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1. Introduction  

Microstrip antennas offer many attractive features and hence it is very challenging to model 
efficiently their resonance and radiation characteristics (Pozar & Schaubert, 1995). In 
particular, microstrip antennas composed of perfectly electric conducting (PEC) patches 
mounted on spherical surfaces possess two basic advantages against the planar ones. First, 
their curved shape makes them more applicable to real-world moving configurations such 
as missiles, satellites and aircrafts, where large plane boundaries are usually absent. Second, 
the frequency scanning problem encountered in case of planar microstrips at low elevations 
may be overcome due to the conformability of spherical antennas. Apart from these two 
advantages, spherical microstrip antennas offer (due to their relatively simple geometry) 
additional attractive features like low cost, light weight, easy fabrication as well as 
integrability with microwave and millimeter-wave circuits. As far as the metallic patch is 
concerned, circular or annular-ring ones are preferable for mounting on a spherical body. 
Interesting design characteristics of microstrip antennas are mainly the complex resonant 
frequencies, the radiation pattern and the input impedance. An extensive literature survey 
concerning the analysis of non-planar radiating microstrip structures, as well as the 
investigations of the aforementioned design characteristics is included in the classic book 
(Wong, 1999). 
The mathematical methods, developed for analyzing the behavior of a spherical microstrip, 
may be categorized as follows: (i) the full-wave approach implements the method of moments 
(MoM) to approximate the surface current on the PEC patch by means of suitable basis 
functions (Uwaro & Itoh, 1989; Tam & Luk, 1991; Wong, 1999, Sipus et al., 2003; Giang et al. 
2005), (ii) the cavity model analysis assumes that the distance between the substrate and the 
radiating metallic patch is electrically small, forming a cavity into which the vector of the 
electric field is independent of the longitudinal coordinate (Lo et al., 1979; Luk & Tam 1991; 
Chen & Wong, 1994), (iii) the generalized transmission-line model (GTLM) extracts an 
equivalent circuit for the spherical microstrip, where the line parameters are the 
electromagnetic fields under the patch (Ke & Kishk, 1991; Kishk, 1993). 
Regarding the analysis of spherical microstrips, whose circular metallic patch  is located 
inside a coating, composed of an arbitrary number of concentric spherical substrate and 
superstrate layers, an efficient approach for the analysis of the related resonance and 
radiation characteristics has been proposed in (Valagiannopoulos & Tsitsas, 2008a; 
Valagiannopoulos & Tsitsas, 2008b). The generic structure of that microstrip configuration 
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offers in particular additional degrees of freedom to the designer in order to achieve the 
required operational characteristics. More precisely the method, presented in 
(Valagiannopoulos & Tsitsas, 2008a), utilizes appropriately the Legendre transform, since the 
microstrip structure is non-entire with respect to the spherical coordinates variable θ, while 
the effect of the layers above and below the patch is handled efficiently by using a T-matrix 
method (Chew, 1995; Tsitsas & Athanasiadis, 2006). Suitable basis functions for describing 
the surface current on the patch are chosen by applying the cavity model analysis (Lo et al., 
1979). Subsequently, Galerkin’s method is employed to formulate a homogeneous linear 
system, the singular points of which are the complex resonant frequencies. Finally, the 
inverse Legendre transform and far-field asymptotics lead to the computation of the 
radiation patterns. Importantly, structures, involving microstrips with a fixed small number 
of substrate and superstrate layers (Tam & Luk, 1991; Wong et al., 1993a; Wong & Chen, 
1993), are incorporated as special cases of this method. 
Several spherical microstrip configurations have been reported in the literature over the past 

two decades, exhibiting various interesting radiation features and demonstrating useful 

design characteristics. For example, the resonance properties of a simple spherical 

microstrip, possessing a single dielectric substrate between the metallic sphere and the 

circular patch are investigated in (Tam & Luk 1991). Moreover, in (Wong et al., 1993a) the 

authors studied the influence of a dielectric superstrate on the resonance and radiation 

properties of the spherical circular patch antenna proposed in (Tam & Luk 1991). A 

spherical microstrip with a substrate of two layers, one of which is an airgap, was treated in 

(Wong & Chen, 1993). In a similar context, a spherical microstrip with an annular-ring patch 

and an air gap between the metallic sphere and the dielectric was treated in (Ribero et al., 

1999). On the other hand, a 4-layered microstrip with two airgaps surrounding an 

amplifying layer (constituting actually a φ- and θ-entire excitation) was proposed in 

(Valagiannopoulos & Tsitsas, 2008a), where the control mechanism of the amplifying 

capability via the layer’s thickness and dielectric permittivity was also reported. Moreover, a 

spherical microstrip with two airgaps, surrounded by a zero-index material, expected to 

find applications in receiving antennas, was proposed in (Valagiannopoulos & Tsitsas, 

2008a). On the other hand, a coating’s continuous distribution, following a “shifted” 

Luneburg law may be treated by a step approximation of the radial function of its dielectric 

permittivity (Nikolic et al., 2007; Sakurai et al. 1998; Liang et al. 2005; Valagiannopoulos & 

Tsitsas, 2008a). Such a configuration exhibits larger quality factor values than respective 

single-layered spherical microstrips, which especially become extremely large as the patch 

approaches the metallic sphere (Valagiannopoulos & Tsitsas, 2008a). Besides, a PEC patch 

(implant) radiating inside a 6-layered spherical human head model was investigated in (Kim 

& Rahmat-Samii, 2004). 

