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1. Introduction

This chapter is organized in two parts. The first part deals with the design and
implementation of a microstrip antenna array with Butler matrix. The planar microstrip
antenna array has four beams at four different directions, circular polarization diversity,
good axial ratio, high gain, and wide bandwidth by implementing the 4x4 Butler matrix as a
feeding network to the 2x2 planar microstrip antenna array. The circular polarization
diversity is generated by rotating the linearly polarized identical elements of the planar
microstrip antenna array so that the E-field in the x-direction is equal to the E-field in the y-
direction. Then, by feeding the planar array with Butler matrix, phase delay of +7 /2
between those two E-fields is provided.

In the second part of this chapter, the analysis, design and implementation of an Aperture
Coupled Micro-Strip Antenna (ACMSA) are introduced. A quadrature hybrid is used as a
feeder for providing simultaneous circular polarization diversity with a microstrip antenna;
but the utilization of the quadrature hybrid as a feeder results in large antenna size. In order
to minimize the antenna size, the microstrip antenna is fed by a quadrature hybrid through
two orthogonal apertures whose position is determined based on a cavity model theory. The
size of the proposed ACMSA is small due to the use of the aperture coupled structure. The
cavity model theory is started with Maxwell's equations, followed by the solution of the
homogeneous wave equations. Finally, the eigenfunction expansion for the calculation of
the input impedance is presented. This chapter is organized as follows. The first part deals
with design and implementation of a microstrip antenna array with Butler matrix, which
describe the design details of a rectangular microstrip patch antenna and a 4x4 Butler
matrix. Further, analysis of planar microstrip antenna array with Butler matrix and the
development of the radiation pattern for the planar microstrip antenna array are presented.
In the second part, the design and implementation of an aperture coupled microstrip
antenna, the analysis of ACMSA using cavity model, the circular polarization diversity with
ACMSA and the geometry of the ACMSA are described.

2. Design and implementation of the microstrip antenna array with Butler
matrix

A planar microstrip antenna array with a Butler matrix is implemented to form a microstrip
antenna array that has narrow beamwidth, circular polarization and polarization diversity.
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386 Microstrip Antennas

This microstrip antenna array improves the system performance in indoor wireless dynamic
environments. A circularly polarized microstrip antenna array is designed such that it
consists of four identical linearly polarized patches. A 2x2 planar microstrip antenna array
and a 4x4 Butler matrix are designed and simulated using advanced design system and
Matlab software. The measured results show that a combination of a planar microstrip
antenna array and a 4x4 Butler matrix creates four beams two of which have RHCP and the
other two have LHCP.

2.1 Design of the rectangular microstrip patch antenna
A rectangular microstrip patch antenna is designed based on the Transmission Line Model

(TLM) in which the rectangular microstrip patch antenna is considered as a very wide
transmission line terminated by radiation impedance. Figure 1 shows a rectangular
microstrip patch antenna of length L and width W. My is the magnetic current of each
radiating slot of the microstrip patch antenna and s is the width of each radiating slot.
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Ay Slot 2

Patch

z
. ] U**
<gVVVVVV

Fig. 1. Inset fed rectangular microstrip patch antenna

Figure 2 shows the transmission line model of the antenna where Gg and Cr represent the
radiation losses and fringing effects respectively. The input impedance of an inset fed
rectangular microstrip patch antenna is given by the equation (1) [1].

1 T X
Z o= cos?| B 1
" (Gy+Gy) COS( L J @)

where X, is the distance into the patch, Gi2 is the coupled conductance between the
radiating slots of the antenna [2].
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Fig. 2. Transmission line model of the rectangular microstrip patch antenna

The inset fed rectangular microstrip patch antenna is designed using Matlab software based
on the expression for the input impedance which is given by equation (1). The input
impedance depends on the microstrip line feed position as shown in Figure 3.
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Fig. 3. Dependence of the input impedance on the distance into the patch
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388 Microstrip Antennas

2.2 Design of the 4x4 Butler matrix

The Butler matrix is used as a feeding network to the microstrip antenna array and it works
equally well in receive and transmit modes. The 4x4 Butler matrix as shown in Figure 4
consists of 4 inputs, 4 outputs, 4 hybrids, 1 crossover to isolate the cross-lines in the planar
layout and some phase shifters [3]. Each input of the 4x4 Butler matrix inputs produces a
different set of 4 orthogonal phases; each set used as an input for the four element antenna
array creates a beam with a different direction. The switching between the four Butler inputs
changes the direction of the microstrip antenna array beam.

Advanced design system (ADS) has been used for simulating the 4x4 Butler matrix as
shown in Figure 5. Table 1 shows a summary of the simulated and the measured phases that
are associated with the selected port of the 4x4 Butler matrix.

