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1. Introduction     

In recent years, Multi-Input Multi-Output (MIMO) communications are introduced as an 

emerging technology to offer significant promise for high data rates and mobility required 

by the next generation wireless communication systems. Using multiple transmit as well as 

receive antennas, a MIMO system exploits spatial diversity, higher data rate, greater 

coverage and improved link robustness without increasing total transmission power or 

bandwidth (Tse & Viswanath, 2005). However, MIMO relies upon the knowledge of 

Channel State Information (CSI) at the receiver for data detection and decoding. It has been 

proved that when the channel is Rayleigh fading and perfectly known to the receiver, the 

performance of a MIMO system grows linearly with the number of transmit or receive 

antennas, whichever is less (Numan et al., 2009). Therefore, an accurate and robust channel 

estimation is of crucial importance for coherent demodulation in wireless MIMO systems. 

Use of MIMO channels, when bandwidth is limited, has much higher spectral efficiency 

versus Single-Input Single-Output (SISO), Single-Input Multi-Output (SIMO), and Multi-

Input Single-Output (MISO) channels. It is shown that the maximum achievable diversity 

gain of MIMO channels is the product of the number of transmitter and receiver antennas. 

Therefore, by employing MIMO channels not only the mobility of wireless communications 

can be increased, but also its robustness against fading that makes it efficient for the 

requirements of the next generation wireless services. To achieve maximum capacity and 

diversity gain, some optimization problems should be considered (Yatawatta et al., 2006). 

The emergence of MIMO communication systems as practical high-data-rate wireless 
communication systems has created several technical challenges to be met. On the one hand, 
there is potential for enhancing system performance in terms of capacity and diversity. On 
the other hand, the presence of multiple transceivers at both ends has created additional cost 
in terms of hardware and energy consumption. For coherent detection as well as to do 
optimization such as water filling and beamforming, it is essential that the MIMO channel is 
known. However, due to the presence of multiple transceivers at both the transmitter and 
receiver, the channel estimation problem is more complicated and costly compared to a 
SISO system. Of concern, however, is the increased complexity associated with multiple 
transmit/receive antenna systems. First, increased hardware cost is required to implement 
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multiple Radio Frequency (RF) chains and adaptive equalizers. Second, increased 
complexity and energy is required to estimate large-size MIMO channels. Energy 
conservation in MIMO systems has been considered in different perspectives. For instance, 
hardware level optimization can be used to minimize energy. On the other hand, energy 
consumption can be minimized at the receiver by using low-rank equalization or/and 
reducing the order of MIMO systems by selection of antennas both at the receiver and 
transmitter, without degrading the system performance (Karami & Shiva, 2006).   
In order to attain the advantages of MIMO systems and quarantee the performance of 
communication, effective channel estimation algorithms are needed. Many channel 
estimation (identification) algorithms have been developed in recent years. In the literature, 
three classes of methods to estimate the channel response are presented. They include 
Training Based Channel Estimation (TBCE) schemes relying on training sequences that are 
known to the receiver (Xie et al., 2007: Biguesh & Gershman, 2006: Nooalizadeh et al., 2009: 
Nooralizadeh & Shirvani Moghaddam, 2010), Blind Channel Estimation (BCE) methods 
(Sabri et al., 2009: Panahi & Venkat, 2009: Chen & Petropulu, 2001), identifying channel only 
from the received sequences, and Semi Blind Channel Estimation (SBCE) approaches as 
combination of two aforementioned procedures (Cui & Tellambura, 2007: Wo et al., 2006: 
Chen et al., 2007: Abuthinien et al., 2007: Khalighi & Bourennane, 2008).   
One of the most usual approaches to identify MIMO CSI is TBCE. This class of estimation is 
attractive especially when it decouples symbol detection from channel estimation and thus 
simplifies the receiver implementation and relaxes the required identification conditions. In 
this scheme, the channel is estimated based on the received data and the knowledge of 
training symbols during training symbol transmit. Then, the acquired knowledge of the 
channel is used for data detection. TBCE schemes can be optimal at high Signal to Noise 
Ratios (SNRs), but they are suboptimal at low SNRs. The optimal choice of training signals 
is usually investigated by minimizing Mean Square Error (MSE) of the linear MIMO channel 
estimator. It is perceived that optimal design of training sequences is connected with the 
channel statistical characteristics (Hassibi & Hochwald, 2003). 
Many blind channel estimation techniques can be found in the literature, and a good 
overview is given in (Tong & Perreau, 1998). The blind channel estimation methods can be 
classified into Higher-Order Statistics (HOS) based techniques (Cardoso, 1989: Comon, 1994: 
Chi et al., 2003) and Second Order Statistics (SOS) based techniques (Chang et al., 1997). 
Blind algorithms typically require longer data records and entail higher complexity. 
Semi-blind channel estimation schemes, as the main core of this chapter, use a few training 
symbols to provide the initial MIMO channel estimation and exchange the information 
between the channel estimator and the data detector iteratively (Fang et al., 2007). The main 
steps of proposed SBCE-ML method (Shirvani Moghaddam & Saremi, 2010) are as follows: 
Step 1. Initial channel estimation by using the training only; 
Step 2. *Given channel knowledge, perform data detection; 
            *Given data decisions, perform channel estimation by taking the whole burst as  a 

