SDER 07.94  20.67  05.23  02.73 

Exp – Experimental; Emp – Empirical model ; Pre – Predicted; HL – Hidden layer; AE – 
Absolute error; AP  - Air permeability in m3/m2/s and SDER – Standard deviation of 

percentage absolute error 

Table 10. Experimental and predicted air permeability values by empirical and ANN models 
– absolute error and correlation 

3.2.1 Verification of air permeability models 

The trained ANN with three hidden layers (3HL) and the empirical models were then used 
to predict the air permeabilityproperty of six different sets of input pairs. The input 
variables are selected in such a way that one or two input variables are beyond the range, 
with which the ANN was trained and empirical model was developed (Table 11).  
It can be observed that, the percentage absolute error with ANN, ranges between 00.60 and 
14.62. However, the percentage absolute error is between 04.32 and 30.00, while predicting 
with empirical model.  The prediction of air permeability was more accurate with ANN, 
compared to empirical model even when the inputs are beyond the range of modeling 
(Debnath et al., 2000b). 

3.3 Modelling of compression properties 

The ANN models for initial thickness (IT), percentage compression (C), percentage thickness 
loss (TL) and percentage compression resilience (CR) have been developed from the selected 
twenty-five sets of fabric samples and corresponding experimental values of compression 
properties shown in (Table 12). 
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Air permeability (m3/m2/s) 

Predicted 
values 

Absolute error, 
(%) 

Fabric 
code 

Fabric 
weight 
(g/m2) 

Needling 
density 

(punches/cm2)

Blend ratio 
(Polypropylene:Jute) Exp 

ANN Emp ANN Emp 

20 241 150 00 :100 2.6923 2.6760 3.5000 00.60 30.00 

21 310 250 00 :100 2.5641 2.6692 2.9528 04.10 15.15 

22 303 350 00 :100 2.8679 2.6728 3.3924 06.80 18.28 

23 300 150 20 : 80 2.4576 2.6292 2.3512 06.98 04.32 

24 276 250 20 : 80 2.4951 2.6523 2.6497 06.30 06.19 

25 205 350 20 : 80 3.1381 2.6791 3.8188 14.62 21.69 

Exp – Experimental; Emp – Empirical model and ANN – Artificial Neural Network Model 

Table 11. Experimental verification of predicted results of air permeability values 
 

Fabric 
code 

Fabric 
weight 
g/m2 

Needling 
density 

punches/cm2

Woollenised

jute 
% 

Polypropylene

fibre 
% 

Polyester 
fibre 

% 

IT 
mm

C 
% 

TL 
% 

CR 
% 

1 250 150 40 60 - 3.54 53.64 25.46 32.67 

2 250 350 40 60 - 3.02 46.73 25.98 32.29 

3 450 150 40 60 - 4.41 44.8 20.68 32.92 

4 450 350 40 60 - 3.8 36.47 17.68 33.87 

5 250 250 60 40 - 3.02 52.48 30.69 29.48 

6 250 250 20 80 - 4.27 54.88 27.82 32.27 

7 450 250 60 40 - 4.39 37.24 20.69 30.99 

8 450 250 20 80 - 3.88 37.8 18.63 31.28 

9 350 150 60 40 - 3.45 50.24 25.16 32.77 

10 350 150 20 80 - 4.48 50.06 24.49 31.52 

11 350 350 60 40 - 3.12 44.91 25.51 31.73 

12 350 350 20 80 - 3.38 43.75 23.25 30.99 

13 350 250 40 60 - 3.29 45.16 22.06 33.25 

14 350 250 40 60 - 3.94 42.45 21.84 33.15 

15 350 250 40 60 - 3.66 44.09 21.68 33.33 

16 393 150 0 100 - 5.87 54.92 25.05 28.56 

17 440 150 0 100 - 5.77 54.97 25.15 28.2 

18 392 350 0 100 - 4.08 37.51 17.4 35.05 

19 241 150 100 0 - 2.51 41.18 20.61 30.29 

20 303 350 100 0 - 2.84 41.85 22.23 30.43 

21 300 150 80 20 - 3.18 39.98 18.47 35.32 

22 205 350 80 20 - 2.47 47.42 25.22 28.98 

23 415 300 - - 100 3.54 42.93 9.89 54.33 

24 515 300 - - 100 4.14 37.00 8.36 56.69 

25 815 300 - - 100 5.62 23.78 6.65 53.85 

Table 12. Experimental design for compression properties 

The ANN was trained separately up to certain number of cycles to obtain optimum weights 
for each compression properties. The number of cycles to achieve optimum weights for 
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initial thickness, percentage compression, thickness loss (%) and percentage compression 
resilience are found between 320000 and 5120000 cycles as presented in Table 13. A very 
large number of simulation cycles was required because more number of input variables 
was used to develop the ANN model (Debnath & Madhusoothanan, 2008).. 
 