The present chapter is organized as follows. Section 2 contains an overview of existing 

mathematical methods, mainly treating single-layered spherical microstrip antennas. 

Section 3 discusses the motivation to model multi-layered spherical microstrips, where the 

patch is arbitrarily located inside the multi-layered sphere, and summarizes the basic 

features of the combined Legendre transform and T-matrix methodology for the analysis of 

such microstrip configurations. Furthermore, in Section 4 potential applications of multi-

layered spherical microstrips are pointed out, dealing with coating’s materials characterized 

by (i) zero refractive index, (ii) amplifying properties, and (iii) continuous dielectric 

permittivity distribution. 
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2. Overview of mathematical methods treating single-layered microstrips 

In this Section we give a brief report of the existing mathematical methodologies, which 
provide the essential tools for the analysis of single-layered spherical microstrips. 
Hereinafter, an exp(+jωt) time dependence of the field quantities is assumed and 
suppressed. 

2.1 Full-wave approach 

In full wave analysis, one seeks the unique field solution satisfying the Helmholtz 
differential equation as well as the appropriate boundary conditions (see Wong, 1999 for an 
excellent survey on full wave methods). Into this context, we consider the microstrip 
configuration of Fig. 1, where a PEC sphere of radius a1 is coated within a dielectric 
substrate of thickness d. A circular PEC radiating patch, located at r=a2 and θ<θp and 
assuming to possess negligible thickness, is mounted on the dielectric substrate. In order to 
fulfill the boundary conditions, the tangential electric field is required to be equal to zero on 
the PEC patch. 
 

 

Fig. 1. Geometry of the spherical microstrip composed of a PEC sphere of radius a1 coated 
with a dielectric substrate of thickness d; the circular PEC patch is located at r=a2 and θ<θp. 

The solution of the radiation problem is actually reduced to determining the surface current 
distribution on the patch. Since the patch is not entire with respect to the inclination angle θ 
(although it is entire with respect to the azimuthal angle φ), it is convenient to utilize the 
vector Legendre Transform pair, defined in (Tam & Luk, 1991; Wong, 1999; Giang et al. 2005) 
by 

 
| |

( , ) ( , , ) ( , )
n m

r n m r nθ θ
+∞

=

= ⋅∑F L F# , (1a) 

 
0

1
( , ) ( , , ) ( , )sin

( , )
r n n m r d

S n m

π

θ θ θ θ= ⋅∫F L F# , (1b) 
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where ( , )r nF#  constitutes the Legendre Transform of ( , )r θF . Both functions are 2×1 vectors, 

containing the transverse (with respect to r̂ ) components of either the electric or the 

magnetic field or the surface current, namely ( , ) [ ( , ), ( , )]Tr r rθ ϕθ θ θ=F F F  and 

( , ) [ ( , ), ( , )]Tr n r n r nθ ϕ=F F F# # # . The remaining participating quantities in (1a) and (1b) are given 

by 

 

(cos ) (cos )

sin( , , )
(cos ) (cos )

sin

m m
n n

m m
n n

P P
jm

n m
P P

jm

θ θ
θ θθ

θ θ
θ θ

⎡ ⎤∂
−⎢ ⎥∂⎢ ⎥=

⎢ ⎥∂
⎢ ⎥∂⎣ ⎦

L , (2a) 

 
2 ( 1)( )!

( , )
(2 1)( )!

n n n m
S n m

n n m

+ +
=

+ −
. (2b) 

Note that the use of the vector Legendre Transform in the spherical microstrip is the analog 
situation to the utilization of the Fourier (Tsalamengas et al., 1985; Wong et al., 1993b) and 
the Hankel (Ali et al., 1982; Nie et al., 1990) transform in the planar one. 

The electric and magnetic fields 1Ε  and 1Η  in the substrate region V1 as well as the 

respective ones 2Ε  and 2Η  in the outer (air) region V2 are expressed by means of the 

corresponding electric and magnetic potentials. Subsequently, these potentials are expanded 

with respect to an appropriate basis of spherical harmonic functions. The unknown 

weighting coefficients in these expansions will be determined by imposing the appropriate 

boundary conditions. 
To this end, the vector Legendre Transform is utilized in order to overcome the difficulty 
concerning the limited θ extent of the patch. Specifically, the boundary conditions are 
transformed from the spatial into the spectral (Legendre) domain as 

 
11

2
2

,
( , )

( , ),

r a
r n

r n r a

=⎧⎪= ⎨
=⎪⎩

0
E

E

#
# , (3a) 

 2 1
2 2 2

0 1
( , ) ( , ) ( , )

1 0s a n a n a n
−⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎣ ⎦⎣ ⎦

J H H# # # , (3b) 

where 2( , )s a nJ#  is the spectral amplitude of the surface current density on the circular patch. 