virtual training; 
Step 3. Repeat step 2 until a certain stopping criterion is reached. 
Several solutions have been proposed to minimize the computational cost, and hence the 
energy spent in channel estimation of MIMO systems. In (Yatawatta et al., 2006) authors 
present a novel method of minimizing the overall energy consumption. Unlike existing 
methods, this method considers the energy spent during the channel estimation phase 
which includes transmission of training symbols, storage of those symbols at the receiver, 
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and also channel estimation at the receiver. Also they developed a model that is 
independent of the hardware or software used for channel estimation, and use a divide-and-
conquer strategy to minimize the overall energy consumption. 
In (Numan et al., 2009), a better performance and reduced complexity channel estimation 

method is proposed for MIMO systems based on matrix factorization. This technique is 

applied on training based Least Squares (LS) channel estimation for performance 

improvement. Experimental results indicate that the proposed method not only alleviates 

the performance of MIMO channel estimation but also significantly reduces the complexity 

caused by matrix inversion. Simulation results show that the Bit Error Rate (BER) 

performance and complexity of the proposed method clearly outperforms the conventional 

LS channel estimation method. 

In (Song & Blostein, 2004), authors focused on the achievable Symbol Error Rate (SER) 

performance of a MIMO link with interference. Prior results on estimation of vector 

channels and spatial interference statistics for Code Division Multiple Access (CDMA) SISO 

systems. Most studies of channel estimation and data detection for MIMO systems assume 

spatially and temporally white interference. For example, Maximum Likelihood (ML) 

estimation of the channel matrix using training sequences was presented assuming 

temporally white interference. Assuming perfect knowledge of the channel matrix at the 

receiver, ordered Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) detection 

were studied for both spatially and temporally white interference. However, in cellular 

systems, the interference is, in general, both spatially and temporally colored. This paper 

proposes a new algorithm that jointly estimates the channel matrix and the spatial 

interference correlation matrix in an ML framework. It develops a multi-vector-symbol 

MMSE data detector that exploits interference correlation.   

In (Zaki et al., 2009), a training-based channel estimation scheme for large non-orthogonal 

Space-Time Block Coded (STBC) MIMO systems is proposed. The proposed scheme 

employs a block transmission strategy where an ௧ܰ × ௧ܰ pilot matrix is sent (for training 

purposes) followed by several ௧ܰ × ௧ܰ square data STBC matrices, where ௧ܰ is the number of 

transmit antennas. At the receiver, channel estimation (using an MMSE estimator) and 

detection (using a low-complexity Likelihood Ascent Search (LAS) detector) will be iterated 

till convergence or for a fixed number of iterations. Simulation results of this research show 

that good BER and high capacity are achieved by the proposed scheme at low complexities.   

Joint channel estimation, data detection, and tracking are the most important issues in 

MIMO communications. Without joint estimation and detection, inter substream 

interference occurs. Joint estimation and detection algorithms used in MIMO channels are 

developed based on MultiUser Detection (MUD) algorithms in CDMA systems. ML is the 

optimum detecor in these type of joint channel estimation and data detection algorithms. In 

(Karami & Shiva, 2006), a new approach for joint data estimation and channel tracking for 

MIMO channels is proposed based on the Decision-Directed Recursive Least Squares (DD-

RLS) algorithm. RLS algorithm is commonly used for equalization and its application in 

channel estimation is a novel idea. In this paper, after defining the weighted least squares 

cost function it is minimized and eventually the RLS MIMO channel estimation algorithm is 

derived. The proposed algorithm combined with the Decision-Directed Algorithm (DDA) is 

then extended for the blind mode operation. From the computational complexity point of 

view being O(3) versus the number of transmitter and receiver antennas, the proposed 
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algorithm is very efficient. Also, through various simulations, the MSE of the tracking of the 

proposed algorithm for different joint detection algorithms is compared with Kalman 

filtering approach which is one of the most well-known channel tracking algorithms.   

The aim of (Rizogiannis et al., 2010) is to investigate receiver techniques for ML joint 

channel/data estimation in flat fading MIMO channels, that are both data efficient and 

computationally attractive. The performance of iterative LS for channel estimation combined 

with Sphere Decoding (SD) for data detection is examined for block fading channels, 

demonstrating the data efficiency provided by the semi-blind approach. The case of 

continuous fading channels is addressed with the aid of RLS. The observed relative 

robustness of the ML solution to channel variations is exploited in deriving a block QR-

based RLS-SD scheme, which allows significant complexity savings with little or no 

performance loss. The effects on the algorithms’ performance of the existence of spatially 

correlated fading and Line-Of-Sight (LOS) paths are also studied. For the multi-user MIMO 

scenario, the gains from exploiting temporal/spatial interference color are assessed. The 

optimal training sequence for ML channel estimation in the presence of Co-Channel 

Interference (CCI) is also derived and shown to result in better channel estimation/faster 

convergence. The reported simulation results demonstrate the effectiveness, in terms of both 

data efficiency and performance gain, of the investigated schemes under realistic fading 

conditions. High throughput at a communication systems require high quality channel 

estimation at the receiver in order to provide reliable data detection, such as that performed 

by ML techniques. The channel estimation task is especially challenging in time varying 

channels, such as the one soften arising in wireless communication links.  

