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1. Introduction 

Within the context of structural dynamics, Finite Element (FE) models are commonly used 
to predict the system response. Theoretically derived mathematical models may often be 
inaccurate, in particular when dealing with complex structures. Several papers on FE 
models based on B-spline shape functions have been published in recent years (Kagan & 
Fischer, 2000; Hughes et al, 2005). Some papers showed the superior accuracy of B-spline FE 
models compared with classic polynomial FE models, especially when dealing with 
vibration problems (Hughes et al, 2009). This result may be useful in applications such as FE 
updating. 
Estimated data from measurements on a real system, such as frequency response functions 
(FRFs) or modal parameters, can be used to update the FE model. Although there are many 
papers in the literature dealing with FE updating, several open problems still exist. 
Updating techniques employing modal data require a previous identification process that 
can introduce errors, exceeding the level of accuracy required to update FE models 
(D’ambrogio & Fregolent, 2000). The number of modal parameters employed can usually be 
smaller than that of the parameters involved in the updating process, resulting in ill-defined 
formulations that require the use of regularization methods (Friswell et al., 2001; Zapico et 
al.,2003). Moreover, correlations of analytical and experimental modes are commonly 
needed for mode shapes pairing. Compared with updating methods using modal 
parameters as input, methods using FRFs as input present several advantages (Esfandiari et 
al., 2009; Lin & Zhu, 2006), since several frequency data are available to set an 
over-determined system of equations, and no correlation analysis for mode pairing is 
necessary in general. 
Nevertheless there are some issues concerning the use of FRF residues, such as the number 
of measurement degrees of freedom (dofs), the selection of frequency data and the 
ill-conditioning of the resulting system of equations. In addition, common to many FRF 
updating techniques is the incompatibility between the measurement dofs and the FE model 
dofs. Such incompatibility is usually considered from a dof number point of view only, 
measured dofs being a subset of the FE dofs. Reduction or expansion techniques are a 
common way to treat this kind of incompatibility (Friswell & Mottershead, 1995). A more 
general approach should also take into account the adoption of different dofs in the two 
models. As a matter of result, the adoption of B-spline functions as shape functions in a FE 
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model leads to non-physical dofs, and the treatment of this kind of coordinate 
incompatibility must be addressed.  
In this paper a B-spline based FE model updating procedure is proposed. The approach is 
based on the least squares minimization of an objective function dealing with residues, 
defined as the difference between the model based response and the experimental measured 
response, at the same frequency. A proper variable transformation is proposed to constrain 
the updated parameters to lie in a compact domain without using additional variables. A 
B-spline FE model is adopted to limit the number of  dofs. The incompatibility between the 
measured dofs and the B-spline FE model dofs is also dealt with. 
An example dealing with a railway bridge deck is reported, considering the effect of both 
the number of measurement dofs and the presence on random noise. Results are critically 
discussed. 

2. B-spline shell finite element model 

2.1 B-spline shell model  

A shell geometry can be efficiently described by means of B-spline functions mapping the 
parametric domain ( ), ,ξ η τ  ( )0 , , 1with ξ η τ≤ ≤  into the tridimensional Euclidean space 
(x,y,z). The position vector of a single B-spline surface patch, with respect to a Cartesian 
fixed, global reference frame O, {x,y,z}, is usually defined by a tensor product of B-spline 
functions (Piegl & Tiller, 1997): 

 
1 1

( , ) ( ) ( )
x m n

p q
y i j

i j
z

r

r B B

r

ξ η ξ η
= =

⎧ ⎫
⎪ ⎪

= = ⋅ ⋅⎨ ⎬
⎪ ⎪
⎩ ⎭

∑∑ ijr P , (1) 

involving the following parameters: 

• a control net of m n×  Control Points (CPs) ijP ; 
• the uni-variate normalized B-spline functions ( )p

iB ξ of degree p, defined with respect to 
the curvilinear coordinate ξ  by means of the knot vector: 

{ } N N1 1 1

1 1

,..., 0,...,0 , ,..., ,1,...,1m p p m

p p

ξ ξ ξ ξ+ + +
+ +

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

U ; 

• the uni-variate normalized B-spline functions ( )q
jB η of degree q, defined with respect to 

the curvilinear coordinate η  by means of the knot vector: 

{ } N N1 1 1

1 1

,..., 0,...,0 , ,..., ,1,...,1n q q n

q q

η η η η+ + +
+ +

⎧ ⎫⎪ ⎪= = ⎨ ⎬
⎪ ⎪⎩ ⎭

V . 

