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1. Introduction 

This chapter is organized in two parts. The first part deals with the design and 
implementation of a microstrip antenna array with Butler matrix. The planar microstrip 
antenna array has four beams at four different directions, circular polarization diversity, 
good axial ratio, high gain, and wide bandwidth by implementing the 4×4 Butler matrix as a 
feeding network to the 2×2 planar microstrip antenna array. The circular polarization 
diversity is generated by rotating the linearly polarized identical elements of the planar 
microstrip antenna array so that the E-field in the x-direction is equal to the E-field in the y-
direction. Then, by feeding the planar array with Butler matrix, phase delay of / 2π±  

between those two E-fields is provided. 
In the second part of this chapter, the analysis, design and implementation of an Aperture 
Coupled Micro-Strip Antenna (ACMSA) are introduced. A quadrature hybrid is used as a 
feeder for providing simultaneous circular polarization diversity with a microstrip antenna; 
but the utilization of the quadrature hybrid as a feeder results in large antenna size. In order 
to minimize the antenna size, the microstrip antenna is fed by a quadrature hybrid through 
two orthogonal apertures whose position is determined based on a cavity model theory. The 
size of the proposed ACMSA is small due to the use of the aperture coupled structure. The 
cavity model theory is started with Maxwell's equations, followed by the solution of the 
homogeneous wave equations. Finally, the eigenfunction expansion for the calculation of 
the input impedance is presented. This chapter is organized as follows. The first part deals 
with design and implementation of a microstrip antenna array with Butler matrix, which 
describe the design details of a rectangular microstrip patch antenna and a 4×4 Butler 
matrix. Further, analysis of planar microstrip antenna array with Butler matrix and the 
development of the radiation pattern for the planar microstrip antenna array are presented.  
In the second part, the design and implementation of an aperture coupled microstrip 
antenna, the analysis of ACMSA using cavity model, the circular polarization diversity with 
ACMSA and the geometry of the ACMSA are described. 

2. Design and implementation of the microstrip antenna array with Butler 
matrix 

A planar microstrip antenna array with a Butler matrix is implemented to form a microstrip 
antenna array that has narrow beamwidth, circular polarization and polarization diversity. 
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This microstrip antenna array improves the system performance in indoor wireless dynamic 
environments. A circularly polarized microstrip antenna array is designed such that it 
consists of four identical linearly polarized patches. A 2×2 planar microstrip antenna array 
and a 4×4 Butler matrix are designed and simulated using advanced design system and 
Matlab software. The measured results show that a combination of a planar microstrip 
antenna array and a 4×4 Butler matrix creates four beams two of which have RHCP and the 
other two have LHCP.  

2.1 Design of the rectangular microstrip patch antenna 
A rectangular microstrip patch antenna is designed based on the Transmission Line Model 

(TLM) in which the rectangular microstrip patch antenna is considered as a very wide 

transmission line terminated by radiation impedance. Figure 1 shows a rectangular 

microstrip patch antenna of length L and width W. Ms is the magnetic current of each 

radiating slot of the microstrip patch antenna and s is the width of each radiating slot.  

 
 
 

 
 

Fig. 1. Inset fed rectangular microstrip patch antenna 

Figure 2 shows the transmission line model of the antenna where GR and CF represent the 

radiation losses and fringing effects respectively. The input impedance of an inset fed 

rectangular microstrip patch antenna is given by the equation (1) [1]. 
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W 
Feed 

Ms Ms 

y Slot 2 

  s   s 

xo 

x

Patch 

Slot 1 
L

www.intechopen.com



Microstrip Antennas for Indoor Wireless Dynamic Environments   

 

387 

 

                   

 
 
 

Fig. 2. Transmission line model of the rectangular microstrip patch antenna 

 

 

 

The inset fed rectangular microstrip patch antenna is designed using Matlab software based 

on the expression for the input impedance which is given by equation (1). The input 

impedance depends on the microstrip line feed position as shown in Figure 3.  

 

 

 
 

 
 
 
 
Fig. 3. Dependence of the input impedance on the distance into the patch 
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2.2 Design of the 4×4 Butler matrix 
The Butler matrix is used as a feeding network to the microstrip antenna array and it works 
equally well in receive and transmit modes. The 4×4 Butler matrix as shown in Figure 4 
consists of 4 inputs, 4 outputs, 4 hybrids, 1 crossover to isolate the cross-lines in the planar 

layout and some phase shifters [3]. Each input of the 4 4×  Butler matrix inputs produces a 
different set of 4 orthogonal phases; each set used as an input for the four element antenna 
array creates a beam with a different direction. The switching between the four Butler inputs 
changes the direction of the microstrip antenna array beam.  
Advanced design system (ADS) has been used for simulating the 4×4 Butler matrix as 
shown in Figure 5. Table 1 shows a summary of the simulated and the measured phases that 
are associated with the selected port of the 4×4 Butler matrix. 
 