This paper (Wo et al., 2006) deals with joint data detection and channel estimation for 
frequency-selective MIMO systems with focus on the analysis of the channel estimator. First, 
it presents a scheme alternating between joint Viterbi detection and LS channel estimation 
and analyze its performance in terms of unbiasedness. Since in the proposed technique the 
channel estimator exploits both known pilot symbols (non-blind) as well as unknown 
information bearing symbols (blind), this channel identification scheme is referred to as 
semi-blind. Second, it derives the Cramer-Rao Lower Bound (CRLB) for semi-blind channel 
estimation of frequency selective MIMO channels, which provides a theoretical lower bound 
of the achievable MSE of any unbiased estimator. By simulation the MSE performance of the 
proposed algorithm is evaluated and compared to the CRLB. The obtained results are 
universal for systems with an arbitrary number of antennas and an arbitrary channel 
memory length. As an example, a SBCE algorithm with LS channel estimator and ML data 
detector will be first introduced and analyzed. It will be shown that the presented semiblind 
channel estimator is biased at low SNR but tends to be unbiased at high SNR.  Interestingly 
but reasonably, the MMSE achievable by any unbiased channel estimator at high SNR will 
be the same as that all data symbols are a-priori known at the receiver, but only the training 
symbols are known at low SNR. Simulation results show that the MSE performance of the 
presented SBCE coincides with the CRLB at high SNRs but exceeds CRLB at low SNRs due 
to biasing. Of particular interest is the SNR value where a semiblind channel estimator begin 
to approach the CRLB, which means that a SBCE will be able to fully exploit the channel 
information carried by all observations for SNRs larger than this value.   
Reliable coherent communication over mobile wireless channels requires accurate 
estimation of time-varying multipath channel parameters. Traditionally, channel estimation 
is achieved by sending training sequences or using pilot channels. Recently, there is a 
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growing interest in training or pilot-based channel estimation for Direct Sequence CDMA 
(DS-CDMA) systems. In (Rizanera et al., 2005), authors address the problem of mobile radio 
channel estimation at high channel efficiency using a small number of training symbols. A 
decision aided channel estimation scheme is proposed for slow fading multipath DS-CDMA 
channels. The approach is an extension of single-user LS channel estimation. It is 
demonstrated that, due to the suggested channel estimate updating algorithm, the proposed 
scheme improves the channel estimation accuracy significantly. An adaptive method has 
been considered to provide channel estimates. In this method, the received signal is 
correlated with the locally generated spreading code at each multipath delay for channel 
estimation at each symbol interval. 
By using MIMO technology an increase in the system capacity and/or an improvement in 
the quality of service can be achieved. The key to fully utilize the MIMO capacity relies 
heavily on the requirement of accurate MIMO channel estimation. This chapter have a 
review on TBCE as well as SBCE methods and offers some comparative simulation results. 
Simulations are done in different cases, MIMO 2×2 with and without space-time Alamouti 
coding, and also MIMO 4×4 to see the effect of the number of antenna elements. In addition, 
performance of different estimators, LS, Linear MMSE (LMMSE), ML and Maximum A‘ 
Posteriori (MAP) are evaluated based on BER and SER with respect to perfect channel 
estimator. It also proposes the proper method to estimate flat fading MIMO channels that 
uses LS estimator and ML detector in a joint state.  

2. System model 

Consider a MIMO system equipped with ்ܰ transmit antennas and ோܰ receive antennas. 
The block diagram of a typical MIMO 2×2 is shown in Fig. 1. 
 

 

Fig. 1. General architecture of a MIMO 2×2. 
where ݔଵ, ݔଶ are the input (transmitted) signals of time slot 1 in locations ܣ and ܤ, 
respectively. ݔଵᇱ ଶᇱݔ ,   are associated input signals of time slot 2.  

It is assumed that the channel coherence bandwidth is larger than the transmitted signal 
bandwidth so that the channel can be considered as narrowband or flat fading. Furthermore, 
the channel is assumed to be stationary during the communication process of a block. 
Hence, by assuming the block Rayleigh fading model for flat MIMO channels, the channel 
response is fixed within one block and changes from one block to another one randomly. 
During the training period, the received signal in such a system can be written as (1) 
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ࢅ  ൌ .ܪ ࢄ ൅  (1)    ࡺ

where ࢄ ,ࢅ and ࡺ are the complex ோܰ-vector of received signals on the ோܰ receive antennas, 
the possibly complex ்ܰ-vector of transmitted signals on the ்ܰ transmit antennas, and the 
complex ோܰ-vector of additive receiver noise, respectively. The elements of the noise matrix 
are independent and identically distributed (i.i.d.) complex Gaussian random variables with 
zero-mean and  ߪ௡ଶ variance, and the correlation matrix of ࡺ is then given by (Ma et al., 2005): 