Hybrid

¥ 35Q

Port 3 C -
'+ 90
Port 4 D . A
Fig. 4. 4x4 Butler matrix geometry
Phase A Phase B Phase C Phase D
Antenna 1 Antenna 2 Antenna 3 Antenna 4
Port1 | —peoretical 0 90 45 135
(set 1) Simulated 0 -89.813 -45.04 -135.04
Measured 0 -98 -50 -142.8
Port 2 Theoretical 0 -90 135 45
(set 2) Simulated 0 -90.273 134.142 44.773
Measured 0 -80.5 140.5 48.5
Port 3 Theoretical 0 90 -135 -45
(set 3) Simulated 0 89.369 -135.046 -44.773
Measured 0 86.7 -126 -43
Port 4 Theoretical 0 90 45 135
(set4) | Simulated 0 90 45227 135.04
Measured 0 89 48 143

Table 1. Phases associated with the selected port of the 4x4 Butler matrix
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Fig. 5. ADS schematic for 4x4 Butler matrix
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2.2.1 Design of quadrature hybrid

The design of a quadrature hybrid is based on the scattering matrix equation which can be

obtained as follows [4]:

0 j 10

1175 0 0 1

I:S:IHybrid T _ﬁ 100 j
01,50

(2)

The design of a quadrature hybrid using ADS is started by creating ADS schematic for the
quadrature hybrid using ideal transmission lines as shown in Figure 6 [3].

VAR
VARI1
zo tb=35.36
zo Ir=50
theta tb=90
theta_1r=90
TN
Port Z=7z0 tb Ohm Port
Pl E=théta tb P2
Num=1 F=2.437 GHz Num=2
1 : t 2 =< >
TLIN ] 1 TLIN
TL4 TL3
/=70 Ir /=70 Ir
E=theta Ir E=theta Ir
F=2.437GHz % 2 F=2.437 GHz
1 H =2 1
n i
Z =70 tb Ohm
Num=4 - Num=3
‘B E =theta tb '
F=2437 GHz

Fig. 6. ADS schematic for an ideal quadrature hybrid
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Then a new ADS schematic for the quadrature hybrid is created using a microstrip substrate
element (MSUB) and real transmissions lines as shown in Figure 7.

Figure 8 shows the higher level ADS schematic which is used to optimize and modify the
dimensions of the real quadrature hybrid to emulate the ideal quadrature hybrid as closely
as possible.

The simulated S-parameters of the real quadrature hybrid indicate that the power entering
in any port is not reflected, and it is equally divided between two output ports that are
existed at the other side of the hybrid, while no power is coupled to the port which is existed
at the same side of the input port. This quadrature hybrid can operate over a bandwidth
from 1.9 GHz to 2.8 GHz as shown in Figure 9.

MSub Yo tar] VAR

MSUB W_tb=2.8446 {o}
MSubl W 1r=1.67935 {0}
H=0.813 mm | t6=14.4394 {0}

Er=3.55 1" 1r=20.1871 08

Mur=1 W_50=1.7751

Cond=5.7E+7

1 50=8.22699 {0}
Hu=1.0e+033 mm

T=35um
IT{anD};%OZl MTEE_ADS MTEE_ADS
oug mm Teel . MLIN Tee2 .

- = mm _n " = tb mm -
P W-Wobmm  Wow el W2=W50 mm Py
Num=1 W3=W_Ir mm L= tb mm W3=W_Ir mm Num=2

| H— 1= S i ) ’1? 2 >
f 3
MLIN I 1 MLIN
TL4 TL3
Subst="MSub D Subst="MSub1"
W=W Ir mm b W=W Ir mm
L=1 I mm L=1 Irmm
3 3
1 o S T— 2 T 1
Port MTEE ADS MLIN MTEE ADS Port
P4 Teed — TL2 Tee3d P3
Num=4 Subst="MSub1" Subst="MSubl"  Subst="MSubl" Num=3
WI1=W tb mm W=W tb mm WI1=W 50 mm
W2=W 50 mm L=l tbmm W2=W tb mm
W3=W_Ir mm - W3=W_Ir mm

Fig. 7. ADS schematic for a real quadrature hybrid
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Fig. 8. Higher level ADS schematic to optimize the dimensions of the real quadrature hybrid

2.2.2 Design of crossover
The crossover provides an efficient mean to isolate two crossing transmission lines. The
design of the crossover depends on the following scattering matrix equation [5].

I:S:ICrossover -

O~ O ©

<~ © o o
S O o .
S O . O

)

A planar crossover can be designed by creating a new ADS schematic for the ideal crossover
as shown in Figure 10 [3].
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Fig. 9. Simulated S-parameters of the real quadrature hybrid
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Fig. 10. ADS schematic for the ideal crossover
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Figure 11 shows the ADS schematic for the real microstrip crossover.
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Fig. 11. ADS schematic for the real microstrip crossover
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Dynamic Environments

The dimensions of the real crossover are modified and optimised by using the higher level

ADS schematic shown in Figure 12.
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Fig. 12. Higher level ADS schematic to optimize the dimensions of the real crossover
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The simulated S-parameters of the real crossover are shown in Figure 13. The bandwidth of
the crossover is extended from 2 GHz to 2.8 GHz.
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Fig. 13. Simulated S-parameters of the real crossover

2.2.3 Design of phase shifter

The phase shifter introduces a phase shift in the signal and can be implemented by adding a
bit of length to a microstrip transmission line. The ADS is used to determine the length of
red sections microstrip transmission lines which introduces phase shift (,,, — 45°) in the
signal that passes through the crossover. 8, is the phase shift of the signal passing through
the black section microstrip transmission line as shown in Figure 14. 6, is determined by
finding the length of the black section, then using ADS LineCalc tool to calculate the phase
shift. This phase shifter should be replaced by a Schiffman phase shifter for wideband
applications [6].