 

Fig. 4. 4×4 Butler matrix geometry 

 

 
 

 

 

Phase A 

Antenna 1 

Phase B 

Antenna 2 

Phase C 

Antenna 3 

Phase D 

Antenna 4 

Theoretical 0 -90 -45 -135 

Simulated 0 -89.813 -45.04 -135.04 
Port 1 
(set 1) 

Measured 0 -98 -50 -142.8 

Theoretical 0 -90 135 45 

Simulated 0 -90.273 134.142 44.773 
Port 2 
(set 2) 

Measured 0 -80.5 140.5 48.5 

Theoretical 0 90 -135 -45 

Simulated 0 89.369 -135.046 -44.773 
Port 3 
(set 3) 

Measured 0 86.7 -126 -43 

Theoretical 0 90 45 135 

Simulated 0 90 45.227 135.04 
Port 4 
(set 4) 

Measured 0 89 48 143 

Table 1. Phases associated with the selected port of the 4×4 Butler matrix 
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Fig. 5. ADS schematic for 4×4 Butler matrix 
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2.2.1 Design of quadrature hybrid 
The design of a quadrature hybrid is based on the scattering matrix equation which can be 
obtained as follows [4]: 

 

0 1 0

0 0 11

1 0 02

0 1 0

Hybrid

j

j
S

j

j

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

The design of a quadrature hybrid using ADS is started by creating ADS schematic for the 
quadrature hybrid using ideal transmission lines as shown in Figure 6 [3].  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 6. ADS schematic for an ideal quadrature hybrid 
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Then a new ADS schematic for the quadrature hybrid is created using a microstrip substrate 

element (MSUB) and real transmissions lines as shown in Figure 7. 

Figure 8 shows the higher level ADS schematic which is used to optimize and modify the 

dimensions of the real quadrature hybrid to emulate the ideal quadrature hybrid as closely 

as possible.  

The simulated S-parameters of the real quadrature hybrid indicate that the power entering 

in any port is not reflected, and it is equally divided between two output ports that are 

existed at the other side of the hybrid, while no power is coupled to the port which is existed 

at the same side of the input port. This quadrature hybrid can operate over a bandwidth 

from 1.9 GHz to 2.8 GHz as shown in Figure 9.  

 

 

 

 

 

 
 
 
 
 
 

Fig. 7. ADS schematic for a real quadrature hybrid 
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Fig. 8. Higher level ADS schematic to optimize the dimensions of the real quadrature hybrid 

2.2.2 Design of crossover 
The crossover provides an efficient mean to isolate two crossing transmission lines. The 
design of the crossover depends on the following scattering matrix equation [5]. 
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 (3) 

A planar crossover can be designed by creating a new ADS schematic for the ideal crossover 
as shown in Figure 10 [3]. 

www.intechopen.com



Microstrip Antennas for Indoor Wireless Dynamic Environments   

 

393 

 

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.81.0 3.0

-30

-20

-10

-40

0

f req, GHz

d
B

(O
p
ti

m
1

.S
P

1
.S

P
.S

(6
,5

))
d
B

(O
p
ti

m
1

.S
P

1
.S

P
.S

(5
,5

))
d
B

(O
p
ti

m
1

.S
P

1
.S

P
.S

(7
,5

))
d
B

(O
p
ti

m
1

.S
P

1
.S

P
.S

(8
,5

))

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.81.0 3.0

-35

-30

-25

-20

-15

-10

-5

-40

0

f req, GHz

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(8

,8
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(7

,8
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(6

,8
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(5

,8
))

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.81.0 3.0

-30

-20

-10

-40

0

f req, GHz

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(7

,6
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(5

,6
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(6

,6
))

d
B

(O
p

ti
m

1
.S

P
1

.S
P

.S
(8

,6
))

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.81.0 3.0

-30

-20

-10

-40

0

f req, GHz

d
B

(O
p

ti
m

1
.S

P
1
.S

P
.S

(7
,7

))
d

B
(O

p
ti

m
1

.S
P

1
.S

P
.S

(8
,7

))
d

B
(O

p
ti

m
1

.S
P

1
.S

P
.S

(5
,7

))
d

B
(O

p
ti

m
1

.S
P

1
.S

P
.S

(6
,7

))

 

Fig. 9. Simulated S-parameters of the real quadrature hybrid 

  

 

Fig. 10. ADS schematic for the ideal crossover 
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Figure 11 shows the ADS schematic for the real microstrip crossover. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 11. ADS schematic for the real microstrip crossover 
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The dimensions of the real crossover are modified and optimised by using the higher level 
ADS schematic shown in Figure 12. 
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Fig. 12. Higher level ADS schematic to optimize the dimensions of the real crossover 
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The simulated S-parameters of the real crossover are shown in Figure 13. The bandwidth of 
the crossover is extended from 2 GHz to 2.8 GHz.  
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Fig. 13. Simulated S-parameters of the real crossover 

2.2.3 Design of phase shifter 

The phase shifter introduces a phase shift in the signal and can be implemented by adding a 

bit of length to a microstrip transmission line.  The ADS is used to determine the length of 

red sections microstrip transmission lines which introduces phase shift ( shiftθ c − 45°) in the 

signal that passes through the crossover. shiftθ c  is the phase shift of the signal passing through 

the black section microstrip transmission line as shown in Figure 14. shiftθ c  is determined by 

finding the length of the black section, then using ADS LineCalc tool to calculate the phase 

shift. This phase shifter should be replaced by a Schiffman phase shifter for wideband 

applications [6].  