By transforming the electric and magnetic field expressions in the spectral domain (resulting 

by considering the corresponding expansions of the potentials, as described above) and 

utilizing the transformed boundary conditions (3a) and (3b), the following spectral equation, 

connecting the surface current density with the tangential electric field on the patch, is 

derived 

 2 2( , ) ( ) ( , )sa n n a n= ⋅E Z J# # , (4) 

where ( )nZ  is a determined “impedance” matrix, while 2( , )a nE#  denotes the common value 

of the tangential electric fields 1( , )r nE#  and 2( , )r nE#  on r=a2 (see the boundary condition (3a)). 
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Next, the current distribution on the PEC patch is expanded into a suitable set of orthogonal 
functions and the unknown weighting coefficients of these expansions are finally 
determined by using a Galerkin’s moment method. More precisely, the surface current 
distribution is expressed by the following weighted finite sum of suitably chosen basis 
functions, as 

 2 , 2
1

( , ) ( , )s sa n c a nν ν
ν

Ν

=

=∑J J# # , (5) 

where c┥ the unknown coefficients and , 2( , )s a nνJ
#  the spectral amplitude of the ┥-th 

expansion function. Then, by applying a Galerkin scheme, namely utilizing as testing 

functions the same set of basis (expansion) functions, the following homogeneous linear 

system is formulated 

 ( )ω ⋅ =A c 0 , (6) 

where the vector c incorporates the coefficients c┥, while the elements of matrix A  are given 
by (the * denotes the complex conjugate transpose) 

 , 2 , 2
| |

( ) ( , ) ( , ) ( ) ( , ) ( , 1,..., )s s
n m

A S n m a n n a nμν μ νω μ ν
+∞

∗

=

= ⋅ ⋅ = Ν∑ J Z J# # . (7) 

In view of (6), the complex resonant frequencies ω0=Re(ω0)+jIm(ω0) of the spherical 
microstrip structure are calculated by solving numerically the equation 

 0det ( ) 0[ ]ω =A . (8) 

Note that one should retain only the roots of (8) with Re(ω0)>0 and Im(ω0) >0 in order to 
avoid unbounded oscillations as time advances. In particular, Re(ω0) is the resonant 
frequency of the spherical microstrip and Im(ω0) expresses the radiation loss, defining the 
quality factor Q of the structure by 

 0

0

Re( )

2Im( )
Q

ω
ω

= . (9) 

2.2 Cavity model analysis 

The appropriate basis functions for the expansion of the surface current on the patch are 

selected according to the cavity model theory (Lo et al., 1979; Luk & Tam 1991; Chen & 

Wong, 1994). The basic requirements for these basis functions concern the facts that they 

should be orthogonal and also be transformed into the spectral domain into closed form 

(Wong, 1999). In particular, the cavity model theory dictates that the region between the 

patch and the PEC core forms a cavity which is bounded by a magnetic wall along the edge 

of the patch and by electric walls from above and below, and that the field in the cavity is 

independent of r (Wong, 1999). 

Subsequently, the Helmholtz equations for the electric and magnetic potentials are solved 

locally in an area just enclosing the patch, on which flows the unknown current. Because the 
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patch is non-entire with respect to θ and due to the principle of charge preservation 

(vanishing current component normal to the edge of the metallic patch), only specific 

degrees of the Legendre functions provide solutions with physical meaning. More 

specifically, these suitable degrees for the TMmℓ and TEmℓ cases are the roots ( )TM i`  and 

( )TE i`  respectively of the equations 

 0( )
(cos ) 0TM

m

i
P θ′ =`

     and     0( )
(cos ) 0TE

m

i
P θ =`

, (10) 

where the prime indicates differentiation with respect to θ and i is an integer denoting the ith 

root of the corresponding equation. The roots of (10) lie on the real axis (Abramowitz & 

Stegun, 1972). Each value of ( )TM i`  and ( )TE i`  corresponds to a specific operation TMmℓ and 

TEmℓ mode. Furthermore, by imposing the discontinuity boundary condition for the 

magnetic field, one obtains the explicit forms of the current basis functions for the TMmℓ and 

TEmℓ modes 

 ( )

( )

sin ( )

(cos )
,

( ) (cos )
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m

i

TM pjm m
s i

p

P
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θ
θ θ

θ θ

θ θ

⎧⎡ ⎤′
⎪⎢ ⎥ <⎪⎢ ⎥= ⎨⎣ ⎦⎪

>⎪⎩

J

0

`

`

`
, (11a) 

 ( )

sin ( )

( )

(cos )
,

( ) (cos )

,

TE

m i

TE

jm m

i

TE pm
s i

p

P

P

θ θ
θ θ

θ θ

θ θ
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⎪⎢ ⎥ <⎪ ′⎢ ⎥= −⎨⎣ ⎦⎪

>⎪⎩

J

0

`

`

`
. (11b) 

 

Both current basis functions are zero for θp<θ<π, since the patch there is absent. 

Importantly, the elements A┤┥(ω) of (7) involve the current basis functions in the spectral 

(Legendre) domain, which are derived by imposing the Legendre transformations on the 

currents (11), yielding 

 

( )
( )( ) ( )

( )

( ) ( ) 1
(cos ) (cos )sin1

( ) ( ) ( ) 1 ( 1)
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(cos ) (cos )
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TM

TM TM

m m
p n p pTM iTM TM

s

m m
p n pi

i i
P P

n i i n n
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( )
( )

( )

0
1

( 1)( )
(cos ) (cos )sin( , )

( ) ( ) 1 ( 1)

m i

TE

TE
m ms

p n p piTE TE

n nn
P PS n m

i i n n
θ θ θ

⎡ ⎤
⎢ ⎥+= ⎢ ⎥′
⎢ ⎥+ − +⎣ ⎦

J `

`

#

` `
. (12b) 

2.3 Generalized transmission line model 

The transmission-line model (TLM) was one of the first and simplest methods for the 

analysis of microstrip antennas with relatively fair accuracy compared to other more 

complicated methods (Pues & Van de Capelle, 1984). The TLM method in its original form 
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incorporates as line parameters the characteristic impedance and the effective propagation 

constant and is applicable only for planar rectangular or square microstrip antennas (Wong, 

1999). To this end, the generalized transmission line model (GTLM) theory was proposed 

(Bhattacharyya & Garg, 1985), where the line parameters are the electromagnetic fields 

under the patch. Under this consideration, as long as the separation of variables is feasible 

for the wave equation expressed in a particular coordinate system, GTLM theory is 

applicable to microstrip antennas of any patch shape. 