Number of cycle 
Compression property 

One hidden layer Two hidden layers Three hidden layers 

Initial thickness, mm 2560000 2560000 2560000 

Percentage compression 1280000 2560000 5120000 

Percentage thickness loss 320000 1280000 2560000 

Compression resilience, % 640000 2560000 5120000 

Table 13. Optimum number of cycles of one, two and three hidden layered ANN models for 
compression properties 

The optimum weights of ANN for initial thickness, percentage compression, thickness loss 
(%) and percentage compression resilience are shown in Table 14. 
 

Weights between the 

layers number 

Initial 

thickness 

Percentage 

compression

Percentage 

thickness loss 

Percentage 

compression resilience 

1st and 2nd     

W11 -7.825 -9.697 -0.797 1.497 

W12 -3.144 6.650 1.176 -1.003 

W13 0.821 -1.560 1.221 -4.777 

W14 3.338 2.949 8.374 14.286 

W21 0.394 4.034 2.738 5.181 

W22 0.801 -11.441 -4.945 8.240 

W23 2.356 -12.284 -0.218 3.091 

W24 3.839 0.981 -7.399 -8.415 

W31 0.587 4.742 -0.658 -3.937 

W32 0.418 2.487 8.743 -2.320 

W33 5.436 9.689 -3.318 -2.272 

W34 -2.470 8.814 -0.340 0.617 

W41 4.336 -0.697 -1.058 2.704 

W42 1.140 6.674 -5.424 2.298 

W43 -2.877 -11.909 8.539 -3.649 

W44 -1.919 -2.500 1.827 4.803 

W51 2.555 3.046 0.206 0.552 

W52 0.428 -1.342 -1.456 4.349 

W53 -3.728 -0.608 -2.002 0.192 

W54 -0.958 1.000 1.431 0.350 

2nd  and 3rd     

W11 -1.958 5.796 2.126 0.474 
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W12 8.015 10.795 -5.784 -0.253 

W13 1.747 0.628 -3.575 6.556 

W21 6.622 2.771 0.908 3.378 

W22 -2.664 -5.510 4.585 13.901 

W23 -2.217 -2.485 0.170 0.471 

W31 -1.255 0.661 -1.004 -2.508 

W32 -4.467 -1.092 3.731 -8.715 

W33 -3.381 7.313 2.431 4.162 

W41 -1.670 -6.856 0.762 9.749 

W42 -4.480 -3.497 -8.304 -11.644 

W43 -1.602 0.590 3.243 -6.180 

3rd and 4th     

W11 1.780 -0.951 -1.025 7.269 

W12 -4.432 5.588 -6.411 – 

W21 -1.488 -0.675 0.401 -14.560 

W22 7.351 5.949 9.564 – 

W31 -1.375 0.999 3.754 7.599 

W32 1.381 -11.087 3.248 – 

4th and 5th     

W10 -1.442 -0.432 -1.923 – 

W20 13.259 8.769 12.222 – 

Table 14. Weights of ANN model for compression properties 

Tables 15 to 18 show the experimental and predicted values of initial thickness, compression 

(%), percentage thickness loss and percentage compression resilience respectively. These 

tables also indicate the effect of number of hidden layers on the percentage error, standard 

deviation and correlation between the experimental and predicted results for the 

corresponding compression properties. 

Table 15 shows a very good correlation (R2 values) between the experimental and the 

predicted initial thickness values by ANN. Among the results obtained, the ANN with three 

hidden layers presents comparatively highest R2 value with lowest error. The standard 

deviation of percentage absolute error is also found to be less in the case of ANN model 

with three hidden layers. Similar trend has also been observed in case of percentage 

compression and percentage thickness loss as depicted in Tables 14 and 15 respectively. The 

ANN model with two hidden layers performs better in terms of percentage error and 

standard deviation of percentage error in the case of percentage compression resilience 

(Table 16). In the cases where average error for the ANN models with three different hidden 

layers shows more or less similar values, the priority is given to the standard deviation of 

errors (Debnath & Madhusoothanan, 2008). This study shows that in majority of the cases, 

the three hidden layered ANN models present better results for predicting compression 

properties of needle-punched fabrics. Though the three hidden layered ANN models take 

more time during training phase, the predicted results are more accurate in comparison to 