 
 

 

Fig. 14. Fabricated 4×4 Butler matrix 
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2.2.4 Design of paths between a 4×4 Butler matrix and a planar antenna array 
The phases associated with each port of the 4×4 Butler matrix will be changed and the 

circular polarization cannot be obtained if the paths connecting the 4×4 Butler matrix with 

the planar antenna array do not have the same phase shift. Hence these paths are designed 

with the same phase shift.  The path connecting antenna 1and Butler matrix is considered as 

the reference. The ADS is used to modify the length of the other paths to make its phases as 

close as possible to the phase of the reference path. Figure 15 shows the ADS schematic for 

path 2 which connects antenna 2 and Butler matrix. The length of this path is modified and 

optimized using ADS as shown in Figure 16.  

 
 
 
 
 
 

 
 
 
 
 

 

Fig. 15. ADS schematic for the path connecting antenna 2 and Butler matrix 

The ADS simulated results for phases of path 2 and reference path are shown in Figure 17. 
The ADS schematics for designing path 3 and path 4 are given in Appendix A. 
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Fig. 16. ADS schematic to modify the length of path 2 
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Fig. 17. ADS simulated results for phases of path 2 and reference path 
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2.3 Analysis of planar microstrip antenna array with Butler matrix 
A planar microstrip antenna array consists of four orthogonally oriented inset-fed 
rectangular patch antennas as shown in Figure 18. The circular polarization can be 
generated with linearly polarized elements when all the adjacent elements are orthogonally 
oriented and are fed by a Butler matrix to form two orthogonally polarized E-fields from the 
four linearly polarized E-fields of the planar array elements [7,8]. The normalized 
instantaneous E-fields in x- and y-directions are represented by equations (4) and (5) 
respectively:  

 _ cos( ) cos( )x planar o oE t K z A t K z Cω ω= − + + − +  (4) 

 _ cos( ) cos( )y planar o oE t K z B t K z Dω ω= − + + − +  (5)  

where oK  is the propagation constant in free space and ω  is the angular frequency. The 

values of A, B, C and D phases in the above equations are changed according to the selected 
port of 4×4 Butler matrix. The instantaneous field of the plane wave traveling in positive z-
direction is given by 

 ( ) _ _
ˆ ˆ, .x planar y planarE z t E x E y= +  (6) 

For the planar microstrip antenna array that consisted of identical patches, the magnitude of 

_x planarE  is equal to _y planarE . 
 

 

Fig. 18. Phases associated with each port of the planar microstrip antenna array with 

4 4× Butler matrix 
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As shown in Figure 18, when port 1 or port 2 is selected, the phase delay between _y planarE  

and _x planarE  will be 
2

π
−  and RHCP is generated. The LHCP is obtained when port 3 or port 

4 is selected because the phase delay between _y planarE  and _x planarE  will be
2

π
+ . 

2.4 Radiation pattern for planar microstrip antenna array 
The total normalized E-plane radiation pattern of the planar microstrip array is obtained by 
the following equation [9]: 

 _ _T T EE E AFθ θ= . (7) 

where _T EAF  is the normalized E-plane array factor for the planar microstrip array and can 

be obtained from equation (8) [10]:   

 ( ) ( )( sin )
_ 1 1 yo x x

jj K d

T EAF e e
φθ φ+= + +    (8)  

Eθ  is the total normalized E-plane radiation pattern of a single microstrip patch antenna and 

is obtained by equation (9) [11]: 

 sin1 ojK LE e θ
θ = +  (9)                          

where θ  is the elevation angle and L is the length of the microstrip patch antenna. The total 

normalized radiation pattern and the normalized array factor for the H-plane are obtained 
from equations (10) and (11) respectively [9]: 

 _ _T T HH H AFθ θ=   (10)      

 ( ) ( )( sin )

_ 1 1o y y x
j K d j

T HAF e e
θ φ φ+= + +  (11) 

where ,x yφ φ  are the feeding phases for the antenna 4 and the antenna 2 respectively. 

,x yd d are the spacings between patches in the x-direction and y-direction respectively. 

equation (12) is used to determine the total normalized H-plane radiation pattern of a single 

microstrip patch antenna ( Hθ ) [11];  

 

sin( sin )
2 cos .

sin
2

o

o

K W

H
K Wθ

θ
θ

θ
=   (12) 

where W is the width of the microstrip patch antenna. 

