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1. Introduction    

Over the past years microstrip resonators have been widely used in the range of microwave 

frequencies. In general these structures are poor radiators, but by proper design the 

radiation performance can be improved and these structures can be used as antenna 

elements (Damiano & Papiernik, 1994). In recent years microstrip patch antennas became 

one of the most popular antenna types for use in aerospace vehicles, telemetry and satellite 

communication. These antennas consist of a radiating metallic patch on one side of a thin, 

non conducting, supporting substrate panel with a ground plane on the other side of the 

panel. For the analysis and the design of microstrip antennas there have been several 

techniques developed (Damiano & Papiernik, 1994; Mirshekar-Syahkal, 1990). The spectral 

domain approach is extensively used in microstrip analysis and design (Mirshekar-Syahkal, 

1990). In such an approach, the spectral dyadic Green’s function relates the tangential 

electric fields and currents at various conductor planes. It is found that the substrate 

permittivity is a very important factor to be determined in microstrip antenna designs. 

Moreover the study of anisotropic substrates is of interest, many practical substrates have a 

significant amount of anisotropy that can affect the performance of printed circuits and 

antennas, and thus accurate characterization and design must account for this effect (Bhartia 

et al. 1991). It is found that the use of such materials may have a beneficial effect on circuit or 

antenna (Bhartia et al. 1991; Pozar, 1987). For a rigorous solution to the problem of a 

rectangular microstrip antenna, which is the most widely used configuration because its 

shape readily allows theoretical analysis, Galerkin’s method is employed in the spectral 

domain with two sets of patch current expansions. One set is based on the complete set of 

orthogonal modes of the magnetic cavity, and the other employs Chebyshev polynomials 

with the proper edge condition for the patch currents (Tulintsef et al. 1991). 

This chapter describes spectral domain analyses of a rectangular microstrip patch antenna 

that contains isotropic or anisotropic substrates in which entire domain basis functions  are 

used to model the patch current, we will present the effect of uniaxial anisotropy on the 

characterization of a rectangular microstrip patch antenna, also because there has been very 

little work on the scattering radar cross section of printed antennas in the literature, 

including the effect of a uniaxial anisotropic substrate, a number of results pertaining to this 

case will be presented in this chapter.  
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2. Theory 

An accurate design of a rectangular patch antenna can be done by using the Galerkin 
procedure of the moment method (Pozar, 1987; Row & Wong, 1993; Wong et al., 1993). An 
integral equation can be formulated by using the Green’s function on a thick dielectric 
substrate to determine the electric field at any point. 
The patch is assumed to be located on a grounded dielectric slab of infinite extent, and the 
ground plane is assumed to be perfect electric conductor, the rectangular patch with length a 
and width b is embedded in a single substrate, which has a uniform thickness of h (see Fig. 

1), all the dielectric materials are assumed to be nonmagnetic with permeability μ0. To 
simplify the analysis, the antenna feed will not be considered. 
The study of anisotropic substrates is of interest, however, the designers should, carefully 
check for the anisotropic effects in the substrate material with which they will work, and 
evaluate the effects of anisotropy. 
 

 

Fig. 1. Geometry of a rectangular microstrip antenna 

Anisotropy is defined as the substrate dielectric constant on the orientation of the applied 
electric field. Mathematically, the permittivity of an anisotropic substrate can be represented 
by a tensor or dyadic of this form (Bhartia et al., 1991) 
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For a biaxially anisotropic substrate the permittivity is given by 
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For a uniaxially anisotropic substrate the permittivity is 
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0ε  is the free-space permittivity. 

xε is the relative permittivity in the direction perpendicular to the optical axis. 

zε is the relative permittivity in the direction of the optical axis. 

Many substrate materials used for printed circuit antenna exhibit dielectric anisotropy, 
especially uniaxial anisotropy (Bhartia et al. 1991; Wong et al., 1993). 
In the following, the substrate material is taken to be isotropic or uniaxially anisotropic with 
the optical axis normal to the patch. 
The boundary condition on the patch is given by (Pozar, 1987) 

 0incscat =+EE  (4) 

incE  Tangential components of incident electric field. 

scatE  Tangential components of scattered electric field. 

While it is possible to work with wave equations and the longitudinal components  zE
~

and 

zH
~

, in the Fourier transform domain, it is desired to  find the transverse fields in the (TM, 

TE) representation in terms of the longitudinal components. Assuming an tωie  time 

variation, thus Maxwells equations 
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Applying the divergence condition component 
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1i −=  

ω  is the angular frequency. 