 ܴ ൌ ுࡺሼܧ . ሽࡺ ൌ .௡ଶߪ  ோܰ . ேುܫ    (2) 

where (.)H is reserved for the matrix hermitian, ܧሼ. ሽ is the mathematical expectation, and ܫேು 

denotes the ௉ܰ ൈ ௉ܰ identity matrix. ௉ܰ is the number of transmitted training symbols by 
each transmitter antenna. The matrix ܪ in the model (1) is the ோܰ ൈ ்ܰ matrix of complex 
fading coefficients. The ሺ݉, ݊ሻ-th element of the matrix ܪ denoted by ݄௠,௡ represents the 

fading coefficient value between the ݉-th receiver antenna and the ݊-th transmitter antenna. 
Here, it is assumed that the MIMO system has equal transmit and receive  antennas. 
The elements of ܪ and noise are independent of each other. In order to estimate the channel 
matrix, it is required that Pܰ  ൒  NT training symbols are transmitted by each transmitter 
antenna. The function of a channel estimation algorithm is to recover the channel matrix ܪ 
based on the knowledge of ܻ and ܺ (Shirvani Moghaddam & Saremi, 2010). 
As depicted in Fig. 1, output (received) signals in locations ܥ and ܦ are as follow: 

۔ە 
௡ଵݕۓ ൌ ݄ଵଵ. ଵݔ ൅ ݄ଶଵ. ଶݔ ൅ ݊ଵݕ௡ଶ ൌ ݄ଵଶ. ଵݔ ൅ ݄ଶଶ. ଶݔ ൅ ݊ଶݕ௡ଵᇱ ൌ ݄ଵଵ. ଵᇱݔ ൅ ݄ଶଵ. ଶᇱݔ ൅ ݊ଵᇱݕ௡ଶᇱ ൌ ݄ଵଶ. ଵᇱݔ ൅ ݄ଶଶ. ଶᇱݔ ൅ ݊ଶᇱ ۙۘ

ۗ
      (3) 

where ݕ௡ଵ, ௡ଵᇱݕ .respectively ,ܦ and ܥ ௡ଶ are the output signals of time slot 1 in locationsݕ , ௡ଶᇱݕ  

are associated output signals of time slot 2. ݊ଵ, ݊ଶ, ݊ଵᇱ , ݊ଶᇱ  are independent Additive White 

Gaussian Noises (AWGN). In (Alamouti, 1998), Alamouti proposed the first space-time 

coding for a MIMO 2×2 system. The proposed matrix is as follow:   

                             S=ቂ ଵݏ כଶݏଶെݏ  ቃ      (4)כଵݏ

which means that in the first time slot, ݏଵ and ݏଶ will be sent and in the second one, െݏଶכ and ݏଵכ will be transmitted. Following equations can be used to decoding process: 

 ൜ݔ෤ଵ ൌ ݄ଵଵכ . ଵଵݕ ൅ ݄ଵଶ. כଵଶݕ ൅ ݄ଶଵכ . ଶଵݕ ൅ ݄ଶଶ. ෤ଶݔכଶଶݕ ൌ ݄ଵଶכ . ଵଵݕ െ ݄ଵଵ. כଵଶݕ ൅ ݄ଶଶכ . ଶଵݕ െ ݄ଶଵ. כଶଶݕ            (5) 

This kind of coding is used in this research. Simulation results show its great effect on the 

performance of the channel estimators in both TBCE and SBCE-ML schemes. 

3. Channel estimators 

As illustrated in Table 1, there are many algorithms to estimate the channel response from 

training sequence. As shown in introduction and also (Leus & Von Der Veen, 2005: Murthy 

et al., 2006), LS, LMMSE, ML, and MAP are the famous and more applicable estimators. In 

this investigation, perfect estimator (inverse matrix) is a proper reference to compare the 
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estimators. This reference method offers minimum BER in the case of a Rayleigh flat fading 

MIMO channel or AWGN.  
 

Channel Estimator Estimation Formula 

Perfect ܪ௉௘௥௙௘௖௧ ൌ .ࢅ  ଵିࢄ

LS ܪ௅ௌ ൌ ሺࢄு. .ሻିଵࢄ .ுࢄ  ࢅ

LMMSE ܪ௅ெெௌா ൌ ሺߪ௡ଶ. ுିܥ ଵ ൅ .ுࢄ .ሻିଵࢄ .ுࢄ  ࢅ

ML ܪெ௅ ൌ ሺࢄு . ுܥ . .ሻିଵࢄ .ுࢄ .ுܥ  ࢅ

MAP ܪெ஺௉ ൌ ሺࢄு . ௡ିܥ ଵ. ࢄ ൅ .ுሻିଵܥ .ுࢄ ௡ିܥ ଵ.  ࢅ

Table 1. Different Channel Estimators  
where ሺ. ሻିଵ is reserved for the matrix inverse, ܥு and ܥ௡ denote channel and noise 
covariances, respectively.  