2.5 Simulation and measured results 
To design the planar microstrip antenna array, the spacing distance between the patches in 
x-direction (dx) is determined based on the simulation of equations (7), (8) and (9) using 

www.intechopen.com



Microstrip Antennas for Indoor Wireless Dynamic Environments   

 

401 

Matlab. Figure 19 shows the total normalized E-plane radiation pattern of the planar 

microstrip array ( _TE θ ) versus the elevation angle θ  at different values of dx.  
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Fig. 19. Simulated normalized E-plane radiation pattern of the planar microstrip antenna 
array versus an elevation angle (― feed at port 1, −· feed at port 2, … feed at port 3, --- feed 
at port 4) 

The fixed beams get narrowed as dx is increased, but to maintain balance between the 

narrowed beams and small-size antenna array, and also to avoid the grating lobes, 

dx=0.5*(free space wavelength) is selected. yd is determined based on the simulation of 

equations (10), (11) and (12) using Matlab. The total normalized H-plane radiation pattern 

( _TH θ ) versus the elevation angle θ  is shown in Figure 20.  

The value of _TH θ  is equal to the value of  _TE θ  divided by the intrinsic impedance of the 

free space; so _TH θ  is not sensitive to the change in the separation distance yd  because its 

value is much smaller than that of _TE θ . However, dy=0.5*(free space wavelength) is 

selected to maintain a balance between the avoidance of mutual coupling and the small-size 

antenna array.  The set of curves in Figures 19 and 20 represents the normalized E-plane and 

H-plane respectively; each curve is generated by selecting a different feed port of the 

4 4× Butler matrix. 

The planar microstrip antenna array with 4 4×  Butler matrix is fabricated using Rogers's 

substrate of thickness ht=0.85 mm, loss tangent=0.0021 and dielectric constant 3.55rε = . The 

inset-fed rectangular microstrip patch antenna is designed at a resonant frequency equal to 

2.437 GHz using Matlab and then simulated using ADS [12]. The parameters for the 

substrate layers and metallization layers of the Rogers's substrate are created in the ADS 

Momentum as shown in Figures 21 and 22 respectively. 
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Fig. 20. Simulated normalized H-plane radiation pattern of the planar microstrip antenna array 
versus an elevation angle (― feed at port 1, −· feed at port 2, … feed at port 3, --- feed at port 4) 
 

 

Fig. 21. Parameters setup in ADS Momentum for substrate layers of the Rogers's substrate 
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Fig. 22. Parameters setup in ADS Momentum for metallization layers of the Rogers's 
substrate 

Figure 23 shows the ADS Momentum for the planar microstrip antenna array. 
 

 

Fig. 23. ADS Momentum for the planar microstrip antenna array 
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The planar array is simulated by using ADS Momentum and then the Momentum dataset 
file is imported to the ADS schematic to simulate the planar microstrip antenna with Butler 
matrix as shown in Figure 24.  
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Fig. 24. ADS schematic diagram for simulating the planar microstrip antenna with 4×4 
Butler matrix 

www.intechopen.com



Microstrip Antennas for Indoor Wireless Dynamic Environments   

 

405 

Figure 25 shows the ADS layout of the planar mirostrip antenna array with 4×4 Butler 

matrix. The Fabricated planar microstrip antenna array with 4 4×  Butler matrix is shown in 
Figure 26. 
 

 

Fig. 25. ADS layout of the planar microstrip antenna array with 4×4 Butler matrix 

 

 

Fig. 26. Fabricated planar microstrip antenna array with 4 4×  Butler matrix  
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The measured and the simulated values of the reflection coefficient at each port of the 

planar microstrip antenna array with 4 4×  Butler matrix versus the frequency band of 1.4–3 
GHz are shown in Figure 27.  
 

 

Fig. 27. Reflection coefficients versus frequency for the planar microstrip antenna array with 

4 4× Butler matrix 

The phases associated with the ports of the Butler matrix result in the existence of different 
voltages and different input impedances at the ports of the Butler matrix. Hence the 
reflection coefficients at these ports will not be the same owing to the relationship between 
the reflection coefficient and input impedance. The mutual coupling between the patches 
induces frequency modes. These modes are matched with 50 Ω impedance outside the 
required 2.437 GHz range (i.e. for port 1, the measured reflection coefficient is less than −10 
dB at ranges 1864–1885 MHz, 2014–2073 MHz, and 2145–2237 MHz owing to the effect of 
mutual coupling between the patches). The mutual coupling impedances between the 
patches are different because of the effect of the phases associated with the ports of the 
Butler matrix. Due to the dissimilarity of the mutual coupling impedances, each port will 
have reflection coefficient less than −10 dB over different frequency ranges outside the 
required bandwidth [13]. Although the Butler matrix reflection coefficients are not the same 
at all the ports, they have good values over the required bandwidth. The measured 
impedance bandwidth (for reflection coefficient < −10 dB) at port 1, port 2, port 3, and port 4 
are 18.8%, 12.52%, 12.5%, and 18.5 %, respectively. The obtained impedance bandwidth of 
this planar array is high when compared with a single microstrip patch antenna that 
achieves 0.7% impedance bandwidth as shown in Figure 28 [14]. The implementation of the 
Butler matrix gives a wide band due to the absorption of the reflected power in the matched 
loads connected to the non-selected ports of the butler matrix. Moreover, the mutual 
coupling between the patches enhances the bandwidth [13]. 
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Fig. 28. Reflection coefficient versus frequency for an inset-fed rectangular microstrip patch 
antenna 