Focusing on the modeling of spherical microstrips by the GTLM theory, the patch is 

considered as a transmission line in the θ-direction, which is loaded with a wall admittance 

evaluated at the radiation apertures (Ke & Kishk, 1991; Kishk, 1993). Besides, the effect of 

other apertures is considered as leakage of the transmission line. The equivalent 

transmission line of the circular patch can be replaced by a Π-network, while the wall 

admittance at the patch edge is considered constant. Fig. 2 depicts the equivalent circuit of 

the spherical microstrip with a circular patch of Fig. 1 and a probe feeding at θf and φf 

(Wong, 1999). The network of the circuit elements, g1, g2, and g3, represents the transmission-

line section between the feeding and the radiation aperture at the patch edge. The shorted 

transmission-line section between the feeding and the patch center is replaced by an 

equivalent admittance yf. 

 

 
 

Fig. 2. Equivalent GTLM circuit for the spherical microstrip with circular patch of angular 
extent θp (depicted in Fig. 1), which is subject to probe feeding at θf and φf. 

By deriving expressions for the corresponding circuit elements, the input impedance of the 

patch antenna at the feed position is readily obtained. More precisely, by following the 

GTLM formulation (Ke & Kishk, 1991; Kishk, 1993), the microstrip antenna is modeled as a 

transmission line in the θ-direction, while the modal voltage and the modal current are, 

respectively, defined by Erm, and ±a1sinθ Hφm for wave propagation in the θ̂∓  direction, 

where Erm, and Hφm are the electric and magnetic fields inside the substrate layer under the 

patch (Wong, 1999), which for the TMmn mode are given by 
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, (13a) 
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sin
0
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m j a m m
v m v f p

P
H E m

P C Q
θ

ϕ ωμ

θ θ θ
θ ϕ ϕ
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⎧ ′ ≤ ≤⎪= − ⎨⎡ ⎤′ ′+ ≤ ≤⎪⎣ ⎦⎩
, (13b) 

where m
vP  and m

vQ  are the associated Legendre functions of the first and second kind, 

respectively, while Cm are unknown coefficients. Now, referring to Fig. 2, the circular patch 

is modeled as a Π-network (g1, g2, and g3); yf is the wall admittance at fθ θ −= , yp is the wall 

admittance at the patch edge, and Im is the feed current corresponding to the TMm mode 

excitation. The explicit expressions of the equivalent-circuit elements for the Π-network and 

the wall admittances at θf and θp are given in (Wong, 1999, p. 231-232). 
Finally, having determined all the elements in the equivalent circuit, the input impedance of 
the antenna, seen by the probe feed at the TM11 mode, is given by 

 

1

2 3

1

2 3

( )p

in f

p

g g yd
Z y g

g g yπ

−
⎡ ⎤+

= + +⎢ ⎥
+ +⎢ ⎥⎣ ⎦

. (14) 

3. A combined Legendre transform and T-matrix method for the analysis of 
multi-layered microstrips 

The techniques of Section 2 refer to the mathematical analysis of a single-layered spherical 
microstrip. In the present Section we summarize certain appropriate extensions of the 
aforementioned mathematical techniques in order to model the resonance and radiation 
characteristics of spherical microstrips composed of an arbitrary number of concentric 
spherical layers. For further details the reader is referred to (Valagiannopoulos & Tsitsas, 
2008a; Valagiannopoulos & Tsitsas, 2008b). These extensions mainly refer to the suitable 
implementation of a T-matrix method, which handles effectively the effect of the dielectric 
layers above and below the PEC patch. 

3.1 Geometrical configuration of the multi-layered spherical microstrip 

The geometry of the under consideration multi-layered spherical microstrip is depicted in 
Fig. 3. A layered sphere of radius aU+1 is divided by U concentric spherical surfaces, defined 
by r=au (u=1,…,U), into U+1 layers Vu (u=0,…,U). The sphere’s core V0 (0≤r≤a1) is a perfect 
electric conductor. The layers Vu, defined by au≤r≤au+1 (u=1,…,U), are filled with materials of 
complex dielectric permittivity ┝u and wavenumber ku. A PEC circular patch is printed on 
r=ap for 0≤θ≤θp (between layers Vp–1 and Vp). The exterior VU+1 (r>aU+1) of the sphere is 
homogeneous with free-space dielectric permittivity ┝0, wavenumber k0 and intrinsic 
impedance ┞0. The entire space is magnetically inert with permeability ┤0. The feeding of the 
microstrip is not taken into account, since we focus on the inherent resonance and radiation 
properties of the microstrip structure and not the influence on them by an external 
excitation. However, we note that with the incorporation of certain appropriate 
modifications, a probe feeding of the microstrip may be also taken into account in the 
analysis (see for example the discussions in Chen et al., 1997). 
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Fig. 3. The under consideration multi-layered spherical microstrip composed of a PEC 
spherical core of radius a1 covered by an arbitrary number U of dielectric layers; the circular 
PEC patch is located at r=ap and θ<θp (between layers Vp–1 and Vp). 