Fig. 14. Fabricated 4x4 Butler matrix
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2.2.4 Design of paths between a 4x4 Butler matrix and a planar antenna array

The phases associated with each port of the 4x4 Butler matrix will be changed and the
circular polarization cannot be obtained if the paths connecting the 4x4 Butler matrix with
the planar antenna array do not have the same phase shift. Hence these paths are designed
with the same phase shift. The path connecting antenna land Butler matrix is considered as
the reference. The ADS is used to modify the length of the other paths to make its phases as
close as possible to the phase of the reference path. Figure 15 shows the ADS schematic for
path 2 which connects antenna 2 and Butler matrix. The length of this path is modified and
optimized using ADS as shown in Figure 16.

MSu

VAR

MSUB VART
MSubl 1=32.0253
H=0.813 mm ’
Er=3.55 Port
Mur=1
Cond=5.7E+7 Pl
Hu=1.0e+033 mm
T=35um
TanD=0.0021 MLIN
Rough=0 mm L=15 mm
MLIN
1 2
TL16 ]
L=4.417 mm MLIN
MLIN ’I}/[LLIIET%\I TL19
TI:61 L=16.232 mm 1 L=27.512 mm
L=4 m
MLIN
2 ft—2 1
Port TL55
P2 L=I'mm
Num=2

Fig. 15. ADS schematic for the path connecting antenna 2 and Butler matrix

The ADS simulated results for phases of path 2 and reference path are shown in Figure 17.
The ADS schematics for designing path 3 and path 4 are given in Appendix A.
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Fig. 16. ADS schematic to modify the length of path 2
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Fig. 17. ADS simulated results for phases of path 2 and reference path
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2.3 Analysis of planar microstrip antenna array with Butler matrix

A planar microstrip antenna array consists of four orthogonally oriented inset-fed
rectangular patch antennas as shown in Figure 18. The circular polarization can be
generated with linearly polarized elements when all the adjacent elements are orthogonally
oriented and are fed by a Butler matrix to form two orthogonally polarized E-fields from the
four linearly polarized E-fields of the planar array elements [7,8]. The normalized
instantaneous E-fields in x- and y-directions are represented by equations (4) and (5)
respectively:

E, e =cos(wt —Kz+A)+cos(wt —Kz+C) 4)
E, e =cos(wt —Kz + B)+cos(wt — Kz + D) )

where K is the propagation constant in free space and @ is the angular frequency. The

values of A, B, C and D phases in the above equations are changed according to the selected
port of 4x4 Butler matrix. The instantaneous field of the plane wave traveling in positive z-
direction is given by

E(2,8)=E. ypwk+E, - 6)

For the planar microstrip antenna array that consisted of identical patches, the magnitude of
E e isequaltoE

x 'y _planar *

Antenna 1 Antenna 4
1 A=0 1 D= -135
2 A=0 2 D=45
3 A=0 3 D=-45
4 A=0 7 ¥ 4 D= 135

P
y
A
g X Antenna 3
Anten_na 2 ] C= 45
L 1 B0 2 | =135
3 B=90 71 =45
4 B=90
Butler Matrix
.| [2 5 [,

Fig. 18. Phases associated with each port of the planar microstrip antenna array with
4 x 4 Butler matrix
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As shown in Figure 18, when port 1 or port 2 is selected, the phase delay between E

'y _ planar

and E, ., will be —% and RHCP is generated. The LHCP is obtained when port 3 or port

X

4 is selected because the phase delay between E, . and E_, . will be +% .

2.4 Radiation pattern for planar microstrip antenna array
The total normalized E-plane radiation pattern of the planar microstrip array is obtained by
the following equation [9]:

E, ,=E, |AF, ,|. (?7)

where ‘AF}i E‘ is the normalized E-plane array factor for the planar microstrip array and can
be obtained from equation (8) [10]:

‘AF}_E‘ _ (1 4 o/ Kot sinn9+¢x)) (1 N ej¢y) )

E, is the total normalized E-plane radiation pattern of a single microstrip patch antenna and
is obtained by equation (9) [11]:

[K,Lsin 6
E, = ‘1 +é

©)

where 6 is the elevation angle and L is the length of the microstrip patch antenna. The total
normalized radiation pattern and the normalized array factor for the H-plane are obtained
from equations (10) and (11) respectively [9]:

HT_o :Ho ‘AE‘ H‘ (10)

AR, | =(1+ef(K"dy 5““9”’”) (1+¢*) (11)

where ¢, ,4, are the feeding phases for the antenna 4 and the antenna 2 respectively.
d,,d, are the spacings between patches in the x-direction and y-direction respectively.

equation (12) is used to determine the total normalized H-plane radiation pattern of a single
microstrip patch antenna (H, ) [11];

sin(K"ZW sin @)
H,= W cos@ . (12)
°2 siné

where W is the width of the microstrip patch antenna.

2.5 Simulation and measured results
To design the planar microstrip antenna array, the spacing distance between the patches in
x-direction (dy) is determined based on the simulation of equations (7), (8) and (9) using
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Matlab. Figure 19 shows the total normalized E-plane radiation pattern of the planar
microstrip array (E, ,) versus the elevation angle ¢ at different values of d.
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I

-100 -50 0 50 100
Elevation angle Elevation angle

Normalized E-plane of the array [dB]
S

dx=0.7*free space wavelength. dx=0.9*free space wavelength.