The measured normalized radiation pattern of the planar microstrip antenna array with 

4 4×  Butler matrix is shown in Figure 29. The planar microstrip antenna array that is fed by 

the 4 4×  Butler matrix has four beams at four different directions. These beams have a 

circular polarization diversity because a beam with RHCP will be obtained when port 1 or 2 

is selected, but if port 3 or 4 is selected a beam with LHCP will be generated. The measured 

gains at 2.437 GHz for ports 1, 2, 3 and 4 are 9.74 dBi, 8.6 dBi, 9 dBi and 10.1 dBi 

respectively. The gain of port 1 and port 2 is measured using right hand circularly polarized 

standard antenna (2.4 GHz, 8 dBi, RHCP, Flat Patch Antenna), while the gain for port 3 and 

port 4 is measured using left hand circularly polarized standard antenna (2.4 GHz, 8dBi, 

LHCP, Flat Patch Antenna). 

The measured axial ratios of the individual ports versus the elevation angle are shown in 

Figure 30. A good axial ratio (axial ratio < 3 dB) of ports 1, 2, 3 and 4 are achieved over 

angular ranges −36° to 61°, −55° to −9°, −31° to 81° and −90° to 15°respectively. 

Radiation pattern and axial ratio measurements are carried out in a near field Satimo 

chamber as shown in Figure 31. The measurement system consists of probe antennas 

mounted with equal spacing on a circular arch. The measurements of the radiation pattern 

and the axial ratio can be obtained by electronic switching of the probe antennas. The 

measured data is collected automatically and saved in MS Excel format. 

The impedance bandwidth of the planar array with Butler matrix can be extended by using 

a thicker substrate. The obtained impedance bandwidth is 37% for ports 1 and 4, while ports 

2 and 3 have an impedance bandwidth equal to 20% as shown in Figure 32. This is when 

using FR4 substrate (ht=1.6 mm, loss tangent=0.035, and dielectric constant 5.4rε = ). But the 

FR4 substrate has a poor loss tangent which results in lower efficiency and therefore the 

gain will be decreased [15].  
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Fig. 29. Measured normalized radiation pattern of the planar microstrip antenna array with 

4 4×  Butler matrix at 2.437 GHz 
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Fig. 30. Measured axial ratios of the planar microstrip antenna array with 4 4×  Butler 
matrix at 2.437 GHz 
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Fig. 31. Measuring a planar microstrip antenna with Butler matrix inside near field Satimo 
chamber 

 
 

 
 

Fig. 32. Simulated reflection coefficients versus frequency for the planar microstrip antenna 

array with 4 4× Butler matrix using FR4 substrate 
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3. Analysis, design, and implementation of an aperture-coupled microstrip 
antenna 

The circular polarization diversity with the square patch microstrip antenna is obtained by 
the implantation of the quadrature hybrid as a microstrip feed line. The small size antenna is 
achieved by using the aperture coupled structure. In the present study, the ACMSA is 
analyzed based on cavity model because the TLM is useful only for patches of rectangular 
shape [14]. The cavity model is used to design the ACMSA and determine the length of the 
open microstrip stub line in order to match microstrip antenna. The Matlab and ADS are 
used for designing and simulating the ACMSA.  

3.1 Analysis of ACMSA using cavity model 
3.1.1 Resonant Frequency 
The cavity model is based on treating the microstrip antennas as cavities formed by 

microstrip lines as shown in Figure 33. The region between the patch and ground plane may 

be treated as a cavity bounded by electric walls above and below, and magnetic walls along 

the edges. The fields inside the antenna are assumed to be the fields inside this cavity. Due 

to the electrically thin substrate the fields in the interior region do not vary with z. Also 

inside the cavity the electric field has only a z component (Ez) and the magnetic field has Hx 

and Hy components [14]. Figure 33 shows the cavity model of the ACMSA. 

 

Fig. 33. Cavity model of the ACMSA 

The magnetic field H inside the cavity volume can be developed by Maxwell’s equations 
[16]: 

 e o rH J j Eωε ε∇× = +  (13) 
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∂ ∂ ∂
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∂ ∂ ∂
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y x

H H
H z

x y
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 (15) 
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y x
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x y z

H H

x y

∧ ∧ ∧

∂ ∂ ∂
∇× ∇× =

∂ ∂ ∂
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 (16)               
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x y y x y x

∧ ∧⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂
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 (17) 

 ( ) ( ) ( )2 2
e o r mx x my yJ j E j J H x j J H yωε ε ωε ω με ωε ω με

∧ ∧

∇× + = + + +  (18) 

 K ω με=  (19) 

where K is the propagation constant inside the cavity, o rε ε ε= . Equations (20) and (21) are 

obtained by substituting the right hand side of equation (17) into the left hand side of 
equation (18); 

 
2 2

2

2

y x
x mx

H H
K H j J

x y y
ωε

∂ ∂
− − =

∂ ∂ ∂
 (20) 

 
22

2

2

yx
y my

HH
K H j J

x y x
ωε

∂∂
− − =

∂ ∂ ∂
 (21)     

In order to solve equation (20), the cavity model assumes that the tangential magnetic field 
is zero, so that Jmx equals to zero. 