ANN models with one and two hidden layers, with less variations in the absolute error 

(Debnath et al., 2000a). 
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Initial thickness, mm 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 

1 3.54 3.531 3.539 3.546  0.259 0.034 0.171 

2 3.02 3.046 3.019 3.036  0.868 0.030 0.520 

3 4.41 4.369 4.398 4.351  0.932 0.266 1.349 

4 3.8 3.785 3.780 3.783  0.399 0.524 0.443 

5 3.02 3.012 3.012 2.995  0.272 0.261 0.821 

6 4.27 4.287 4.267 4.272  0.399 0.071 0.041 

7 4.39 4.398 4.383 4.407  0.187 0.149 0.384 

8 3.88 3.930 3.878 3.916  1.298 0.053 0.939 

9 3.45 3.601 3.538 3.580  4.379 2.564 3.771 

10 4.48 4.456 4.482 4.472  0.540 0.043 0.181 

11 3.12 3.133 3.166 3.139  0.432 1.479 0.598 

12 3.38 3.364 3.389 3.359  0.484 0.256 0.634 

13 3.29 3.627 3.648 3.630  10.229 10.870 10.343 

14 3.94 3.627 3.648 3.630  7.956 7.421 7.861 

15 3.66 3.627 3.648 3.630  0.915 0.338 0.812 

16 5.87 5.867 5.870 5.869  0.053 0.002 0.025 

17 5.77 5.777 5.771 5.773  0.117 0.017 0.056 

18 4.08 4.074 4.087 4.083  0.159 0.168 0.061 

19 2.51 2.578 2.614 2.558  2.724 4.124 1.904 

20 2.84 2.847 2.857 2.831  0.262 0.603 0.333 

21 3.18 3.038 3.030 3.062  4.469 4.708 3.712 

22 2.47 2.460 2.440 2.478  0.415 1.200 0.332 

23 3.54 3.540 3.540 3.540  0.000 0.003 0.010 

24 4.14 4.140 4.140 4.140  0.001 0.006 0.005 

25 5.62 5.620 5.620 5.621  0.000 0.004 0.016 

R2 – 0.9868 0.9872 0.9875  – – – 

Mean of % absolute 
error 

– – – 1.51 1.41 1.41 

SD of % absolute error – – – 2.6071 2.6932 2.55 

Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 
hidden layers; and SD – Standard deviation 

 

Table 15. Experimental and predicted values of initial thickness by ANN model 
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Percentage compression, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 

1 53.64 54.126 53.638 53.648  0.906 0.003 0.015 

2 46.73 48.817 46.729 46.727  4.467 0.003 0.006 

3 44.8 44.536 44.807 44.789  0.589 0.016 0.025 

4 36.47 36.223 36.473 36.453  0.677 0.007 0.047 

5 52.48 50.449 52.638 52.486  3.869 0.301 0.011 

6 54.88 54.333 54.883 54.872  0.997 0.006 0.015 

7 37.24 37.576 38.740 37.240  0.902 4.028 0.001 

8 37.8 38.590 38.159 37.800  2.089 0.951 0.001 

9 50.24 48.230 50.358 50.224  4.001 0.234 0.031 

10 50.06 50.703 50.411 50.078  1.285 0.701 0.037 

11 44.91 45.650 44.035 44.912  1.648 1.949 0.004 

12 43.75 43.949 43.581 43.756  0.454 0.386 0.013 

13 45.16 44.244 43.780 43.863  2.028 3.056 2.871 

14 42.45 44.244 43.780 43.863  4.227 3.133 3.329 

15 44.09 44.244 43.780 43.863  0.350 0.704 0.514 

16 54.92 54.807 54.930 54.951  0.205 0.019 0.056 

17 54.97 54.896 54.954 54.943  0.135 0.029 0.050 

18 37.51 36.873 37.269 37.515  1.699 0.641 0.012 

19 41.18 41.666 40.616 41.178  1.181 1.369 0.005 

20 41.85 42.787 41.536 41.842  2.240 0.751 0.019 

21 39.98 40.793 39.785 39.984  2.033 0.489 0.009 

22 47.42 47.242 47.570 47.423  0.376 0.316 0.007 

23 42.93 42.933 42.928 42.927  0.007 0.004 0.007 

24 37 36.997 37.002 37.003  0.007 0.005 0.007 

25 23.78 23.780 23.780 23.791  0.001 0.001 0.047 

R2 – 0.9839 0.9941 0.9971  – – – 

Mean of % absolute 
error 

– – –  1.453 0.764 0.285 

SD of % absolute 
error 

– – –  1.386 1.117 0.856 

Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 
hidden layers; and SD – Standard deviation 