3.1 Perfect estimator 
Perfect estimator is the simplest algorithm to estimate the channel matrix. By setting the 
noise equal to zero in (1), the perfect approach estimates the channel matrix as 

௉௘௥௙௘௖௧ܪ  ൌ .ࢅ  ଵ           (6)ିࢄ

Using equation (6), sub-channel responses are simply obtained by 

 

ەۖۖ
۔ۖۖ
ଵଵ݄ۓۖۖ ൌ ௬೙భ௫భ െ ௫మ ௫భ . ሺ௬೙భᇲ ି೤೙భೣభ .௫భᇲ௫మᇲ ିೣమೣభ.௫భᇲ ሻ

݄ଵଶ ൌ ௬೙మ௫భ െ ௫మ ௫భ . ሺ௬೙మᇲ ି೤೙మೣభ .௫భᇲ௫మᇲ ିೣమೣభ.௫భᇲ ሻ
݄ଶଵ ൌ ௬೙భᇲ ି೤೙భೣభ .௫భᇲ௫మᇲ ିೣమೣభ.௫భᇲ݄ଶଶ ൌ ௬೙మᇲ ି೤೙మೣభ .௫భᇲ௫మᇲ ିೣమೣభ.௫భᇲ

        (7) 

Substituting (7) back into noise-free version of (3), input signals can be expressed as 

 

ەۖۖ
۔ۖ
ଵ௘௦௧ݔۓۖ ൌ ௬೙భି௛మభ.ቀ೤೙మ.೓భభష೓భమ.೤೙భ೓భభ.೓మమష೓భమ.೓మభ ቁ௛భభݔଶ௘௦௧ ൌ ௬೙మ.௛భభି௛భమ.௬೙భ௛భభ.௛మమି௛భమ.௛మభݔଵ௘௦௧ᇱ ൌ ௬೙భᇲ ି௛మభ.൬೤೙మᇲ .೓భభష೓భమ.೤೙భᇲ೓భభ.೓మమష೓భమ.೓మభ ൰௛భభݔଶ௘௦௧ᇱ ൌ ௬೙మᇲ .௛భభି௛భమ.௬೙భᇲ௛భభ.௛మమି௛భమ.௛మభ

    (8) 

where ݔଵ௘௦௧ , ଵ௘௦௧ᇱݔ and ,ܤ and ܣ ଶ௘௦௧ are the estimated  input signals of time slot 1 in locationsݔ , ଶ௘௦௧ᇱݔ  are associated estimated input signals of time slot 2, respectively.  
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3.2 LS estimator 
Considering (1), LS estimator finds ܪ௘௦௧ so that ࢄ. ௘௦௧ܪ ൎ  LS Algorithm, minimizes the .ࢅ
Euclidian distance of ࢄ. ௘௦௧ܪ െ .ࢄFor this minimization we do following steps: ԡ .ࢅ ௘௦௧ܪ െ ԡଶࢅ ൌ ሺࢄ. ௘௦௧ܪ െ ሻுࢅ . ሺࢄ. ௘௦௧ܪ െ ሻࢅ ൌ                                                       ሺࢄ. .௘௦௧ሻுܪ ሺࢄ. ௘௦௧ሻܪ െ ுࢅ . .ࢄ ௘௦௧ܪ െ ሺࢄ. ௘௦௧ሻுܪ . ࢅ ൅ .ுࢅ  (9)     ࢅ

By differentiating (9) with respect to ܪ௘௦௧ and setting the result equal to zero, it is obtained 
that ܪ௘௦௧ should satisfy the equation (10) 

.ுࢄʹ  .ࢄ ௘௦௧ܪ െ .ுࢄʹ ࢅ ൌ Ͳ ՜ ுࢄ . .ࢄ ௘௦௧ܪ ൌ .ுࢄ  (10)      ࢅ

Finally, the LS channel estimation algorithm is based on (11) 

௅ௌܪ  ൌ  ሺࢄு. .ሻିଵࢄ .ுࢄ  (11)            ࢅ

3.3 LMMSE estimator 
For linear model (1), the MMSE and LMMSE estimators are identical. So, let us minimize the 
estimation MSE of ܪ. It can be expressed in the following form:  

௅ெெௌாܪ  ൌ min ܪሼԡܧ െ  ௘௦௧ԡଶሽ      (12)ܪ

Assuming ܧሺܪሻ ൌ Ͳ and noise is AWGN, we can obtain that (12) will be minimized as 

௅ெெௌாܪ  ൌ  ሺߪ௡ଶ. ுିܥ ଵ ൅ .ுࢄ .ሻିଵࢄ .ுࢄ  (13)      ࢅ

Comparing (13) and (11), it is obvious that 

௅ெெௌாܪ  െ ௅ௌܪ ൌ .௡ଶߪ  .ுܥ .ுࢄ  (14)     ࢅ

(14) shows that LMMSE needs to find an additional term compared to LS estimator. This 
term depends on previous data and introduces more computational complexity.  