Normalized E-plane of the array [dB]
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>
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Fig. 19. Simulated normalized E-plane radiation pattern of the planar microstrip antenna

array versus an elevation angle (— feed at port 1, — feed at port 2, ... feed at port 3, --- feed

at port 4)

The fixed beams get narrowed as d, is increased, but to maintain balance between the
narrowed beams and small-size antenna array, and also to avoid the grating lobes,
dx=0.5*(free space wavelength) is selected. d, is determined based on the simulation of
equations (10), (11) and (12) using Matlab. The total normalized H-plane radiation pattern
(H, ,) versus the elevation angle & is shown in Figure 20.

The value of H, , is equal to the value of E, , divided by the intrinsic impedance of the
free space; so H, , is not sensitive to the change in the separation distance d, because its
value is much smaller than that of E, ,. However, dy=0.5%*(free space wavelength) is
selected to maintain a balance between the avoidance of mutual coupling and the small-size
antenna array. The set of curves in Figures 19 and 20 represents the normalized E-plane and
H-plane respectively; each curve is generated by selecting a different feed port of the
4 x 4 Butler matrix.

The planar microstrip antenna array with 4x4 Butler matrix is fabricated using Rogers's
substrate of thickness A=0.85 mm, loss tangent=0.0021 and dielectric constant ¢, = 3.55. The
inset-fed rectangular microstrip patch antenna is designed at a resonant frequency equal to
2.437 GHz using Matlab and then simulated using ADS [12]. The parameters for the
substrate layers and metallization layers of the Rogers's substrate are created in the ADS
Momentum as shown in Figures 21 and 22 respectively.

www.intechopen.com



402 Microstrip Antennas

20
-100 -50 0 50 100 -100 -50 0 50 100
Elevation angle Elevation angle

Normalized H-plane of the array [dB]
‘ .S, , -
Normalized H-plane of the array [dB]
=)

dy=0.7*free space wavelength.

-20
10-100 -50 0 50 100 10-100 -50 0 50 100

Elevation angle Elevation angle

-20

Normalized H-plane of the array [dB]
.3, . -
Normalized H-plane of the array [dB]
=)

Fig. 20. Simulated normalized H-plane radiation pattern of the planar microstrip antenna array
versus an elevation angle (— feed at port 1, — feed at port 2, ... feed at port 3, --- feed at port 4)
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Fig. 21. Parameters setup in ADS Momentum for substrate layers of the Rogers's substrate
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Fig. 22. Parameters setup in ADS Momentum for metallization layers of the Rogers's
substrate

Figure 23 shows the ADS Momentum for the planar microstrip antenna array.
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Fig. 23. ADS Momentum for the planar microstrip antenna array
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The planar array is simulated by using ADS Momentum and then the Momentum dataset
file is imported to the ADS schematic to simulate the planar microstrip antenna with Butler

matrix as shown in Figure 24.
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Fig. 24. ADS schematic diagram for simulating the planar microstrip antenna with 4x4
Butler matrix
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Figure 25 shows the ADS layout of the planar mirostrip antenna array with 4x4 Butler
matrix. The Fabricated planar microstrip antenna array with 4 x4 Butler matrix is shown in
Figure 26.
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Fig. 25. ADS layout of the planar microstrip antenna array with 4x4 Butler matrix

Fig. 26. Fabricated planar microstrip antenna array with 4 x4 Butler matrix
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The measured and the simulated values of the reflection coefficient at each port of the

planar microstrip antenna array with 4 x4 Butler matrix versus the frequency band of 1.4-3
GHz are shown in Figure 27.
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Fig. 27. Reflection coefficients versus frequency for the planar microstrip antenna array with
4 x 4 Butler matrix

The phases associated with the ports of the Butler matrix result in the existence of different
voltages and different input impedances at the ports of the Butler matrix. Hence the
reflection coefficients at these ports will not be the same owing to the relationship between
the reflection coefficient and input impedance. The mutual coupling between the patches
induces frequency modes. These modes are matched with 50 Q impedance outside the
required 2.437 GHz range (i.e. for port 1, the measured reflection coefficient is less than —10
dB at ranges 1864-1885 MHz, 2014-2073 MHz, and 2145-2237 MHz owing to the effect of
mutual coupling between the patches). The mutual coupling impedances between the
patches are different because of the effect of the phases associated with the ports of the
Butler matrix. Due to the dissimilarity of the mutual coupling impedances, each port will
have reflection coefficient less than —10 dB over different frequency ranges outside the
required bandwidth [13]. Although the Butler matrix reflection coefficients are not the same
at all the ports, they have good values over the required bandwidth. The measured
impedance bandwidth (for reflection coefficient < =10 dB) at port 1, port 2, port 3, and port 4
are 18.8%, 12.52%, 12.5%, and 18.5 %, respectively. The obtained impedance bandwidth of
this planar array is high when compared with a single microstrip patch antenna that
achieves 0.7% impedance bandwidth as shown in Figure 28 [14]. The implementation of the
Butler matrix gives a wide band due to the absorption of the reflected power in the matched
loads connected to the non-selected ports of the butler matrix. Moreover, the mutual
coupling between the patches enhances the bandwidth [13].
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Fig. 28. Reflection coefficient versus frequency for an inset-fed rectangular microstrip patch
antenna

The measured normalized radiation pattern of the planar microstrip antenna array with
4 x4 Butler matrix is shown in Figure 29. The planar microstrip antenna array that is fed by
the 4x4 Butler matrix has four beams at four different directions. These beams have a
circular polarization diversity because a beam with RHCP will be obtained when port 1 or 2
is selected, but if port 3 or 4 is selected a beam with LHCP will be generated. The measured
gains at 2.437 GHz for ports 1, 2, 3 and 4 are 9.74 dBi, 8.6 dBi, 9 dBi and 10.1 dBi
respectively. The gain of port 1 and port 2 is measured using right hand circularly polarized
standard antenna (2.4 GHz, 8 dBi, RHCP, Flat Patch Antenna), while the gain for port 3 and
port 4 is measured using left hand circularly polarized standard antenna (2.4 GHz, 8dBi,
LHCP, Flat Patch Antenna).