Table 16. Experimental and predicted values of percentage compression by ANN model 
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Thickness loss, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 

1 25.46 25.547 26.448 25.462  0.341 3.881 0.007 

2 25.98 27.399 26.468 25.976  5.462 1.879 0.017 

3 20.68 20.574 21.035 20.676  0.515 1.717 0.018 

4 17.68 17.147 17.720 17.662  3.013 0.225 0.100 

5 30.69 30.660 30.689 30.688  0.096 0.003 0.007 

6 27.82 26.361 26.453 27.813  5.244 4.913 0.025 

7 20.69 20.634 20.739 20.686  0.271 0.235 0.019 

8 18.63 18.564 18.189 18.621  0.357 2.369 0.047 

9 25.16 25.200 25.057 25.157  0.159 0.410 0.011 

10 24.49 24.554 24.250 24.508  0.261 0.981 0.073 

11 25.51 25.488 25.465 25.509  0.087 0.176 0.002 

12 23.25 23.236 23.087 23.264  0.060 0.702 0.060 

13 22.06 22.064 21.843 21.851  0.017 0.982 0.946 

14 21.84 22.064 21.843 21.851  1.024 0.015 0.052 

15 21.68 22.064 21.843 21.851  1.770 0.753 0.790 

16 25.05 24.994 25.279 25.016  0.225 0.914 0.134 

17 25.15 24.733 25.035 25.169  1.657 0.456 0.075 

18 17.4 17.817 17.708 17.401  2.396 1.772 0.008 

19 20.61 21.149 20.642 20.611  2.614 0.154 0.005 

20 22.23 21.340 22.208 22.229  4.002 0.100 0.003 

21 18.47 18.334 18.472 18.469  0.734 0.011 0.004 

22 25.22 25.207 25.219 25.220  0.053 0.005 0.002 

23 9.89 9.876 9.881 9.892  0.144 0.091 0.020 

24 8.36 8.368 8.358 8.357  0.096 0.027 0.036 

25 6.65 6.652 6.652 6.657  0.037 0.025 0.101 

R2 – 0.9926 0.9954 0.9999  – – – 

Mean of % absolute 
error 

– – –  1.225 0.912 0.102 

SD of % absolute error – – –  1.655 1.259 0.234 

Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 
hidden layers; and SD – Standard deviation 

 

Table 17. Experimental and predicted values of percentage thickness loss by ANN model 
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Compression resilience, % 

ANN Predicted Absolute error, % 
Fabric 
code Exp 

1 HL 2 HL 3 HL  1 HL 2 HL 3 HL 

1 32.67 32.864 32.568 32.684  0.594 0.312 0.044 

2 32.29 32.041 32.253 31.838  0.772 0.115 1.401 

3 32.92 30.169 32.805 32.923  8.356 0.350 0.009 

4 33.87 33.917 33.640 33.624  0.139 0.679 0.725 

5 29.48 29.334 29.375 29.514  0.495 0.357 0.115 

6 32.27 32.324 31.931 31.832  0.169 1.051 1.358 

7 30.99 31.959 30.700 30.997  3.126 0.935 0.022 

8 31.28 30.803 30.890 31.256  1.523 1.248 0.076 

9 32.77 33.355 32.304 32.802  1.784 1.422 0.097 

10 31.52 30.943 31.071 31.445  1.830 1.425 0.237 

11 31.73 31.471 31.735 31.374  0.817 0.016 1.122 

12 30.99 31.581 31.029 32.012  1.907 0.127 3.297 

13 33.25 33.123 33.162 33.307  0.383 0.266 0.172 

14 33.15 33.123 33.162 33.307  0.083 0.035 0.474 

15 33.33 33.123 33.162 33.307  0.622 0.505 0.069 

16 28.56 29.678 28.624 28.577  3.915 0.223 0.058 

17 28.2 29.141 28.083 28.212  3.337 0.414 0.041 

18 35.05 34.855 35.006 35.083  0.557 0.125 0.094 

19 30.29 30.234 30.215 30.319  0.183 0.249 0.096 

20 30.43 30.477 30.399 29.597  0.154 0.103 2.736 

21 35.32 35.221 35.130 35.283  0.281 0.537 0.105 

22 28.98 29.010 28.998 30.004  0.105 0.064 3.533 

23 54.33 54.335 54.340 54.330  0.008 0.018 0.001 

24 56.69 56.684 56.687 56.689  0.010 0.005 0.001 

25 53.85 53.851 53.837 53.850  0.002 0.025 0.001 

R2 – 0.9919 0.9996 0.9977  – – – 

Mean of % absolute 
error 

– – –  1.2461 0.424 0.635 

SD of % absolute error – – –  1.8555 0.450 1.055 

Exp – Experimental; 1HL – One hidden layer; 2HL – Two hidden layers; 3HL – Three 
hidden layers; and SD – Standard deviation 