 
2 2

2

2
0

y x
x

H H
K H

x y y

∂ ∂
− − =

∂ ∂ ∂
 (22) 

Letting the Eigen functions of the homogeneous wave equation (22) be mnΨ  and Kmn be the 

eigenvalues of K, Kmn can be obtained from equation (23) as indicated in Appendix B. 
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 2 2 2
mn m nK K K= +  (23) 

The resonance frequency of (m, n) mode can be obtained by equation (24); 

 
2

mn
mn

r

cK
f

π ε
=  (24)        

where c is the speed of light, rε  is the relative dielectric constant.  

3.1.2 Magnetic field component in x-direction 
The solutions of equation (20) can be expressed in the following eigenfunction expansion 
form [16]; 

 , ,x x mn x mn

mn

H β ψ=∑  (25) 

where ,x mnβ  is the modes coefficients and given by (see Appendix C) 

 , ,2 2 2
0 0

.
( )

a aW L

x mn mx x mn

mn n

j
J dxdy

K K K

ωε
β ψ ∗=

− ∫ ∫  (26)                 

The propagation constant (K) in equation (26) is replaced by the effective propagation 
constant (Keff) because the losses of the cavity are included [2,17]. 

 2 2 ( (1 ))eff o r

j
K

Q
ω με ε= −   (27) 

where Q is the quality factor. It is assumed that the electric field distribution in the aperture 
paralleled to x axis (Eay) is in the form of a single piece-wise sinusoidal mode [18]. The 
distance from the square patch edge to the center of the aperture is defined as X1 and from 
the square patch edge to the center of the aperture as Y1 as shown in Figure 34. 
 

 

Fig. 34. Position of the aperture paralleled to x-axis 
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Vox is the voltage at the middle of the aperture paralleled to the x axis. Ka is the wave number 
of the aperture [19]. The magnetic current in the aperture parallel to x axis given by  
[16,17]: 

 - 2 ax ayM E=  (30) 

The corresponding current density Jmx is given by: 

 
-2 

 
ay

mx

E
J

h
=  (31) 

By substituting for Jmx from equation (31) into equation (26) the modes coefficients ,x mnβ  are 

determined. Then the magnetic field Hx in the cavity is given by 

 , cos( )sin( )x mn x mn n m n

mn

H A K K x K yβ=∑  (32) 

3.1.3 Magnetic Field Component in y-direction 
The eigenfunction expansion for the magnetic field component in y direction Hy is used for 
solving equation (21) [16]; 

 , ,y y mn y mn

mn

H β ψ=∑  (33) 

Figure 35 shows the aperture paralleled to y axis; the electric field distribution (Eax) can be 
determined using the following equations: 
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Fig. 35. Position of the aperture paralleled to y-axis 

where Voy is the voltage at the middle of the aperture paralleled to the y axis. The 
corresponding current density Jmy is given by: 

 
-2 

 ax
my

E
J

h
=  (36) 

The modes coefficients ,y mnβ  are obtained by; 

 
, ,2 2 2

0 0

.
( )

a aL W

y mn my y mn

mn m

j
J dxdy

K K K

ωε
β ψ ∗=

− ∫ ∫  (37) 

The magnetic field Hy in the cavity is given by: 

 , sin( )cos( )y mn y mn m m n

mn

H A K K x K yβ=∑  (38) 

3.1.5 Input impedance 
If the aperture is parallel to x direction; the admittance of the patch can be obtained by the 
following equation [16,20]: 

 , 2

x mx

V
x ant

z

H J dV

Y
E h

∗

=
∫∫∫

 (39) 

where V is the volume occupied by the source within which the magnetic currents exist. The 
electric field Ez inside the cavity is determined based on equation (13) and equation (15) as 
follows: 

 
1 y x

z

H H
E

j x yωε
∂⎛ ⎞∂

= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (40) 

But the admittance of the patch in case of the aperture is parallel to y direction can be 
obtained from equation (41): 
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∫∫∫

 (41) 

The admittance value of the aperture Yap can be obtained from the transmission line model 
of the aperture by considering the aperture as two short circuited slot lines [2]. 

 
2

cot( )
2

a
ap a

ca

j L
Y K

Z

−
=  (42) 

where Zca, La are, respectively, the characteristic impedance, the length of the aperture. The 
input impedance of the ACMSA is given by: 

 
2 2

, ,

in

x ant ap y ant ap

n n
Z

Y Y Y Y
= +

+ +
 (43) 

The open microstrip stub line (Los) which is used for forcing the imaginary part of the input 
impedance to be zero, is obtained by; 

 1 ( )1
cot

2
in

os

F F

imaginary Z
L

K Z

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (44) 

The input impedance of the ACMSA with the open microstrip stub line is given by 

 
2 2

_

, ,

1 1
2 cot( )in stub F F os

x ant ap y ant ap

n n
Z jZ K L

Y Y Y Y
= + −

+ +
 (45) 

ZF and KF, are, respectively, the characteristic impedance and the wave number of the 
microstrip feed line; n1 is the transformation ratio which describes the coupling between the 
microstrip feed line and the patch [19]. 