The measured axial ratios of the individual ports versus the elevation angle are shown in
Figure 30. A good axial ratio (axial ratio < 3 dB) of ports 1, 2, 3 and 4 are achieved over
angular ranges —36° to 61°, =55° to —9°, =31° to 81° and —90° to 15°respectively.

Radiation pattern and axial ratio measurements are carried out in a near field Satimo
chamber as shown in Figure 31. The measurement system consists of probe antennas
mounted with equal spacing on a circular arch. The measurements of the radiation pattern
and the axial ratio can be obtained by electronic switching of the probe antennas. The
measured data is collected automatically and saved in MS Excel format.

The impedance bandwidth of the planar array with Butler matrix can be extended by using
a thicker substrate. The obtained impedance bandwidth is 37% for ports 1 and 4, while ports
2 and 3 have an impedance bandwidth equal to 20% as shown in Figure 32. This is when
using FR4 substrate (h=1.6 mm, loss tangent=0.035, and dielectric constant &, = 5.4 ). But the
FR4 substrate has a poor loss tangent which results in lower efficiency and therefore the
gain will be decreased [15].
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Fig. 29. Measured normalized radiation pattern of the planar microstrip antenna array with
4 x4 Butler matrix at 2.437 GHz
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Fig. 30. Measured axial ratios of the planar microstrip antenna array with 4 x4 Butler
matrix at 2.437 GHz
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Fig. 31. Measuring a planar microstrip antenna with Butler matrix inside near field Satimo
chamber
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Fig. 32. Simulated reflection coefficients versus frequency for the planar microstrip antenna
array with 4 x4 Butler matrix using FR4 substrate
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3. Analysis, design, and implementation of an aperture-coupled microstrip
antenna

The circular polarization diversity with the square patch microstrip antenna is obtained by
the implantation of the quadrature hybrid as a microstrip feed line. The small size antenna is
achieved by using the aperture coupled structure. In the present study, the ACMSA is
analyzed based on cavity model because the TLM is useful only for patches of rectangular
shape [14]. The cavity model is used to design the ACMSA and determine the length of the
open microstrip stub line in order to match microstrip antenna. The Matlab and ADS are
used for designing and simulating the ACMSA.

3.1 Analysis of ACMSA using cavity model

3.1.1 Resonant Frequency

The cavity model is based on treating the microstrip antennas as cavities formed by
microstrip lines as shown in Figure 33. The region between the patch and ground plane may
be treated as a cavity bounded by electric walls above and below, and magnetic walls along
the edges. The fields inside the antenna are assumed to be the fields inside this cavity. Due
to the electrically thin substrate the fields in the interior region do not vary with z. Also
inside the cavity the electric field has only a z component (E.) and the magnetic field has H,
and H, components [14]. Figure 33 shows the cavity model of the ACMSA.

Square patch

Bounded \
Cavirty "

_____ A
[taevil] S
+++++
— +
Ground plane el \
’q—ﬂ Aperture h¢
L.
v
i

Microstrip fe e:l:iine
Fig. 33. Cavity model of the ACMSA

The magnetic field H inside the cavity volume can be developed by Maxwell’s equations
[16]:

VxH=d + jos,e B (13)
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x oy oz
vxH=|2 2 9 (14)
ox oy oz
H, H, 0
a A
v H=| S O, (15)
ox oy
x oy z
V><(V><H)=i 2 9 (16)
ox oy 0z
oH
0 0 o _OH,
ox oy
0°H 2 A 2 O’H
Vx(VxH)= y—“fx v TH: > |y (17)
oxdy oy ox0y  Ox
Vx (] + joe,e E) = (ja)ng + o’ ucH, )3Ac+ (ja)eJny + o’ uecH, )§/ (18)
K=ow\/us (19)

where K is the propagation constant inside the cavity, ¢ =g¢,¢, . Equations (20) and (21) are

obtained by substituting the right hand side of equation (17) into the left hand side of
equation (18);

0°H f

s a@yIfx _K°H, = josd, (20)
o
% 0°H

218{; 3 > -K°H,, = joed, (21)
o o

In order to solve equation (20), the cavity model assumes that the tangential magnetic field
is zero, so that <, equals to zero.

0°’H, o°H,
oxoy oy’

Letting the Eigen functions of the homogeneous wave equation (22) be ¥, and Ky, be the

~K°H, =0 (22)

eigenvalues of K, K, can be obtained from equation (23) as indicated in Appendix B.
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K, K +K: @)

The resonance frequency of (m, n) mode can be obtained by equation (24);

cK
fon =—7 (24)
Zﬂ\/g
where c is the speed of light, ¢, is the relative dielectric constant.
3.1.2 Magnetic field component in x-direction

The solutions of equation (20) can be expressed in the following eigenfunction expansion
form [16];

where g, . is the modes coefficients and given by (see Appendix C)

L

[ ey (26)

0

ﬂx,mn -

o -—.ﬁ

e K2K2

n

The propagation constant (K) in equation (26) is replaced by the effective propagation
constant (K5 because the losses of the cavity are included [2,17].