The degenerate shell model is a standard in FE software because of its simple 
formulation (Cook et al., 1989). The position vector of the solid shell can be expressed 
as: 

 
1 1

1
( , , ) ( ) ( )

2

m n
p q

iji j
i j

B B tξ η τ ξ η τ
= =

⎡ ⎤⎛ ⎞= ⋅ ⋅ + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑∑ ij

3
ijs P v , (2) 
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where the versors 
ij

3v  and the thickness values ijt  can be calculated from the interpolation 

process proposed in (Carminelli & Catania, 2009). 
The displacement field can be defined by following the isoparametric approach and 

enforcing the fiber inextensibility in the thickness direction (Cook et al., 1989): 
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 (3) 

where ǅ  is the vector collecting the (5 )m m⋅ ⋅  generalized dofs: 

 { }11 11 11 11 11
T

mn mn mn mn mnu v w u v wα β α β=ǅ " , (4) 

( )1 2 3
ij ij ijv , v , v  refer to orthonormal sets defined on ijP  starting from the vector 3

ijv  (Carminelli 

& Catania, 2007), uij, vij and wij are translational dofs, αij  and βij  are rotational dofs.  
The strains can be obtained from displacements in accordance with the standard positions 

assumed in three-dimensional linear elasticity theory (small displacements and small 

deformations), and can be expressed as: 

 { }T

x y z xy yz xzε ε ε γ γ γ= = ⋅ ⋅ = ⋅ǆ L N ǅ D ǅ , (5) 

where ⋅D = L N and L is the linear operator: 

 

0 0 0

0 0 0

0 0 0

T

x y z

y x z

z y x

∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂⎣ ⎦

L . (6) 

The stress tensor σ  and strain ǆ  are related by the material constitutive relationship:  

 { }T
x y z xy yz xzσ σ σ τ τ τ = ⋅σ = E ǆ , (7) 
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where E is the plane stress constitutive matrix obtained according to the Mindlin theory. T is 
the transformation matrix from the local material reference frame (1,2,3) to the global 
reference frame (x,y,z) (Cook et al., 1989): 

 ⋅ ⋅T 'E = T E T , (8) 

and 'E is the plane stress constitutive matrix in the local material reference frame: 

 

( ) ( )

( ) ( )

1 12 2

12 21 12 21

12 2 2

12 21 12 21

12

23

13

0 0 0 0
1 1

0 0 0 0
1 1

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

E E

E E

G

G

G

ν
ν ν ν ν

ν
ν ν ν ν

⎡ ⎤
⎢ ⎥

− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

'E ,  (9) 

where Eij are Young modulus, Gij are shear modulus and vij are Poisson’s ratios in the 
material reference frame. 
The expressions of the elasticity, inertia matrices and of the force vector can be obtained by 
means of the principle of minimum total potential energy: 

 minU WΠ = + → , (10) 

where U is the potential of the strain energy of the system: 

 1

2
U d

Ω

Ω= ⋅∫ Tǆ σ , (11) 

and W is the potential of the body force f and of the surface pressure Q, and includes the 
potential Wi of the inertial forces: 

 
i

S

W d dS W
Ω

Ω= − ⋅ ⋅ − ⋅ ⋅ +∫ ∫T Td f d Q , (12) 

where: 

 
iW d

Ω

ρ Ω= ⋅ ⋅ ⋅∫ Td d�� . (13) 

The introduction of the displacement function (Eq.3) in the functional Π (Eq.10), imposing 
the stationarity of the potential energy: 

 ( ) 0Π∇ =ǅ , (14) 

yields the equations of motion: 

 ⋅ + ⋅ =fM ǅ K ǅ F�� , (15) 
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where the unconstrained stiffness matrix is: 

 d
Ω

Ω= ⋅ ⋅∫ T
fK D E D , (16) 

the mass matrix is: 

 d
Ω

ρ Ω= ⋅ ⋅∫ TM N N , (17) 

and the force vector is: 

 
S

d dS
Ω

Ω= ⋅ + ⋅∫ ∫T TF N f N Q , (18) 

where ρ  is the mass density, Ω  being the solid structure under analysis and S the external 

surface of solid Ω . 