 

Table 18. Experimental and predicted values of  compression resilience by ANN model 
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3.3.1 Verification of Models for compression properties 

Further, attempts have been made to predict the compression properties to understand the 

perfection of the models. The ANNs models were then used to four sets of inputs, which 

have not been utilized during the modeling phase as shown in Table 19. Table 20 indicates 

the prediction of compression properties and respective absolute errors by ANNs models 

during verification phase. 

 

Fabric 
code 

Fabric weight 
g/m2 

Needling 
density 

punches/cm2 

Woollenised jute
% 

Polypropylene 
% 

Polyester 
% 

18 410 250 0 100 0 

21 310 250 100 0 0 

24 276 250 80 20 0 

28 680 300 0 0 100 

Table 19. Samples for experimental verification of ANN model for compression properties 

Table 20 presents the predicted compression values of untrained fabric samples by ANN 

models, showing higher absolute percentage error than the predicted compression values of 

trained fabric samples as shown in Tables 15 to 18. Specifically, in case of sample code 28, all 

the properties predicted during verification are high. Two samples of this category (100% 

jute) have been used during the training phase (Table 10). This might be the reason for 

higher error in sample code 28 (Debnath & Madhusoothanan, 2008). Hence, the learning 

process by ANN itself is very poor compared to other samples, this ultimately increases the 

error during verification (Table 20). 

 

Initial thickness 

with 3 hidden 

layer 

mm 

Compression with 

3 hidden layer 

% 

Thickness loss with

3 hidden layer 

% 

Compression 

resilience with 3 

hidden layer 

% 

Fabric 

code 

E P A E P A E P A E P A 

18 5.07 5.25 3.53 38.07 54.88 44.17 17.87 19.17 7.26 34.12 30.73 9.95 

21 2.47 3.17 28.47 43.96 29.20 33.59 22.38 27.85 24.46 32.89 17.41 47.05 

24 3.00 2.91 3.09 41.53 48.57 16.95 21.59 30.68 42.12 30.71 27.80 9.48 

28 5.13 5.26 2.54 22.35 23.95 7.15 6.19 6.76 9.24 54.21 56.62 4.44 

E – Experimental; P – Predicted and A – Absolute error % 

Table 20. Experimental verification of predicted results on compression properties 

4. Conclusions 

From this study it is clear that the tensile and air permeability property of needle punched 

non-woven fabric can be predicted from two different methodologies– empirical and ANN 

models. The ANN model for prediction of tensile properties of needle punched non-woven 

is much more accurate compared to the empirical model. Prediction of tensile properties by 

ANN model shows considerably lower error than empirical model even when the inputs 

were beyond the range of inputs, which were used for developing the model.  
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It can also be concluded that ANNs can be used effectively even for predicting nonlinear 
relationship between the process parameters and fabric properties. 
Both the methods can be implemented successfully as far as the air permeability of such 
needled fabric is concerned. The prediction accuracy of the ANN with three hidden layers is 
the best amongst all the predicting models used in this work. The ANN with three hidden 
layers is the best, which, gives highest correlation with lowest prediction error between 
actual and predicted values of air permeability of needle punched non-woven. The ANN 
with three hidden layers also shows lesser error when compared to an empirical model even 
when input variables are extrapolated over which the models were developed. 
ANNs can be used effectively for predicting nonlinear relationship between the process 
parameters and the fabric compression properties. 
The number of cycles to achieve optimum weights for initial thickness, percentage 
compression, thickness loss (%) and percentage compression resilience are found between 
320000 and 5120000 cycles.  
There is a very good correlation (R2 values) with minimum error between the experimental 
and predicted initial thickness, percentage compression and thickness loss values by ANN 
with three hidden layers.  
The standard deviation of percentage absolute error is also found to be less in the case of 
ANN model with three hidden layers for initial thickness, percentage compression and 
percentage thickness loss. The ANN model with two hidden layers performs better in terms 
of percentage error and standard deviation in the case of percentage compression resilience.  
The three hidden layered ANN models take more time for computation during training 
phase but the predicted results are more accurate with less variations in the absolute error in 
the verification phase. 
Based on the experiences the ANN model can be well used to model and predict other 
important properties of needle-punched nonwoven fabrics made of different fibre materials. 
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