3.2 T-matrix method 

The electric potential Au and magnetic potential Fu in layer Vu (u=1,…,U+1), expressing the 
transverse magnetic TMr and transverse electric TEr modes respectively, admit the following 
expansions 

 1
| |

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) (cos ) ( )jm m
u u u n u u n u n u u

n m

A e n j k r n h k r P a r aϕ α β θ
+∞

+
=

= = + ≤ ≤⎡ ⎤⎣ ⎦∑A r r r r , (15a) 

 1
| |

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) (cos ) ( )jm m
u u u n u u n u n u u

n m

F e n j k r n h k r P a r aϕ γ δ θ
+∞

+
=

= = + ≤ ≤⎡ ⎤⎣ ⎦∑F r r r r , (15b) 

where jn and hn are the n-th order spherical Bessel and Hankel functions of the second kind, 
Pnm is the associated Legendre function of the first kind of order m and degree n and ┙u, ┚u, 
┛u, and ├u are under determination coefficients. The electric and magnetic potentials in the 
exterior VU+1 of the microstrip have the expansions (15) with u=U+1 and ┙U+1(n)=┛U+1(n)=0, 
valid for r>aU+1, in order that the radiation condition is satisfied. The transverse electric and 
magnetic field components in layer Vu are then readily expressed in terms of the 
corresponding potentials (see Eq. (2) of Valagiannopoulos & Tsitsas, 2008a). 
Next, since the spherical microstrip is non-entire with respect to θ, we utilize the vector 
Legendre Transform, given by (1) and (2) (as analyzed in details in Section 2). The Legendre 

Transforms , ,( , ) [ ( , ), ( , )]T
u u ur n r n r nθ ϕ=E E E# # #  and , ,( , ) [ ( , ), ( , )]T

u u ur n r n r nθ ϕ=H H H# # #  of the 
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transverse electric , ,( , ) [ ( , ), ( , )]T
u u ur n r n r nθ ϕ=E E E  and magnetic 

, ,( , ) [ ( , ), ( , )]T
u u ur n r n r nθ ϕ=H H H  fields in layer Vu are determined by means of (15) and (1b) 

and by imposing the orthogonality properties of the Legendre functions (Gradshteyn & 
Ryzhik, 2000) 

 
( )
( )0
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E# , (16a) 
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( )0 1
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d d
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j n j k r n h k r

ε α β

ζ ε γ δ−

⎡ ⎤+
⎢ ⎥=
⎢ ⎥+⎣ ⎦

H# , (16b) 

where ( ) ( ( )) /d
n nzj z d zj z dz=  and ( ) ( ( )) /d

n nzh z d zh z dz= . Notice that by using the Legendre 

Transform, the coefficient pairs ┙u, ┚u and ┛u, ├u, corresponding to the TMr and TEr fields 

respectively, appear exclusively in only one component of the transformed vectors  uE
# , uH

# , 

and thus a decoupling is achieved. 
By imposing the vector Legendre Transform to the boundary conditions in the spatial 
domain, we obtain the following boundary conditions in the spectral domain 

 1 1( , )a n =E 0# , (17a) 

 1( , ) ( , ) ( 2,..., 1)u u u ua n a n u U−− = = +E E 0# # , (17b) 

 1( , ) ( , ) ( 2,..., 1 , )u u u ua n a n u U u p−− = = + ≠H H 0# # , (17c) 

 ( )1

0 1
( ) ( , ) ( , )

1 0s p p p pn a n a n−

−⎡ ⎤
= −⎢ ⎥
⎣ ⎦

J H H# # # , (17d) 

where Js is the surface current distribution at r=┙p, due to the presence of the patch. 
Now, we describe a T-matrix scheme, leading to the successive connection of the fields 

coefficients (connections between the fields coefficients of spherically layered media are 

analyzed in details in Tsitsas & Athanasiadis, 2006). Specifically, successive applications of 

(17b) and (17c) imply the following transformations of the electric field coefficients in layer 

Vu–1 to those in Vu  

 1

1

( ) ( )
( ) ( 2,..., , )

( ) ( )
u uTM

u

u u

n n
n u U u p

n n

α α
β β

−

−

⎡ ⎤ ⎡ ⎤
= = ≠⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
T , (18a) 

 1

1

( ) ( )
( ) ( 2,..., , )

( ) ( )
u uTE

u

u u

n n
n u U u p

n n

γ γ
δ δ

−

−

⎡ ⎤ ⎡ ⎤
= = ≠⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
T , (18b) 

where the explicit expressions of the elements of the 2×2 transition matrices from Vu–1 to Vu, 

appearing above, are given in (Valagiannopoulos & Tsitsas, 2008a). 
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Furthermore, application of the boundary condition (17a) on the PEC core implies 

 1

1 1

1

( )
( ) ( )

( )
TM

n
n n

n

α
α

β
⎡ ⎤

=⎢ ⎥
⎣ ⎦

t , (19a) 

 1

1 1

1

( )
( ) ( )

( )
TE

n
n n

n

γ
γ

δ
⎡ ⎤

=⎢ ⎥
⎣ ⎦

t , (19b) 

while application of (17b) and (17c) for u=U yields 

 1 1

( )
( ) ( )

( )
U TM

U U

U

n
n n

n

α
β

β + +

⎡ ⎤
=⎢ ⎥

⎣ ⎦
t , (20a) 

 1 1

( )
( ) ( )