From the above equations and after some algebraic manipulation, the wave equations for 

zE  and zH  are respectively 
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With  

0k propagation constant for free space, 000 μεωk =  

By assuming plane wave propagation of the form  zkiykixki zyx eee ±±±  

A Fourier transform pair of the electric field is given by (Pozar, 1987) 
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A Fourier transform pair of the magnetic field is given by (Pozar, 1987) 
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It is worth noting that ~ is used to indicate the quantities in spectral domain. 

In the spectral domain  xki
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∂
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After some straightforward algebraic manipulation the transverse field can be written in 

terms of the longitudinal components zE
~

, zH
~
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sk  is the transverse wave vector, yxks
ˆkˆk yx += ,  sk=sk  

kx and ky are the spectral variables corresponding to x and y respectively. 

From the wave equations (9) and (10), the general form of zE
~

 and  zH
~

 is 
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 zkizki zz ee
~

11z DCE += −  (19) 

 zkizki zz ee
~

22z DCH += −  (20) 

C1, D1, C2 and D2  are the  unknowns to be determined. 
By substitution of (19) and (20) in (15)-(18) and after some algebraic manipulation the 
transverse field in the (TM, TE) representation can be written by 
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The superscripts e and h denote the TM and the TE waves, respectively. 
A and B are two unknowns vectors to be determined, note that are expressed in terms of C1, 
D1, C2 and D2. 
Where 
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zk  are respectively propagation constants for TM and TE waves in the uniaxial 

dielectric. 
By eliminating the unknowns A and B, in the equations (21) and (22) we obtain the 
following matrix which combines the tangential field components on both sides z1 and z2 of 
the considered layer as input and output quantities 
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I  is the unit matrix. 

( )s

e(h) kJ
~

 is the current on the patch. 

In the spectral domain the relationship between the patch current and the electric field on 
the patch is given by  

 ( ) ( ) ( )ssss kJkGkE
~~ ⋅=  (25) 

G  is the spectral dyadic Green’s function  

www.intechopen.com



 Microstrip Antennas 

 

32 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

h

e

0

0

G

G
G  (26) 

he , GG  are given by  
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In the case of the isotroipc substrate  
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Where 

( )hkcoskk z0z1 =  and ( ) 2
1
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s

2
0z kkk −=   
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~

 is the current on the patch which related to the vector Fourier transform of J(rs), as 

(Chew & Liu, 1988) 
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x̂  unit vector in x direction. 

ŷ  unit vector in y direction. 
The surface current on the patch can be expanded into a series of known basis functions Jxn 
and Jym 
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Where an and bm are the unknown coefficients to be determined in the x and y direction 
respectively. 
The latter expression is substituted into equation (27); the results can be given by 
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( )skJxn

~
 and ( )skJym

~
 are the Fourier transforms of ( )srJxn  and ( )srJym  respectively. 

One of the main problems with the computational procedure is to overcome the complicated 
time-consuming task of calculating the Green’s functions in the procedure of resolution by 
the moment method. The choice of the basis function is very important for a rapid 
convergence to the true values (Boufrioua & Benghalia, 2008; Boufrioua, 2009). 
Many subsequent analyses involve entire-domain basis functions that are limited to 
canonical shapes such as rectangles, circles and ellipses. Recently, much work has been 
published regarding the scattering properties of microstrip antennas on various types of 
substrate geometries. Virtually all this work has been done with entire domain basis 
functions for the current on the patch.  
For the resonant patch, entire domain expansion currents lead to fast convergence and can 
be related to a cavity model type of interpretation (Boufrioua, 2009; Pozar & Voda, 1987). 
The currents can be defined using a sinusoid basis functions defined on the whole domain, 
without the edge condition (Newman & Forrai, 1987; Row & Wong, 1993), these currents 
associated with the complete orthogonal modes of the magnetic cavity. Both x and y 
directed currents were used, with the following forms (Chew & Liu, 1988; Row & Wong, 
1993) 
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The Fourier transforms of Jxn and Jym are obtained from equation (27) and given by 
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Since the chosen basis functions approximate the current on the patch very well for 
conventional microstrips, only one or two basis functions are used for each current 
component. 
Using the equations (32.a) and (32.b), the integral equation describing the field E in the patch 
can be discretized into the following matrix 
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Where the impedance matrix terms are 
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b

a
 are the unknown current modes on the patch 

It should be noted that the roots of the characteristic equation given by (33) are complex, 
Muller’s algorithm has been employed to compute the roots and hence to determine the 
resonant frequency.  

The integration of the matrix elements in equations (34) must be done numerically, but can 

be simplified by conversion from the ( )yx k,k  coordinates to the polar coordinates ( )α,kǒ  

with the following change. 