2.2 Constraint modeling 

Distributed elastic constraints are taken into account by including an additional term ΔW  

in the functional of the total potential energy. The additional term ΔW  takes into account 

the potential energy of the constraint force per unit surface area QC, assumed as being 
applied on the external surface of the shell model: 

 − ⋅CQ = R d , (19) 

where R is the matrix containing the stiffness coefficients rab of a distributed elastic 
constraint, modeled by means of B-spline functions: 

 
ij

1 1

ab ab
ab abm n

p q ab
ab i j

i j

r B B κ
= =

= ⋅ ⋅∑∑ , (20) 

where 
abp

iB  and 
abq

jB  are the uni-variate normalized B-spline functions defined by means of 

the knot vectors, respectively, Uab and Vab : 

 ( )1 1ΔW ( )
2 2

T

S S

dS dS= − ⋅ = ⋅ ⋅ ⋅ ⋅∫ ∫T T
Cd Q ǅ N R N ǅ . (21) 

The stiffness matrix due to the constraint forces is 

 ( )
S

dS= ⋅ ⋅∫ TΔK N R N . (22) 

The introduction of ΔW  this last term in the total potential energy Π  yields the equation of 
motion: 

 ( )⋅ + ⋅ =+fM ǅ ǅ FK ΔK�� . (23) 

2.3 Damping modelling  
For lightly damped structures, effective results may be obtained by imposing the real 
damping assumption (real modeshapes). 
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The real damping assumption is imposed by adding a viscous term in the equation of 

motion: 

 ( )⋅ + ⋅ + ⋅ =+fM ǅ C ǅ ǅ FK ΔK�� � , (24) 

where the damping matrix C is: 

 1(2 )T ζω− −= ⋅ ⋅C Φ diag Φ , (25) 

and 

 

1 1

2 2

2 0 0

0 2
(2 )

0

0 0 2 N N

ζ ω
ζ ω

ζω

ζ ω

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

diag

"
#

# %
…

, (26) 

where Φ is the matrix of the eigen-modes iΦ  obtained by solving the eigen-problem: 

 ( )2
i iω−K M Φ = 0 , (27) 

and 2
iω  is the i-th eigen-value of Eq.(27). Modal damping ratios iζ can be evaluated from: 

 ( ) ( )2i i ifζ ζ ζ π ω= = ⋅ , (28) 

where the damping ( )fζ  is defined by means of control coefficients zγ and B-spline 
functions zB defined on a uniformly spaced knot vector: 

 ( ) ( ) ( ) ( ) [ ]
1

( ) ; ; ,0,1

zn

z z ST FI ST
z

f f u B u f f u f f uζ ζ γ
=

= = ⋅ = + ⋅ − ∈∑  (29) 

where fST and fFI are, respectively, the lower and upper bound of the frequency interval in 

which the spline based damping model is defined. 

3. Updating procedure 

The parametrization adopted for the elastic constraints and for the damping model is 

employed in an updating procedure based on Frequency Response Functions (FRFs) 

experimental measurements. 

The A  measured FRFs ( )X
bH ω , with b=1,…, A , are collected in a vector ( )

X ωh : 

 ( )
( )

( )

1
X

X

X

H

H

ω
ω

ω

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭

h

A

# . (30) 

The dynamic equilibrium equation in the frequency domain, for the spline-based finite 

element model, can be defined by Fourier transforming Eq.(24), where ( )
~

( ) =F : 

www.intechopen.com



B-spline Shell Finite Element Updating by Means of Vibration Measurements   

 

145 

 ( ) ( ) ( )2 1jω ω ω ω−− + + + ⋅ = ⋅ = ⋅ =fM C K ΔK ǅ Z ǅ H ǅ F� � � � , (31) 

where ( )ωZ is the dynamic impedance matrix and ( ) ( )( ) 1
ω ω

−
=H Z is the receptance matrix. 

Since the vector ǅ� contains non-physical displacements and rotations, the elements of the 

matrix ( )ωH  cannot be directly compared with the measured FRFs ( )X
qH ω . The analytical 

FRFs related to physical dofs of the model can be obtained by means of the FE shape 

functions. Starting from the input force applied and measured on the point ( , , )i i iξ η τ=iP s  

along a direction φ  and the response measured on the point ( , , )r r rξ η τ=rP s  along the 

direction ψ , the corresponding analytical FRF is: 

 ( ) ( ),
, ( , , ) ( , , )r i T

r r r i i iH ξ η τ ξ η τω ω= ⋅ ⋅ψ φ ψ φN H N , (32) 

where φ  and ψ can assume a value among u, v or w (Eq.3). 