3.2 Circular polarization diversity with ACMSA 

 
The electric field components in x-direction (Ex) and y direction (Ey) are generated by 

putting an aperture parallel to y axis and x axis respectively as shown in Figure 36. The 

circular polarization diversity requires the phase shift between Ex and Ey to be 90°± . By 

using the quadrature hybrid as a feeder for the square patch microstrip antenna the circular 

polarization diversity can be achieved. When the right port of the hybrid is selected, Ex will 

lead Ey by 90°  and the RHCP will be generated. If the left port of the hybrid is selected, Ex 

will lag Ey  by 90° and the LHCP will be generated [20]. 

3.3 Geometry of ACMSA 
The geometry of the proposed ACMSA with a circularly polarized diversity is shown in 
Figure 37. The square patch is printed on Rogers's substrate (patch substrate) with a 
thickness ht=0.85 mm, a loss tangent=0.0021 and a dielectric constant 3.55rε = . Based on the 

cavity model theory and ADS optimization the length of the square patch is 31.599 mm at a 
resonant frequency of 2.437 GHz. The quadrature hybrid is printed on the Roger's substrate 
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Fig. 36. Circular polarization diversity with ACMSA 

 

Fig. 37. Geometry of the proposed ACMSA 
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(feed substrate) which has the same parameters as those of the patch substrate. The ground 

plane exists in between the patch substrate and the feed substrate. There are two identical 

apertures printed on the ground plane, one parallel to x-axis and the other paralleled to y-

axis. The length and the width of the aperture are 16 mm and 1.7 mm respectively [2, 14, 16-

19, 21]. 

The size of the geometry with bended open microstrip stub line (Los) as shown in Figure 37 is 

about 22% smaller than that of the other geometry shown in Figure 38 which has straight 

open microstrip stub line (Los). 

 
 

 

Fig. 38. Geometry of ACMSA with straight open microstrip stub line 

The ADS is used to convert the straight Los into its equivalent bended Los by modeling the 

straight Los using MLOC with length 11.9 mm in ADS schematic as shown in Figure 39. The 

ADS schematic as shown in Figure 40 is implemented to model the bended Los using two 

MLIN of length 3 mm, MCURVE and MLOC with variable length.  

The ADS schematic as shown in Figure 41 is used to find the optimum length of the bended 

Los. 
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Fig. 39. ADS schematic model for straight open microstrip stub line 
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Fig. 40. ADS schematic model for bended open microstrip stub line 
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Fig. 41. ADS schematic to find the optimum length of the bended open microstrip stub line 

Figure 42 shows that the bended Los is equivalent to straight Los when the variable length is 
2.76451 mm. 
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Fig. 42. Simulated responses for straight and bended open microstrip stub line 
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3.4 Simulation and measured results 
The value of Y1 and X2 is the same which is selected as 26.548 mm to place the quadrature 
hybrid at a further distance into the square patch in order to minimize the size of the 
ACMSA. The value of X1 and Y2 is the same and equals to the distance at which the real part 
of the input impedance is approached to 50 Ω at the center of each aperture. Figure 43 shows 
the input impedance of the ACMSA without the implementation of the open microstrip stub 
line (Los). In this case the imaginary part of the input impedance is 42.86 Ω when X1 is 5.688 
mm. The length of the open microstrip stub line is determined in order to force the 
imaginary part of input impedance to be zero.  
Figure 44 shows the input impedance of the ACMSA with Los equals to 11.9 mm. The results 
for X1, X2, Y1 and Y2 are obtained using the Matlab simulation and these results are 
optimized using ADS as shown in Figure 37.  
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Fig. 43. Simulated input impedance of the ACMSA without Los 
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Fig. 44. Simulated input impedance of the ACMSA with Los 
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If the right port of the quadrature hybrid is selected, the reflection coefficient (S11) versus the 
frequency and the normalized measured radiation pattern of the ACMSA are shown in 
Figures 45 and 46 respectively. Figure 45 shows that, the proposed ACMSA provides an 
impedance bandwidth of 20.1% at port 1 (for S11 < -10dB).  
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Fig. 45. Reflection coefficient versus frequency when the right port of the quadrature hybrid 
is selected 
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Fig. 46. Normalized measured radiation pattern when the right port of the quadrature 
hybrid is selected 

Figures 47 and 48 respectively show the reflection coefficient (S22) versus the frequency and 
the normalized measured radiation pattern of the ACMSA, when the left port of the 
quadrature hybrid is selected. The impedance bandwidth of 20 % is obtained at port 2 (for 
S22 < -10dB) as evident from Figure 47. 
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Fig. 47. Reflection coefficient versus frequency when the left port of the quadrature hybrid is 
selected 
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Fig. 48. Normalized measured radiation pattern when the left port of the quadrature hybrid 
is selected 

The fabrication of one ACMSA requires two substrate slices (patch substrate and feed 

substrate). The parameters setup in ADS Momentum for substrate layers is shown in Figure 

49. 