 ∫ ∫∫ ∫∫ ∫
∞∞
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==
0

2Ǒ

0
ǒǒyxs dαkdkdkdkdk  (35) 

3. Antenna characteristics 

Since the resonant frequencies are defined to be the frequencies at which the field and the 
current can sustain themselves without a driving source. Therefore, for the existence of 
nontrivial solutions, the determinant of the [z] matrix must be zero, i.e  

 ( )( ) 0ωdet =Z  (36) 

This condition is satisfied by a complex frequency ir fiff +=  that gives the resonant 

frequency rf , the half power bandwidth ri f2fBW =  and the other antenna characteristics. 
Stationary phase evaluation yields convenient and useful results for the calculation of 
antenna patterns or radar cross section (Pozar, 1987). 

The scattered far-zone electric field from the patch can then be found in spherical 

coordinates with components θE  and φE  and the results  are of the form 
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In  the above equation, kx and ky are evaluated at the stationary phase point as 

 cosφsinθkk 0x =  (38a) 

 φsinθsinkk 0y =  (38b) 

The radar cross section of a microstrip patch has recently been treated (Knott et al., 2004), 
although, there has been very little work on the radar cross section of patch antennas in the 
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literature. The solution of the electric field integral equation via the method of moments has 
been a very useful tool for accurately predicting the radar cross section of arbitrarily shaped in 
the frequency domain (Reddy et al., 1998). In this chapter we will considere only monostatic 
scattering. The radar cross section computed from (Knott et al., 2004; Reddy et al., 1998), for a 
unit amplitude incident electric field the typical scattering results are of the form  

 
2scat

θ
2

θθ ErǑ4σ =  (39) 

θθσ  is  θ̂ -polarized backscatter  from a unit amplitude θ̂  polarized incident field  

 ( )θθ10 σlog10RCS =  (40) 

RCS is the radar cross section. 
Computer programs have been written to evaluate the elements of the impedance matrix 
and then to solve the matrix equation. In Figure 2, comparisons are shown for the calculated 
and measured data presented by W. C. Chew and Q. Liu, deduced from table. I (Chew & 
Liu, 1988) and the calculated results from our model, for a perfectly conducting patches of 
different dimensions a(cm)×b(cm), without dielectric substrates (air) with thickness of 
0.317cm. It is important to note that the normalization is with respect to f0 of the magnetic 
wall cavity, the mode studied in this work is the dominant mode TM01. Our calculated 
results agree very well with experimental results, the maximum difference between the 
experimental and numerical results is less than 7%, this shift may indicate physical 
tolerances of the patch size or substrate dielectric parameters. 
 

 

Fig. 2. Comparison between our calculated resonant frequencies and measured results 
versus the dimensions of the patch. 
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The influence of uniaxial anisotropy in the substrate on the resonant frequency, the quality 

factor and the half power band width of a rectangular microstrip patch antenna with 

dimensions a=1.5cm, b=1.0cm and the substrate has a thickness h=0.159 cm, for different 

pairs of relative permittivity (εx, εz ) is shown in Table 1. The obtained results show that the 

positive uniaxial anisotropy slightly increases the resonant frequency and the half power 

band width, while the negative uniaxial anisotropy slightly decreases both the half power 

band width and the resonant frequency. 

Comparisons are shown in table 2 for the calculated data presented by (Bouttout et al., 1999) 

and our calculated results for a rectangular patch antenna with dimensions a=1.9cm, b=2.29 

cm and the substrate has a thickness h=0.159cm. The obtained results show that when the 

permittivity along the optical axis zε  is changed and xε  remains constant the resonant 

frequency changes drastically, on the other hand, we found a slight shift in the resonant 

frequency when the permittivity xε  is changed and zε  remains constant, these behaviors 

agree very well with those obtained by (Bouttout et al., 1999). 

 
 

Uniaxial 
anisotropy 

type 

Relative 
permittivity 

xε  

Relative 
permittivity 

zε  

Resonant 
frequency 

Ghz 

Band width 
BW 
% 

Quality 
factor 

Q 

isotropic 2.35 2.35 8.6360194 9.0536891 11.0452213 

isotropic 7.0 7.0 5.2253631 3.1806887 31.4397311 

positive 1.88 2.35 8.7241626 9.1377564 10.9436053 

negative 2.82 2.35 8.5537694 8.9779555 11.1383933 

negative 8.4 7.0 5.1688307 3.1550166 31.6955535 

positive 5.6 7.0 5.2869433 3.2124019 31.1293545 
 

Table 1. Resonant frequency, band width and quality factor for the isotropic, positive and 
negative uniaxial anisotropic substrates 

 
 

Resonant frequencies (Ghz) 
xε  zε  AR 

(Bouttout et al., 1999) Our results 

2.32 2.32 1 4.123 4.121 

4.64 2.32 2 4.042 4.041 

2.32 1.16 2 5.476 6.451 

1.16 2.32 0.5 4.174 4.171 

2.32 4.64 0.5 3.032 3.028 
 

Table 2. Dependence of resonant frequency on relative permittivity ( xε , zε ) 

The anisortopic ratio 
z

x

ε
ε=AR  
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(a) zε  changed,                 xε = zε = 5,              xε = 5, zε = 6.4,               xε = 5, zε = 3.6. 