The sensitivity of the FRF ,
,

r iHψ φ  with respect to a generic parameter kp  is: 

 

( ) ( )

( ) ( ) ( )

, , ,
( , , ) ( , , )

,
( , , ) ( , , ) ,, ,

i s
T

r r r i i i
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T
r r r i i i

k

H

p p

p

ω ω
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ω
ξ η γ ξ η γω ω

∂ ∂
= ⋅ ⋅ =

∂ ∂

∂
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∂

φ,ψ
ψ φ

ψ φ

p H p
N N

Z p
N H H Np p

 (33) 

where { }1 p

T

n
p p=p " is the vector containing the updating parameters pk. 

Since each measured FRF ( )X
bH ω  refers to a well-defined set { }, , ,i r φ ψ , it is possible to 

collect, with respect to each measured FRF, the analytical FRFs in the vector:  

 ( )
( )

( )

,

,
,

,

,

,

i s

t

H

H

ω

ω

ω

⎧ ⎫
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⎪ ⎪
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φ,ψ

a

θ σ

p

h p

pA

# . (34) 

The elements of ha(ω,p) are generally nonlinear functions of p. The problem can be 

linearized, for a given angular frequency ωi, by expanding  ( ),ωah p  in a truncated Taylor 

series around p=p0: 

 ( ) ( ) ( )
1

,
,

pn
i

i ik
kk

p
p

ω
ω ωΔ

=

∂
+ =

∂∑ oa
oa x

ph
ph h , (35) 

in matrix form: 
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1

1
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k i i
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p
p p p

p
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Δ
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#
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#
, (36) 
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or: 

 i i⋅ =S Δp Δh , (37) 

where iS is the sensitivity matrix for the i-th angular frequency value ωi. 

It is possible to obtain a least squares estimation of the np parameters pk, by defining the 
error function e: 

 
1

,

fn
f p

i i
i

n n
=

= ⋅ −∑e S Δp Δh � , (38) 

and by minimizing the objective function g: 

 ( )g minT= ⋅ →e e . (39) 

Since the updating parameters pk belong to different ranges of value, ill-conditioned 
updating equations may result. A normalization of the variables was employed to prevent 
ill-conditioning of the sensitivity matrix: 

 ( )1 ; =1,…,n
k

p
k 0 kp p x k= ⋅ + , (40) 

where 
k0p is a proper normalization value for the parameter kp . 

Moreover, to avoid updating parameters assuming non-physical values during the iterative 
procedure, a proper variable transformation is proposed to constrain the parameters in a 
compact domain without using additional variables: 

 maxmin

min max min max

k k

kk
k k k k k

0 0

pp
x x x , x 1, x 1

p p

⎛ ⎞
⎜ ⎟≤ ≤ = − = −
⎜ ⎟
⎝ ⎠

, (41) 

where 
maxkp and 

minkp are, respectively, the maximum and minimum values allowed for the 

parameter pk. The transformation is: 

 
( ) ( )( )( )

( ) ( )( )
k min max max min

k min max k max min

k 0 k k k k k

0 k k 0 k k k

p p 1 0.5 x x x x sin y

p 0.5 p p 2 p p p sin y .

= ⋅ + ⋅ + + − ⋅ =

= + ⋅ + − ⋅ + − ⋅
 (42) 

The sensitivity matrices were derived with respect to the new variables yk: 

 ( ) ( )
max min

k
k k k

k k k k

p
0.5 p p cos y

y p y p
a a a∂ ∂ ∂ ∂
= ⋅ = ⋅ − ⋅ ⋅

∂ ∂ ∂ ∂
h h h

, (43) 

which are allowed to take real values ( ky−∞ ≤ ≤ ∞ ) during the updating procedure. 

Since FRF data available from measurement are usually large in quantity, a least squares 
estimation of the parameters can be obtained by adopting various FRF data at different 
frequencies. The proposed technique is iterative because a first order approximation was 
made during derivation of Eq.(35). At each step the updated global variables pk can be 
obtained by means of Eq.(42). 
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4. Applications 

The numerical example concerns the deck of the “Sinello” railway bridge (Fig.1). It is a 
reinforced concrete bridge located between Termoli and Vasto, Italy. It has been studied by 
several authors (Gabriele et al., 2009; Garibaldi et al., 2005) and design data and dynamical 
simulations are available. 
The second deck span is a simply supported grillage with five longitudinal and five 
transverse beams. The grillage and the slab were modeled with an equivalent orthotropic 
plate, with fourth degree B-spline functions and 13x5 CPs (blue dot in Fig.2), for which the 
equivalent material properties were estimated by means of the design project: 

9 8 8
1 2

3
12

5.5 10 , 9.6 10 , 4.3 10 ,

975 , 0.3.