( )
U TE

U U

U

n
n n

n

γ
δ

δ + +

⎡ ⎤
=⎢ ⎥

⎣ ⎦
t , (20b) 

where the 2×1 vectors 1
TMt , 1 ( )TE nt , 1( )TM

U n+t , and 1( )TE
U n+t  are given in (Valagiannopoulos & 

Tsitsas, 2008a).  
Now, by applying successively the transformations (18) for u=2,…,p–1 and using (19), we 
see that the field coefficients in layer Vp–1 are related to ┙1 and ┛1 of V1 by 

 
1

1
1

( )
( ) ( )

( )
p TM

p

n
n n

n

α
α

β
−

−
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
t , (21a) 

 
1

1
1

( )
( ) ( )

( )
p TE

p

n
n n

n

γ
γ

δ
−

−
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
t , (21b) 

where 

 1 2 2 1

( )
( ) ( ) ( ) ( ) ( )

( )

TM
TM TM TM TM TM

w wTM

f n
n n n n n

g n
−

− − −
−

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

t T T T tA , (22a) 

 1 2 2 1

( )
( ) ( ) ( ) ( ) ( )

( )

TE
TE TE TE TE TE

w wTE

f n
n n n n n

g n
−

− − −
−

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

t T T T tA . (22b) 

In a similar way by using (18) for u=p+1,…,U and (20), we obtain 

 1

( )
( ) ( )

( )
p TM

U
p

n
n n

n

α
β

β + +

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
t , (23a) 

 1

( )
( ) ( )

( )
p TE

U
p

n
n n

n

γ
δ

δ + +

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
t , (23b) 

where 
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1 1 1

1 2 1

( )
( ) ( ) ( ) ( ) ( )

( )

TM
TM TM TM TM TM

w w U UTM

f n
n n n n n

g n

− − −
+

+ + + +
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
t T T T tA , (24a) 

 
1 1 1

1 2 1

( )
( ) ( ) ( ) ( ) ( )

( )

TE
TE TE TE TE TE

w w U UTE

f n
n n n n n

g n

− − −
+

+ + + +
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
t T T T tA . (24b) 

The subscripts – in (21) and + in (23) indicate approach of the patch surface r=┙p from the 
layers below and above respectively. 

3.3 Determination of the complex resonant frequencies 

By the continuity boundary condition (17b) for u=p, the tangential electric field of layer Vp–1 

coincides with that of Vp; their common value will be denoted hereafter by ( , )pa nE# . Thus, 

by combining (17d), (21) and (23), we result to the following spectral equation for the surface 

current on the patch 

 1( , ) ( ) ( ) ( )[ ]p sn n n nα −
+ −= −E Y Y J# # , (25) 

where 

 
0

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )

TE TE
n p n p

TE d TE d
p n p n p

TM d TM d
n p n p

TM TM
n p n p

f n j x g n h x
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n j
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ε
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+ +

+ +

+
+ +

+ +
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⎢ ⎥

+⎢ ⎥
= ⎢ ⎥+⎢ ⎥−⎢ ⎥+⎣ ⎦

Y , (26a) 
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0

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
0

( ) ( ) ( ) ( )

TE TE
n p n p

TE d TE d
p n p n p

TM d TM d
n p n p

TM TM
n p n p

f n j y g n h y

f n j y g n h y
n j

f n j y g n h y

f n j y g n h y

ε
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− −

− − −

−
− −
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⎢ ⎥

+⎢ ⎥
= ⎢ ⎥+⎢ ⎥−⎢ ⎥+⎣ ⎦

Y , (26b) 

while p p px k a= , 1p p py k a−= . 

Subsequently, we follow the general procedure, analyzed for the single-layered microstrip 
case in Sections 2.1 and 2.2. More precisely, the surface current density on the patch is 
expanded into a linear combination of the form (5) with respect to appropriate basis 
functions, which are specifically chosen by using the cavity model theory (Lo et al., 1979). 
Then, we apply a Galerkin’s procedure for the computation of the linear combinations 
unknown weighting coefficients, finally resulting to the homogeneous linear system 

 ( )ω =B c 0 , (27) 

where 

 1
, ,

| |

( ) ( , ) ( ) ( ) ( ) ( ) ( , 1,..., )[ ]s s
n m

B S n m n n n nμν μ νω μ ν
+∞

∗ −
+ −

=

= − = Ν∑ J Y Y J# # . (28) 
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The possible complex resonant frequencies correspond to the non-trivial solutions of (27), 

namely to the values of the parameter ω for which the corresponding system matrix is 

singular. Hence, the complex resonant frequency ω0=Re(ω0)+jIm(ω0) is the root of the 

determinant of (27); for further details see also the related discussion in Section 2.1. 

It is worth to point-out that the elements of the matrix B in (27) are computed numerically 

by truncating the infinite sum. Thus, it is required to investigate the variation of the 

sufficient truncation order with respect to the microstrip characteristics, and in particular 

with respect to the angular extent θp of the patch. A typical convergence pattern of the 

resonant frequency of a three-layered spherical microstrip is depicted in Fig. 4. It is evident 

that the required truncation order is large for θp→0 and decreases rapidly as θp increases. 

The truncation order has also been tested against the variation of the other geometrical and 

physical parameters of the microstrip and it has been concluded that θp is the most 

significant parameter. For further details on the influence of the microstrip’s parameters on 

the convergence pattern see (Valagiannopoulos & Tsitsas, 2008a). 