 
 

 
(b) xε changed,                xε = zε = 5,             xε = 3.6, zε = 5,              xε = 6.4, zε = 5. 

Fig. 3. Normalized radar cross section versus angle θ  for the isotropic, positive uniaxial 

anisotropic and negative uniaxial anisotropic substrates. 
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(a) zε changed,                xε = zε = 5,             xε = 5, zε = 6.4,             xε = 5, zε = 3.6 
 

 
(b) xε changed,                xε = zε = 5,              xε = 3.6, zε = 5,              xε = 6.4, zε = 5. 

Fig. 4. Radiation pattern versus the angle  θ  for the isotropic, positive uniaxial anisotropic 

and negative uniaxial anisotropic substrates. 
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(a) zε  changed,               xε = zε = 5,             xε = 5, zε = 6.4,                 xε = 5, zε = 3.6. 

 

 
(b) xε changed,                xε = zε = 5,              xε = 3.6, zε = 5,                  xε = 6.4, zε = 5. 

Fig. 5. Radar cross section versus the directivity for the isotropic, positive uniaxial 
anisotropic and negative uniaxial anisotropic substrates. 
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Figures 3 and 4 show the influence of uniaxial anisotropy in the substrate on the radiation 

and the radar cross section displayed as a function of the angle θ  at °= 0φ  plane and at the 

frequency 5.95 Ghz, where the isotropic( zε = xε ), positive uniaxial anisotropic ( zε > xε ) and 

negative uniaxial anisotropic substrates ( zε < xε ) are considered, a rectangular patch 

antenna with dimensions a=1.5cm, b=1.0 cm is embedded in a single substrate with 

thickness h=0.2 cm. The obtained results can be seen to be the same as discussed previously 

in the case of the resonant frequency, moreover the permittivity zε  along the optical axis is 

the most important factor in determining the resonant frequency, the radiation and the 

radar cross section when the pair ( xε , zε ) changes.  
The same remarks hold for the variation of the radar cross section versus the directivity 
figures (5. a, b). 
It is worth noting that the radar cross section in equation (39) is calculated at one frequency. 
If one needs the radar cross section over a frequency range, this calculation must be 
repeated for the different frequencies of interest. 

4. Conclusion 

The moment method technique has been developed to examine the resonant frequency, the 

radiation, the half power band width, the directivity and the scattering radar cross section of 

a rectangular microstrip patch antenna. The boundary condition for the electric field was 

used to derive an integral equation for the electric current, the Galerkin's procedure of the 

moment method with entire domain sinusoidal basis functions without edge condition was 

investigated, the resulting system of equations was solved for the unknown current modes 

on the patch, it is important to note that the dyadic Green’s functions of the problem were 

efficiently determined by the (TM, TE) representation. Since there has been a little work on 

the scattering radar cross section of patch antennas including the effect of uniaxial 

anisotropic substrate in the literature, a number of results pertaining to this case were 

presented in this chapter. The obtained results show that the use of the uniaxial anisotropy 

substrates significantly affects the characterization of the microstrip patch antennas. The 

numerical results indicate that the resonant frequency and the half power band width are 

increased due to the positive uniaxial anisotropy when xε change, on the other hand, 

decreased due to the negative uniaxial anisotropy. Moreover the zε  permittivity has a 

stronger effect on the resonant frequency, the radiation and the radar cross section than the 

permittivity xε . Also the effect of the uniaxial substrate on the radar cross section versus the 

directivity was presented. Accuracy of the computed techniques presented and verified with 

other calculated results. 

A new approach for enhancement circular polarisation output in the rectangular patch 

antenna based on the formulation presented in this chapter is in progress and will be the 

subject of a future work, when two chamfer cuts will be used to create the right or the left 

handed circular polarisation by exciting simultaneously two nearly degenerate patch 

modes. The analysis presented here can also be extanded to study a biaxially anisotropic 

substrate and the effect of dielectric cover required for the protection of the antenna from 

the environment. Also the radar cross section monostatic and bistatic and the other antenna 

characteristics will be study for this case in our future work. 
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