3.4 ML estimator 
To identify ܪ from (1), the ML approach maximizes (15) 

ெ௅ܪ  ൌ  maxு  ሻ      (15)ܪ|ࢅሺ݌ 

where ݌ሺܪ|܇ሻ is the conditional probability of received signal respect to channel response. It 
is given that the ML channel estimator (15) yields 

ெ௅ܪ  ൌ  ሺࢄு . ுܥ . .ሻିଵࢄ .ுࢄ .ுܥ  (16)     ࢅ

3.5 MAP estimator 
In order to estimate the channel response, in addition training bits, MAP estimator needs to 

find channel covariance as well as noise covariance. MAP channel estimate is in accordance 

with previous conditional probability ݌ሺࢅ|ܪ,  ሻ. MAP channel estimate can be found byࢄ

solving the following equation: 

 
డ ୪୬ሺ௣ሺு|ࢄ,ࢅሻሻడு |ுୀுಾಲು ൌ Ͳ    (17) 
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By using the Bay’s identity (18) and solving the equation (17), MAP channel estimate can be 
found as (19) 

,ࢅ|ܪሺ݌  ሻࢄ ൌ ௣ሺࢅ|ு,ࢄሻ.௣ሺு,ࢄሻ௣ሺࢄ|ࢅሻ     (18) 

ெ஺௉ܪ  ൌ  ሺࢄு . ௡ିܥ ଵ. ࢄ ൅ .ுሻିଵܥ .ுࢄ ௡ିܥ ଵ.  (19)    ࢅ

4. Simulation results of TBCE 

In order to compare the performance of LS, LMMSE, ML, and MAP estimators in TBCE for 

MIMO channels, three cases, MIMO 2×2 without coding, MIMO 4×4, and Alamouti coded 

MIMO 2×2 are simulated. Simulation results show the performance of different estimators 

in terms of three metrics (BER, SER, and required processing time). For the sake of 

simplicity and without loss of generality, we assume Rayleigh flat fading MIMO channel 

with AWGN, 4QAM modulation, 8 training bits for MIMO 2×2 (்ܰ  ൌ ோܰ ൌ ʹ) and 32 bits 

for MIMO 4×4 (்ܰ  ൌ ோܰ ൌ Ͷ) which are generated randomly and followed by 400 data bits. 

It is notable that when each point in our figures is obtained by averaging over 1000 

independent simulation runs, the numerical and analytical results are almost identical.  

Fig. 2 shows the BER as well as SER of different estimators in the case of TBCE. As depicted, 

LS estimator has the better peformace (Lower BER and SER) rather than LMMSE, ML and 

MAP estimators and its performance is close to the perfect one. 

 

 

Fig. 2. Performance metrics (BER, SER) versus SNR for a MIMO 2×2 (TBCE). 

As shown in Fig. 3, increasing the number of transmit antennas leads to increase the 

performance estimators, but it is highlighted in LS. It means, the performance of LS 

algorithm in a MIMO 4×4 system is improved respect to MIMO 2×2. As before, increasing 

the SNR is the reason for decreasing BER and SER of all estimators but it is more effective 

for LS one. 

The BER and SER of TBCE versus SNR for various channel estimators in the case of MIMO 

2×2 with Alamouti coding, are shown in Fig. 4. Comparing Fig. 4 and Fig. 2, it is observed 

that the BER and SER of all estimators are decreased using Alamouti coding especially at 

low SNRs. 

Considering the processing time of TBCE equipped with prefect estimator equal to 100, Fig. 

5 shows the processing time for other estimators respect to the perfect one. As expected, 

minimum processing time belongs to LS estimator. 
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Fig. 3. Performance metrics (BER, SER) versus SNR for a MIMO 4×4 (TBCE). 

 
 

 

Fig. 4. Performance metrics (BER, SER) versus SNR for an Alamouti coded MIMO 2×2 (TBCE). 

5. Simulation results of SBCE 

For pure TBCE schemes, a long training is necessary in order to obtain a reliable MIMO 
channel estimate which reduces the system bandwidth efficiency considerably. SBCE-ML 
schemes require less computational complexity than blind methods and fewer training 
symbols than training-based methods, making them attractive for practical implementation. 
TBCE algorithms use only the training sequences to perform channel estimation, while a 
SBCE algorithm takes the data symbols also into account. Since the data symbols are 
practically unknown, before they can be used for channel estimation, the receiver has to 
perform detection in advance. Thus, the task of channel estimation changes into joint 
estimation of channel and data symbols. 
By refining the channel estimate and the data decisions in a recursive manner, considerable 
performance gain can be achieved step by step. As depicted in Fig. 6, in an iterative 
structure, output of estimator is applied to detector for detecting data bits and also output of 
detector is applied to the estimator as virtual bits and to estimate the channel again. This 
iterative procedure runs until a criterion is achieved [Shirvani Moghaddam & Saremi, 2010]. 
For example, difference of estimation for two successive iterations is lower than a level. LS, 
LMMSE, ML and MAP estimators may be used in estimation part but ML detector is more 
attractive in semi-blind joint estimation and detection schemes. In the first step, channel 
response is estimated considering short training bits. Then, by using the ML detector, 
symbols are detected according to (20): 
 

௘௦௧ࢄ  ൌ arg minࢄഥࢄא ቄฮࢅ െ .ܪ ෩ฮிଶࢄ ቅ     (20) 
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Fig. 5. Relative processing time of different estimators with respect to perfect one in a 
MIMO 2×2 (TBCE). 
 