 

 

Fig. 4. Sufficient truncation order for convergence of the resonant frequency (as computed 
by solving the homogeneous linear system (27)) as a function of the angular extent θp of the 
patch for different superstrate thicknesses a3−a2 with a1=5 cm, a2=5.15 cm, ┝1=┝2=2.5┝0 and 
p=2. 

3.4 Far-field radiation pattern 

The determined resonant frequency of (27) may be utilized for the computation of the far-

field radiation pattern by means of the inverse Legendre Transform of (16). The patch 

current near the resonant frequency is well described by the cavity-model modes of (11). We 

consider only the fundamental TM11 mode and hence 11( ) ( )TM
s sn n=J J# # . 

By following the procedure analyzed in (Valagiannopoulos & Tsitsas, 2008a), we obtain the 

tangential electric field vector in the infinite exterior region VU+1  
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∑

E

, (29) 

where the coefficients ├U+1, ┚U+1 are determined by means of the computed tangential electric 
field on the patch after combining (23) with (25). 
Next, in order to obtain the far-field pattern expressions, we impose in (29) suitable 
asymptotic expansions of the spherical Hankel functions and their derivatives (Abramowitz 
& Stegun, 1972) and finally result to 

 1 0 0 0

( )
( , ) ~ ( ) ,

( )U

P
r h k r k r

P
θ

ϕ

θ
θ

θ+

⎡ ⎤
→ +∞⎢ ⎥

⎣ ⎦
E , (30) 

where the far-field pattern components are given by 
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∑

∑
. (31) 

4. Applications 

In this Section various interesting multi-layered spherical microstrip configurations will be 
presented and their operational characteristics will be briefly discussed. The complex resonant 
frequencies of these configurations as well as their far-field radiation patterns will be 
computed by the combined vector Legendre Transform and T-matrix technique, outlined in 
Section 3. For simplicity, we take into account hereinafter only the fundamental TM11 mode, in 
order to adopt a qualitative approach for the investigation of certain novel spherical microstrip 
configurations. However, by following the general analysis of Section 3, the respective 
numerical results corresponding to higher order modes can be also readily computed. 

4.1 Zero refractive index metamaterial coating 

The merits of using zero refractive index materials as substrates in planar antennas have 
been highlighted in (Wu et al. 2005; Caloz & Itoh, 2006). Such materials are usually realized 
by periodic collections of rods and rings (Grzegorczyk et al. 2005). Particularly, in (Pendry et 
al. 1998) it was shown that by using a metallic mesh of thin wires, a plasma-like 
metamaterial medium is obtained, which is characterized by zero effective permittivity (and 
hence zero refractive index) at the plasma frequency. Zero index materials possess 
(according to Snell’s law) the property of aligning the traveling rays from inside such a 
medium to free space, regardless of the angle of incidence, hence achieving high directivity 
by controlling the direction of emission (see Fig. 1 of Wu et al. 2005). 
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The spherical analog of such an emitting antenna does not lead to equally interesting results, 
since its operation might be expected to be nearly omnidirectional. However, the same 
configuration, utilized as a receiving antenna, could be potentially more promising. More 
precisely, suppose a spherical shell of zero refractive index enclosing the whole spherical 
microstrip. Then, by local application of Snell’s law (similarly to the planar case), one would 
expect that all the ingoing rays traveling inside the zero index medium would enter the 
  

 
(a) 

 
(b) 

Fig. 5. Variations of (a) resonant frequency and (b) quality factor with respect to the 
coating’s relative  permittivity ┝2/┝0 for different coating’s thicknesses a3−┙2 and angular 
patch extents θp in the case of a 3-layered microstrip with a1=6 cm, a2=7 cm, p=2 and ┝1=┝0. 
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microstrip aligned perpendicular to the local tangential planes. Thus, the rays arrive with 
minimum path losses either on the patch or on the surface of the PEC sphere, therefore 
improving the receiving procedure. A representative sketch for the clarification of this 
physical situation is depicted in (Fig. 5 of Valagiannopoulos & Tsitsas, 2008a).  
The preceding considerations motivate the investigation of the resonant properties of a 
spherical microstrip surrounded by a zero refractive index material. To this end, we 
consider a 3-layered microstrip with an airgap between the PEC sphere and the patch and a 
material with varying dielectric permittivity and thickness between the patch and the free 
space. Figs. 5a and 5b show the variation of the resonant frequency and quality factor of the 
aforementioned microstrip with respect to the coating’s dielectric permittivity for two 
different coating’s thicknesses a3-a2 and two different angular extents θp of the patch. The 
resonant frequency decreases and the quality factor increases with increasing angular extent 
θp for fixed coating’s thickness and dielectric permittivity. Especially, Q attains a global 
maximum value for ┝2→0, demonstrating that such a microstrip also possesses a high 
quality factor, when a material with nearly zero refractive index is utilized as coating. 
Furthermore, by Fig. 5a it is evident that for fixed θp the influence of the coating’s thickness 
on the resonant frequency becomes weaker as its dielectric permittivity ┝2 decreases. 