Ky = 0's (6,1 0) @)

where @ is the quality factor. It is assumed that the electric field distribution in the aperture
paralleled to x axis (Fy) is in the form of a single piece-wise sinusoidal mode [18]. The
distance from the square patch edge to the center of the aperture is defined as X; and from
the square patch edge to the center of the aperture as Y; as shown in Figure 34.
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Fig. 34. Position of the aperture paralleled to x-axis
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2
2 1T ek, )
@ sm(Ka“J
2
v sm{Ka (I;’ -(x-X, )H L
E =Ju X, <x<X, +2 (29)
W, . ( Lj 2
@ sin| K,—*

Va is the voltage at the middle of the aperture paralleled to the x axis. K,is the wave number
of the aperture [19]. The magnetic current in the aperture parallel to x axis given by
[16,17]:

M,= -2E, (30)
The corresponding current density < is given by:

2 FE
o= &

By substituting for <, from equation (31) into equation (26) the modes coefficients g, ,, are

determined. Then the magnetic field H, in the cavity is given by

H, =Y A,p, K, cos(K,x)sin(K,y) (32)

3.1.3 Magnetic Field Component in y-direction
The eigenfunction expansion for the magnetic field component in y direction H, is used for
solving equation (21) [16];

H, =3 B,y (33)

Figure 35 shows the aperture paralleled to y axis; the electric field distribution (Ex) can be
determined using the following equations:

v, Sin{Ka[Lza_(n Y )H L

B, =32 - Y,-2<y<Y, (34)
a sin(K 2“j

a

o] L

E - Y,<y<Y,+" (35)

Voy
W, sin (K L“j
2

a
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Fig. 35. Position of the aperture paralleled to y-axis

where V,, is the voltage at the middle of the aperture paralleled to the y axis. The
corresponding current density </, is given by:
2 E
Iy = —= (36)
The modes coefficients g, ,, are obtained by;

LW,

Jjoe .

Pom = KN [[[ 73 ey 7
mn 00

m

The magnetic field H, in the cavity is given by:

H,=>A,.B, .K,sinkK,x)cos(K,y) (38)

mnTTm

3.1.5 Input impedance
If the aperture is parallel to x direction; the admittance of the patch can be obtained by the
following equation [16,20]:

[

2

(39)

x,ant

EH

where V is the volume occupied by the source within which the magnetic currents exist. The
electric field E; inside the cavity is determined based on equation (13) and equation (15) as
follows:

oH
E - .1 vy OH, (40)
joe | Ox oy

But the admittance of the patch in case of the aperture is parallel to y direction can be
obtained from equation (41):
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ymy

mH J.dv
(41)

y,ant

The admittance value of the aperture Y4, can be obtained from the transmission line model
of the aperture by considering the aperture as two short circuited slot lines [2].

-2j L,
Y, = Z —cot(K, 2) (42)

where Z., L, are, respectively, the characteristic impedance, the length of the aperture. The
input impedance of the ACMSA is given by:

n’ n?

Zin: (43)
Y +Y Y +Yap

x,ant y,ant

The open microstrip stub line (L,) which is used for forcing the imaginary part of the input
impedance to be zero, is obtained by;

I = i cot! imaginary(Z,,) (44)
K, 27,

The input impedance of the ACMSA with the open microstrip stub line is given by

nl? nl?
Zin_stub =
Y, utY, Y +Y

x,ant y,ant ap

~2jZycot(K,L,,) (45)

Zr and Kp, are, respectively, the characteristic impedance and the wave number of the
microstrip feed line; n1 is the transformation ratio which describes the coupling between the
microstrip feed line and the patch [19].

3.2 Circular polarization diversity with ACMSA

The electric field components in x-direction (E;) and y direction (E,) are generated by
putting an aperture parallel to y axis and x axis respectively as shown in Figure 36. The
circular polarization diversity requires the phase shift between E. and E, to be+90". By
using the quadrature hybrid as a feeder for the square patch microstrip antenna the circular
polarization diversity can be achieved. When the right port of the hybrid is selected, E, will
lead E, by 90° and the RHCP will be generated. If the left port of the hybrid is selected, E,
will lag E, by 90" and the LHCP will be generated [20].

3.3 Geometry of ACMSA

The geometry of the proposed ACMSA with a circularly polarized diversity is shown in
Figure 37. The square patch is printed on Rogers's substrate (patch substrate) with a
thickness #=0.85 mm, a loss tangent=0.0021 and a dielectric constant ¢, =3.55. Based on the
cavity model theory and ADS optimization the length of the square patch is 31.599 mm at a
resonant frequency of 2.437 GHz. The quadrature hybrid is printed on the Roger's substrate

www.intechopen.com



416 Microstrip Antennas

Ey‘ Square patch
E,

mm
Lrl
iy
e
(L&)

700
tn
o
%)
NS
E

_I

: o
_ el
al _ I}
T N .
Ln -
mn "M
o

16.00 rom

5.592
|

M
o
Lh
I
ro
]

|
Fig. 37. Geometry of the proposed ACMSA
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(feed substrate) which has the same parameters as those of the patch substrate. The ground
plane exists in between the patch substrate and the feed substrate. There are two identical
apertures printed on the ground plane, one parallel to x-axis and the other paralleled to y-
axis. The length and the width of the aperture are 16 mm and 1.7 mm respectively [2, 14, 16-
19, 21].