 

Fig. 6. Iterative structure of channel estimation and data detection in SBCE. 

where ܪ௘௦௧ is used for detecting ࢄ௘௦௧ and previous detected data is the virtual training 
sequence to next estimation. ||. ||ி denotes the Frobenius norm. This process will be 
continued until (21) be satisfied. 

 ൫ܪ௘௦௧,௜ , ௘௦௧,௜൯ࢄ ൌ ሺܪ௘௦௧,௜ିଵ,  ௘௦௧,௜ିଵሻ   (21)ࢄ

The proposed method can be summarized as follow:  ͳ.  ݅ ൌ Ͳ: ܪ଴ ሺ݅ ݀݁݊ݔ݁݀݊݅ ݊݋݅ݐܽݎ݁ݐ݅ ݄݁ݐ ݏ݁ݐ݋ሻ; ʹ.  ݅ ൌ ݅ ൅ ͳ; ܽ. .ܾ ݊݋݅ݐܿ݁ݐ݁ܦ ܽݐܽܦ ܮܯ .͵ ݊݋݅ݐܽ݉݅ݐݏܧ ݈݄݁݊݊ܽܥ ,݅,ݐݏ݁ܪ൫   ݈݅ݐ݊ݑ ʹ ݌݁ݐݏ ݐܽ݁݌ܴ݁ ൯݅,ݐݏ݁ࢄ ൌ ሺݐݏ݁ܪ,݅െͳ,                                                                                 െͳሻ݅,ݐݏ݁ࢄ
In the next subsections, simulation results of SBCE-ML method for a Rayleigh flat fading 
MIMO system in three cases, MIMO 2×2 (with and without Alamouti coding) and MIMO 
4×4 are presented. For this type of channel estimation, 8 and 32 training bits are used for 
MIMO 2×2 and MIMO 4×4, respectively followed by 40000 data bits. simulation results of 
SBCE scheme are presented to find the efficient estimator with good performance (BER as 
well as SER) and lower processing time.   

100

71.4
80 81 81

Perfect LS LMMSE ML MAP

TBCE
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Fig. 7 illustrates the BER as well as SER of SBCE-ML using various estimators versus 
different SNR for a Rayleigh flat fading MIMO 2×2 channel. It is obvious that, increasing 
SNR is the reason for decreasing both BER and SER. As depicted, not only the performance 
of LS algorithm is better than other estimators but also is close to the perfect one.  
 

 
 

Fig. 7. Performance metrics (BER, SER) versus SNR for a MIMO 2×2 (SBCE-ML). 

Increasing the number of transmit antennas leads to decreasing the performance estimators, 
except LS.  As shown in Fig. 8, the performance of LS algorithm in a MIMO 4×4 system is 
improved respect to MIMO 2×2. In the other hand, a power gain or SNR improvement will 
be achieved. For example in SBCE-ML, transmitting power will be saved about 3 dB, if BER 
equals to 0.3. 
 

 

Fig. 8. Performance metrics (BER, SER) versus SNR for a MIMO 4×4 (SBCE-ML). 

The BER and SER of SBCE-ML method versus SNR for various channel estimators in the 
case of MIMO 2×2 with Alamouti coding, are shown in Fig. 9. it is observed that the LS 
estimator outperforms the other estimators especially at low SNRs. 
 

  

Fig. 9. Performance metrics (BER, SER) versus SNR for an Alamouti coded MIMO 2×2 
(SBCE-ML). 
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Fig. 10 shows the processing time for different estimators (LS, LMMSE, ML, MAP) with 
respect to the perfect estimator in SBCE-ML scheme. In this figure, required time for perfect 
one is considered as 100 and other estimators‘ processing time is evaluated based on the 
perfect one. It is obvious that minimum processing time belongs to LS estimator.   
 

 
Fig. 10. Relative processing time of different estimators with respect to perfect one in a 
MIMO 2×2 (SBCE). 

6. Comparison of LS-based TBCE and joint LS-estimation & ML-detection 
SBCE 

Simulation results of TBCE and SBCE-ML methods show that the required processing time 
and both BER and SER of LS estimator compared with other estimators is much better. In 
this section by focusing on LS estimator, LS-based TBCE and LS-based SBCE-ML are 
compared in a MIMO 2 × 2 (with and without Alamouti coding) and a MIMO 4×4, for 
different SNRs based on BER, SER, required channel estimation processing time and relative 
length of training bits.   
Fig. 11 indicates the BER and SER metrics of LS-based TBCE and LS-based SBCE-ML 
schemes for different SNRs. As shown, for both TBCE and SBCE-ML methods, increasing 
SNR is the reason for decreasing both BER and SER. As depicted in this figure, SBCE-ML 
offers a bit better performance rather than TBCE.  

 

Fig. 11. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes  in 
different SNRs for a MIMO 2×2. 
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As shown in Fig. 12, the performance of both LS-based TBCE and SBCE-ML schemes in a 
MIMO 4×4 system is improved respect to MIMO 2×2. In the other hand, a power gain or 
SNR improvement will be achieved. For example in SBCE-ML, transmitting power will be 
saved about 3 dB, if BER equals to 0.3. In TBCE method, for BER equals to 0.2, transmitting 
power will be saved about 0.5 dB. It is worthwhile to note that the excess of transmit or/and 
receive antennas in MIMO systems leads to a higher capacity. 
 