4.2 Amplifying excitation layer 

The feeding of the spherical microstrip is usually modeled as a source located between the 
PEC core and the patch (Chen et al., 1997; Sipus et al., 2008; Khamas, 2009). A common type 
of source utilized in such cases is an axial probe connecting the two PEC surfaces. However, 
the antenna’s operation is strongly dependent on the position of the feeding. 
To this direction, a new type of φ- and θ- entire excitation, not affecting considerably the 
inherent resonance and radiation properties of the antenna, was proposed in 
(Valagiannopoulos & Tsitsas, 2008a). This excitation is an active (plasma) layer, located 
between core and patch, and filled with material possessing dielectric permittivity of 
positive imaginary part. Note that the plasma behavior of the material should be achieved 
close to the microstrip’s resonant frequency. 
In particular, a 4-layered microstrip with two airgaps surrounding the active layer was 
considered with the amplifying capability being controllable via both the layer’s thickness 
a3–a2 as well as its dielectric permittivity ┝2=Re[┝2]+jIm[┝2]. Figs 6a and 6b depict the 
variation of the resonant frequency and the quality factor with respect to the active layer’s 
thickness for different imaginary parts of its permittivity. The resonant frequency seems to 
be rather insensitive to the increase of Im[┝2], indicating a rather weak dependence of the 
resonant frequency on the amplifying capability of the active layer. As far as the quality 
factor is concerned, it is indeed an increasing function of both a3–a2 and Im[┝2]. Specifically, 
in applications demanding large values of Q, this configuration may be used with a3→a4 and 
Im[┝2] suitably large. 

4.3 Shifted Luneburg lens material 

In the literature are usually examined microstrips with a fixed small number of concentric 
layers (Tam & Luk, 1991; Wong et al., 1993a; Wong & Chen, 1993). However, it is 
particularly interesting to investigate also the case of the coating’s region a1<r<aU+1 having 
continuously varying dielectric permittivity with radial dependence because such a 
configuration would offer more degrees of freedom to the designer in order to achieve the 
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(a) 

 

(b) 

Fig. 6. (a) Resonant frequency and (b) quality factor as functions of the active (plasma) 
layer’s thickness for different imaginary parts of its dielectric permittivity for a 4-layered 
microstrip with a1=6 cm, a2=6.5 cm, a4=7.5 cm, p=4, θp=15o, and ┝1=┝3=┝0. 

required operational characteristics. Since the method, summarized in Section 3, is suitable 

for handling efficiently microstrips with arbitrary number U of spherical layers, a 

continuous distribution of the radial function of the dielectric permittivity may be effectively 

treated by the corresponding step approximation. 
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In (Valagiannopoulos & Tsitsas, 2008a) a spherical microstrip with discrete shifted-

Luneburg coating was investigated. More precisely, since the microstrip is composed of a 

PEC core, its coating is assumed to obey a continuous distribution with radial dependence 

following a shifted Luneburg lens law (Luneburg, 1941) 

 

2

1
1 1

1 1

( ) 2 ( )U

U

r a
r a r a

a a
ε +

+

⎛ ⎞−
= − < <⎜ ⎟⎜ ⎟−⎝ ⎠

. (32) 

This continuous distribution is approximated by the analyzed model of U spherical layers. 

The patch is still located inside the coating on r=ap. 

Typical variations of the resonant frequency and the quality factor as functions of the patch 

location ┙p inside the discrete Luneburg coating for different angular extents θp of the patch 

are depicted in Fig. 7 of (Valagiannopoulos & Tsitsas, 2008a). The resonant frequency 

decreases with increasing θp for fixed ap and with increasing ap for fixed θp. On the other 

hand, the quality factor decreases rapidly as the patch gets distant from the PEC sphere for 

fixed θp and increases with θp for fixed ap (as opposed to the respective behavior of the 

resonant frequency for increasing θp). The values of the quality factor become extremely 

large as the patch approaches the PEC sphere, a fact which may be exploited appropriately 

in various applications. 

Finally, regarding the electric far-field pattern components Pθ(θ) and Pφ(θ), which are 

computed by means of (31), Figs 7a and 7b depict the variation of the normalized 

components |Pθ(θ)| and |Pφ(θ)| for three different patch locations ap inside the Luneburg 

coating with fixed patch angular extent θp=30o. For all three patch locations the curves of 

|Pθ(θ)| attain three local maxima at 0o, 95o, and 180o, and two local minima at 50o, and 135o. 

On the other hand, the curves of |Pφ(θ)| attain two local maxima at 0o, and 180o, and one 

minimum at 110o. The locations of these maxima and minima do not seem to be strongly 

dependent on the patch location. However, their values increase as ap increases, namely as 

patch gets distant from the PEC sphere V0 and gets closer to the free-space region VU+1. 

5. Conclusions 

Spherical microstrip antennas have certain important advantages, which have been 

meticulously highlighted in the literature. Among the mathematical methods, which have 

been developed for analyzing the behavior of a spherical microstrip, the most widely used 

and effective ones are the full-wave approach, the cavity model analysis, and the 

generalized transmission-line model. A brief overview of each of these methods has been 

given. On the other hand, we summarized the basic features of an efficient method which 

combines the vector Legendre Transform with the T-matrix method and is utilized to 

analyze and model the resonance and radiation phenomena by a multi-layered spherical 

microstrip, whose circular metallic patch is located inside a coating, composed of an 

arbitrary number of concentric spherical substrate and superstrate layers. Finally, certain 

potential applications of multi-layered spherical microstrips were pointed out, where 

emphasis was given on the variation of the resonant frequency with respect to the 

microstrip’s physical and geometrical characteristics as well as on the conditions under 

which high values of the quality factor may be achieved. 
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(a) 

 

 
 

(b) 

 

Fig. 7. Variation of the normalized electric far-field components |Pθ(θ)| and |Pφ(θ)| for 
three different patch locations ap with fixed patch angular extent θp=30o, inside a discrete 
Luneburg coating with constant parameters a1=8 cm, a21=11 cm, U=20. 
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