The size of the geometry with bended open microstrip stub line (L) as shown in Figure 37 is
about 22% smaller than that of the other geometry shown in Figure 38 which has straight
open microstrip stub line (Lys).

11 .800 rmm

119580 +am

Fig. 38. Geometry of ACMSA with straight open microstrip stub line

The ADS is used to convert the straight L, into its equivalent bended L, by modeling the
straight Lys using MLOC with length 11.9 mm in ADS schematic as shown in Figure 39. The
ADS schematic as shown in Figure 40 is implemented to model the bended Ly using two
MLIN of length 3 mm, MCURVE and MLOC with variable length.

The ADS schematic as shown in Figure 41 is used to find the optimum length of the bended

Les.
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Fig. 39. ADS schematic model for straight open microstrip stub line
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Fig. 40. ADS schematic model for bended open microstrip stub line
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Fig. 41. ADS schematic to find the optimum length of the bended open microstrip stub line

Figure 42 shows that the bended Ly is equivalent to straight L, when the variable length is
2.76451 mm.
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Fig. 42. Simulated responses for straight and bended open microstrip stub line
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3.4 Simulation and measured results

The value of Y; and X» is the same which is selected as 26.548 mm to place the quadrature
hybrid at a further distance into the square patch in order to minimize the size of the
ACMSA. The value of X; and Y5 is the same and equals to the distance at which the real part
of the input impedance is approached to 50 Q at the center of each aperture. Figure 43 shows
the input impedance of the ACMSA without the implementation of the open microstrip stub
line (Les). In this case the imaginary part of the input impedance is 42.86 Q when X is 5.688
mm. The length of the open microstrip stub line is determined in order to force the
imaginary part of input impedance to be zero.

Figure 44 shows the input impedance of the ACMSA with L, equals to 11.9 mm. The results
for X;, Xo, Y; and Y> are obtained using the Matlab simulation and these results are
optimized using ADS as shown in Figure 37.
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Fig. 43. Simulated input impedance of the ACMSA without Los
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Fig. 44. Simulated input impedance of the ACMSA with L
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If the right port of the quadrature hybrid is selected, the reflection coefficient (S11) versus the
frequency and the normalized measured radiation pattern of the ACMSA are shown in
Figures 45 and 46 respectively. Figure 45 shows that, the proposed ACMSA provides an
impedance bandwidth of 20.1% at port 1 (for Si; < -10dB).

.-
.--.uh'.‘.'.‘.‘.'-'-.-. .

-50 -
= Simulated S11

""" Measured S11
-61 :

| | | 1 | |
9100 1600 1800 2000 2200 2400 2600 2800 3000
Frequency (MHZ)

Fig. 45. Reflection coefficient versus frequency when the right port of the quadrature hybrid
is selected

Right Port
1050 90° 750

RHCP
====LHCP

Fig. 46. Normalized measured radiation pattern when the right port of the quadrature
hybrid is selected

Figures 47 and 48 respectively show the reflection coefficient (S) versus the frequency and
the normalized measured radiation pattern of the ACMSA, when the left port of the
quadrature hybrid is selected. The impedance bandwidth of 20 % is obtained at port 2 (for
S22 < -10dB) as evident from Figure 47.
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— Simulated S22
===Measured S22
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Fig. 47. Reflection coefficient versus frequency when the left port of the quadrature hybrid is
selected

Left Port
1050 90° 750

\
==

105°  _goo  -75°
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Fig. 48. Normalized measured radiation pattern when the left port of the quadrature hybrid
is selected

The fabrication of one ACMSA requires two substrate slices (patch substrate and feed
substrate). The parameters setup in ADS Momentum for substrate layers is shown in Figure
49.

The top side and the bottom side of each substrate are covered by metal layer. Parameters
setup in ADS Momentum for metallization layers is shown in Figure 50. For patch substrate,
the square patch is printed on the top side while the metal layer on the bottom side is
removed. For the feed substrate the quadrature hybrid is printed on the bottom side while
the two apertures are etched on the top side which is considered as a ground plane.
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Fig. 49. Parameters setup in ADS Momentum for substrate layers of the ACMSA
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Fig. 50. Parameters setup in ADS Momentum for metallization layers of ACMSA
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Figures 51 and 52 respectively show the fabricated patch substrate and feed substrate of the
ACMSA.

Fig. 51. Fabricated patch substrate

Fig. 52. Fabricated feed substrate

The measured gain at 2.437 GHz for right port and left port are 5dBi and 4.6 dBi respectively.
The gain for the left port is measured using left hand circularly polarized standard antenna
(2.4 GHz, 8 dBi, LHCP, Flat Patch Antenna), while the gain for the right port is measured using
right hand circularly polarized standard antenna (2.4 GHz, 8dBi, RHCP, Flat Patch Antenna).
Figure 53 shows the measured axial ratio at both ports of the ACMSA.