 

Fig. 12. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes in 
different SNRs for a MIMO 4×4. 

The BER and SER of both LS-based TBCE and SBCE-ML schemes versus SNR in the case of 
MIMO 2×2 with Alamouti coding, are shown in Fig. 13. As shown in this figure, when SNR 
equals to 0.25 dB, BER is 0.0130 for SBCE-ML and 0.0386 for TBCE. It means 3 times better 
performance in lowest SNRs for SBCE-ML method rather than TBCE one. At higher SNRs, 
the performance of LS estimator in both channel estimation schemes is analogous. 
By considering the required processing time of LS-based TBCE and SBCE-ML schemes 
rlated to prefect estimator, Fig. 14 shows that SBCE-ML method needs 25 percent more 
processing time to estimate the channel than TBCE method. It is due to joint LS estimation 
and ML detection of SBCE method.    
Fig. 15, 16 show the required training sequences in each frame of data for TBCE and SBCE-
ML schemes, respectively. As depicted in Fig. 15, in TBCE method, transmitter sends 8 
training bits before 400 information bits in each burst for a MIMO 2×2 system and 32 bits for 
a MIMO 4×4 system. Figure 16, illustrates the required number of training and information 
bits in SBCE-ML method for both MIMO 2×2 and MIMO 4×4. Considering the same training 
bits, 400 information bits in the case of TBCE method are changed to 40000 bits in SBCE-ML. 
As mentioned before, TBCE method needs more bits to estimate the channel because 
training sequences should be transmitted periodically. On the other word, SBCE-ML  
 
 

 

Fig. 13. Performance metrics (BER, SER) of LS-based TBCE and SBCE-ML schemes in 
different SNRs for an Alamouti coded MIMO 2×2. 
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Fig. 14. Relative processing time of LS-based TBCE and SBCE-ML schemes in a MIMO 2×2. 
 

 

Fig. 15. The burst of LS-based TBCE. A) MIMO 2×2, B) MIMO 4×4. 
 

 

Fig. 16. The burst of LS-based SBCE-ML. A) MIMO 2×2, B) MIMO 4×4. 

method needs to transmit just one training sequence. Therefore, redundancies of TBCE 
method are 2% and 8% for MIMO 2×2 and MIMO 4×4 systems, respectively. In the case of 
 SBCE-ML method, redundancies are 0.02% and 0.08%, respectively. It means 100 times 
lower training bits for SBCE-ML respect to TBCE. 

7. Conclusion 

MIMO systems play a vital role in fourth generation wireless systems to provide advanced 
data rate. In order to attain the advantages of MIMO systems, it is necessary that the receiver 
and/or transmitter have access CSI. The time-varying nature of the channel typically requires 
the use of frequent channel retraining, which in turn increases the data overhead due to 
training signals, thus reducing the system’s overall spectral efficiency. Hence, effective channel 
estimation algorithms are needed to guarantee the performance of communication.  
In this chapter, training based as well as semi-blind channel estimation schemes in Rayleigh 
flat fading MIMO systems are investigated. After introducing LS, LMMSE, ML and MAP 
estimators, they are simulated in a Rayleigh flat fading MIMO channel considering AWGN. 
Simulation results show that LS estimator is the best choice in both TBCE and SBCE-ML 
schemes. This selection is due to faster processing and lower BER as well as SER of LS 
estimator with respect to other estimators. In addition, it is illustrated that when the number 
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of transmitter or/and receiver antennas increases, the performance of both TBCE and SBCE-
ML schemes significantly improves. Moreover, Alamouti coding has more effect on the 
performance of SBCE-ML rather than TBCE.   
Comparing LS-based TBCE and LS-based SBCE-ML methods based on BER, SER, required 
training bits, and processing time, simulation results introduce most appropriate channel 
estimation method that uses an iterative algorithm. This new proposed method is based on 
LS estimator and ML detector. According to simulation results, LS-based SBCE-ML method 
compared to LS-based TBCE method in different SNRs offers lower BER and also SER, 25 
percent higher processing time, and 100 times lower training bits.  
Some new research works and simulations can be considered to extend the above 
mentioned results and techniques as follow:  
1. Cosidering the TBCE and SBCE-ML methods for Rician flat fading MIMO channels and 

extending the results of (Shirvani Moghaddam & Saremi, 2010) for these channels; 
2. Applying the new versions of LS algorithm, Scaled LS (SLS) and Shifted SLS (SSLS) 

proposed in (Nooralizadeh & Shirvani Moghaddam, 2010), for SBCE-ML scheme; 
3. Considering the effect of type of training sequence, orthogonal as well as optimum 

(Nooralizadeh et al., 2009),  in channel estimation peformance; 
4. Finding the channel estimation results based on MSE (or Normalized MSE) criteria;   
5. Extending the results of (Nooralizadeh & Shirvani Moghaddam, 2011) and comparing 

TBCE and SBCE-ML schemes in frequency selective fading MIMO channels;  
6. Extending the analytical and simulation results of (Wo et al., 2006) considering the BER 

and SER performance metrics instead of MSE one.  
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