The top side and the bottom side of each substrate are covered by metal layer. Parameters 

setup in ADS Momentum for metallization layers is shown in Figure 50. For patch substrate, 

the square patch is printed on the top side while the metal layer on the bottom side is 

removed. For the feed substrate the quadrature hybrid is printed on the bottom side while 

the two apertures are etched on the top side which is considered as a ground plane. 
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Fig. 49. Parameters setup in ADS Momentum for substrate layers of the ACMSA 

 

 

Fig. 50. Parameters setup in ADS Momentum for metallization layers of ACMSA 
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Figures 51 and 52 respectively show the fabricated patch substrate and feed substrate of the 
ACMSA. 
 

 

Fig. 51. Fabricated patch substrate 
 

 

Fig. 52. Fabricated feed substrate 

The measured gain at 2.437 GHz for right port and left port are 5dBi and 4.6 dBi respectively. 
The gain for the left port is measured using left hand circularly polarized standard antenna 
(2.4 GHz, 8 dBi, LHCP, Flat Patch Antenna), while the gain for the right port is measured using 
right hand circularly polarized standard antenna (2.4 GHz, 8dBi, RHCP, Flat Patch Antenna). 
Figure 53 shows the measured axial ratio at both ports of the ACMSA. 
The ACMSA produces two beams, one of which is RHCP and the other is LHCP as shown in 
Figures 46 and 48 respectively. The axial ratio and the radiation pattern are measured in 
Satimo chamber. The measurement system consists of probe antennas mounted with equal 
spacing on a circular arch as shown in Figure 54. The measured data is collected 
automatically and saved in MS Excel format. 
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Fig. 53. Measured axial ratio at both ports of the ACMSA versus an elevation angle 

  

 

Fig. 54. Measuring aperture-coupled microstrip antenna inside Satimo chamber 

The size of the ACMSA is much smaller than that of the microstrip antenna which is fed by 
a quadrature hybrid without using an aperture coupled structure. The utilization of the 
aperture coupled structure could reduce the antenna size substantially compared with the 
one without aperture coupled structure. For instance, size reductions of 72% and 60 % are 
achieved compared to the cases of [22] and [23] respectively. The proposed ACMSA has a 
better bandwidth and good axial ratio compared to the designs presented by [22, 24-26]. 
Further, it can receive the RHCP and the LHCP simultaneously whereas the reconfigurable 
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patch antennas could receive only one polarization type at a time [22, 24-26]. Above all, the 
proposed geometry can provide circular polarization diversity with good axial ratio over a 
broad angular range, wide bandwidth and small size. 

4. Conclusions 

A circularly polarized microstrip antenna array could be generated with linearly polarized 
patches. The separation distance between the patches in the x-direction has a strong effect on 
the E-plane of the planar microstrip antenna array pattern, whereas the separation distance 
between the patches in the y-direction has a weak affect on the H-plane of the planar 
microstrip antenna array pattern. Four narrow beams at four different directions are obtained 

through the excitation of a planar microstrip antenna array by a 4 4× Butler matrix. These four 
beams possess circular polarization diversity, good axial ratio and high gain.  
Circular polarization diversity could be generated by coupling the quadrature hybrid to the 
square patch through two apertures. The aperture coupled structure minimized the size of 
the microstrip antenna which is fed by the quadrature hybrid. The proposed geometry 
provides good axial ratio over a broad angular range and wide bandwidth. The analysis of 
the ACMSA using the cavity model is comparable with the full-wave analysis and the 
experimental results. 

APPENDIX A 

ADS schematics to design path 3 and path 4 of the planar microstrip antenna array 
with 4×4 Butler matrix 
Figure A.1 shows the ADS schematic for path 3 which connects between antenna 3 and 4×4 
Butler matrix. The ADS schematic to modify the length of path 3 is shown in Figure A.2. 
 

 

Fig. A.1 ADS schematic for path 3 
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Fig. A.2 ADS schematic to modify the length of path 3 

The ADS simulated results for phases of path 3 and reference path are shown in Figure A.3. 
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Fig. A.3 ADS simulated results for phases of path 3 and reference path 
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The ADS schematic for path 4 which connects between antenna 4 and 4×4 Butler matrix is 
shown in Figure A.4. 
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Fig. A.4 ADS schematic for modifying length of the path connecting antenna 4 and 4×4 
Butler matrix 

The length of the path 4 is modified by using the ADS schematic shown in Figure A.5. The 
ADS simulated results for phases of path 4 and reference path are shown in Figure A.6. 
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Fig. A.5 ADS schematic to modify the length of path 4 
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Fig. A.6 ADS simulated results for phases of path 4 and reference path 
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APPENDIX B 

Propagation constant inside the cavity 
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APPENDIX C 

Mode coefficients in x-dirextion inside the cavity 
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By substituting from equation (C.1) and (C.2) into equation (20) the following equation is 
obtained: 
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By substituting from equations (C.4) and (C.5) into equation (C.3) the equation (C.6) is 
obtained: 
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Where ,x mnψ ∗  is the complex conjugate of ,x mnψ  
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