The ACMSA produces two beams, one of which is RHCP and the other is LHCP as shown in
Figures 46 and 48 respectively. The axial ratio and the radiation pattern are measured in
Satimo chamber. The measurement system consists of probe antennas mounted with equal
spacing on a circular arch as shown in Figure 54. The measured data is collected
automatically and saved in MS Excel format.
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Fig. 53. Measured axial ratio at both ports of the ACMSA versus an elevation angle

Fig. 54. Measuring aperture-coupled microstrip antenna inside Satimo chamber

The size of the ACMSA is much smaller than that of the microstrip antenna which is fed by
a quadrature hybrid without using an aperture coupled structure. The utilization of the
aperture coupled structure could reduce the antenna size substantially compared with the
one without aperture coupled structure. For instance, size reductions of 72% and 60 % are
achieved compared to the cases of [22] and [23] respectively. The proposed ACMSA has a
better bandwidth and good axial ratio compared to the designs presented by [22, 24-26].
Further, it can receive the RHCP and the LHCP simultaneously whereas the reconfigurable
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patch antennas could receive only one polarization type at a time [22, 24-26]. Above all, the
proposed geometry can provide circular polarization diversity with good axial ratio over a
broad angular range, wide bandwidth and small size.

4. Conclusions

A circularly polarized microstrip antenna array could be generated with linearly polarized
patches. The separation distance between the patches in the x-direction has a strong effect on
the E-plane of the planar microstrip antenna array pattern, whereas the separation distance
between the patches in the y-direction has a weak affect on the H-plane of the planar
microstrip antenna array pattern. Four narrow beams at four different directions are obtained
through the excitation of a planar microstrip antenna array by a 4 x 4 Butler matrix. These four
beams possess circular polarization diversity, good axial ratio and high gain.

Circular polarization diversity could be generated by coupling the quadrature hybrid to the
square patch through two apertures. The aperture coupled structure minimized the size of
the microstrip antenna which is fed by the quadrature hybrid. The proposed geometry
provides good axial ratio over a broad angular range and wide bandwidth. The analysis of
the ACMSA using the cavity model is comparable with the full-wave analysis and the
experimental results.

APPENDIX A

ADS schematics to design path 3 and path 4 of the planar microstrip antenna array
with 4x4 Butler matrix

Figure A.1 shows the ADS schematic for path 3 which connects between antenna 3 and 4x4
Butler matrix. The ADS schematic to modify the length of path 3 is shown in Figure A.2.

MSUB
AR
Q//'ARI MSubl
= H=0.813 mm
1=11.3475 {o} s
ur=
MLIN Port Cond=5.7E+7
TL25 P Hu=1.0e+033 mm
[ 2—1 Num=1 T=35um
MLIN L=13.92 mm MLIN TanD=0.0021
TL26 TL20
L=35.192 mm | —2 2 1
¥5;3 L=11.061 mm TL28
5 L=16.479 mm
L=10.294 mm VLN & Port
L=2.641 mm P
Num=2
TL57
1 L= mm

MLIN

IT— 2 1
TL23
L=9.344 mm

Fig. A.1 ADS schematic for path 3
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Fig. A.2 ADS schematic to modify the length of path 3

The ADS simulated results for phases of path 3 and reference path are shown in Figure A.3.
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Fig. A.3 ADS simulated results for phases of path 3 and reference path
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The ADS schematic for path 4 which connects between antenna 4 and 4x4 Butler matrix is
shown in Figure A 4.

MSub
MSUB (@S- PARAMETERS
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Fig. A.4 ADS schematic for modifying length of the path connecting antenna 4 and 4x4
Butler matrix

The length of the path 4 is modified by using the ADS schematic shown in Figure A.5. The
ADS simulated results for phases of path 4 and reference path are shown in Figure A.6.
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Fig. A.6 ADS simulated results for phases of path 4 and reference path
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APPENDIX B
Propagation constant inside the cavity
o o
l//y’mn l//xz/mn mnl//x mn 0 (Bl)
ox0y oy ’
Vemm = A, K, cos(K x)sin(K,y) (B.2)
Yy m = —A, K, cos(K,y)sin(K, x) (B.3)
where A, = A
Jel’ h,
1, m=0andn=0
Kom = \/5, m=0or n=0
2, m=0andn =0
For a non radiating cavity
K=" g -"% (B.4)
l l
Oy n
o ~-A, K> cos(K y)cos(K x) (B.5)
e
O,y m .
™ =A,, KK sin(K y)cos(K x) (B.6)
oxoy
al//x,nm _ 2
P A, K, cos(K x)cos(K.y) (B.7)
Y
(B.8)

62
Vemn -A, K cos(K x)sin(K y)

2

A KK sin(Ky)cos(K x)+A,, K sin(Ky)cos(K x)=K, A, K sin(Ky)cos(K x) (B.9)

K. =K +K (B.10)
APPENDIX C
Mode coefficients in x-dirextion inside the cavity
0’H o’
N e v (1)
oxoy w7 Oxoy
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0°H, o’y
L C2
P Zﬂx ™oy (C2)

By substituting from equation (C.1) and (C.2) into equation (20) the following equation is
obtained:

axay ayz man,nm
2By =2 B (C5)

o o*
l//yrm” L Wx,mn _KZ (C4:)

By substituting from equations (C.4) and (C.5) into equation (C.3) the equation (C.6) is
obtained:

Zﬂx mn nmle mn Zﬂx,anzl//x,nm:ja)ng (C6)

11
S B B =K [V ey = joz: [ [ ey (C7)
mn 00

ce—=
© —_—y

Where v ., is the complex conjugate of v, ..

O ey~
O Sy
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