E Pa E Pa G Pa

Kg mρ ν

= ⋅ = ⋅ = ⋅

= =
 

Because of FRF experimental measurement unavailability, two sets of experimental 
measurements were simulated assuming the input force applied on point 1 along z direction 
(Fig. 2). Twelve response dofs (along z direction) were used in the first set (red squares in 
Fig.2), while the second set contains only four measurement response dofs (red squares 1-4 
in Fig. 2), in the frequency range [0, 80] Hz. 
The simply supported constraint was modelled as a distributed stiffness acting on a portion 
of the bottom surface of the plate (τ = 0): 

 ( )= ⋅ ⋅ ⋅∫ TΔK N R N
S

d S , (44) 

where R is the matrix containing the stiffness of distributed spring acting only in vertical 
direction z: 

 

( )33

0 0 0

0 0 0

0 0 ,r ξ η

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R . (45) 

The distributed stiffness r33 is modelled by means of B-spline functions: 

 ( ) ( ) ( ) ( )
1 4 1 4

0 2 0 2
33 ij ij

1 1 1 1
i j i j

i j i j

r B B B Bκ κξ η ξ η
= = = =

= ⋅ ⋅ + ⋅ ⋅∑∑ ∑∑' ' ' '' '' '' , (46) 

where: 

• [ ]9 30.4 1.5 1.8 0.610 N m= ⋅κ' , and the associated B-spline functions are defined on 
the knot vectors {0,0.03}=U'  and {0,0,0,0.5,1,1,1}=V' ; 

• [ ]9 310 1.5 0.4 0.5 1.8 N m= ⋅κ'' , and the associated B-spline functions are defined 
on the knot vectors {0.97,1}=U''  and {0,0,0,0.5,1,1,1}=V'' . 

The distribution of the spring stiffness is plotted in Fig.3. In order to simplify the presentation 
of the numerical results, the stiffness coefficients are collected in the vector κ as follows: 

[ ] [ ]9 3
1 8 0.4 1.5 1.8 0.6 1.5 0.4 0.5 1.810j N mκ κ κ= = = ⋅⎡ ⎤⎣ ⎦κ' κ''κ " " . (47) 

The modal damping ratio values reported in Fig.4 were employed for the first 30 
eigen-modes. 
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Fig. 1. Sinello railway bridge (Garibaldi et al., 2005). 
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Fig. 2. The B-spline FE model with the 13x5 pdc (blue dot) and the 12 measurement  
response dofs (red squares). 
 

 

Fig. 3. Distributed stiffness values (vertical-axis) of the simply supported constraint 
employed to generate the measurements. 
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Fig. 4. Modal damping ratio values adopted to simulate the measurements. The values refer 
to the first 30 modes in the frequency range [0,80] Hz. 

4.1 Numerical simulation without noise and with 12 measurement response dofs 

Coefficients in vector κ and damping coefficients zγ  (quadratic B-spline functions, nz=7, 

fST=0 Hz and fFI=80 Hz in Eq.28) are assumed as the updating identification variables. The 
updating procedure is started by setting all of the coefficients in κ  to 109 3N m  and all of 

the damping coefficients to 0.01. The comparison of the resulting FRFs is reported in Fig.5. 
The gradient of C with respect to the stiffness parameters is disregarded, i.e.  

0
kp

∂
∂

C �  if k zp γ≠ . All twelve measurements dofs (Fig. 2) are considered as input. The value 

of the identification parameters at each step, adopting the proposed procedure, is reported 

in Fig.6 for the stiffness coefficients, and in Fig.7 for the γz coefficients; Fig.8 refers to the 
comparison of the modal damping ratio values used to simulate the measurements (red 
squares) and the identified curve (black line). The negative values of some parameters can 
lead to non physical stiffness matrix ∆K so that instabilities may occur during the updating 
procedure. The proposed variable transformation does not allow stiffness coefficients to 
assume negative values. The comparison of theoretical and input FRF after updating is 
reported in Fig.9. 

4.2 Numerical simulation without noise and with 4 measurement response dofs 

The second simulation deals with the same updating parameters adopted in the previous 

example and with the same starting values, but only four measurement response dofs (dofs 

from 1 to 4 in Fig. 2) are considered. 

The value of the identification parameters at each step, adopting the proposed procedure, is 

reported in Fig.10 for the stiffness coefficients, and in Fig.11 for the γz damping coefficients; 

Fig.12 refers to the comparison of the modal damping ratio values used to simulate the 

measurements (red squares) and the identified curve (black line). Fig.13 refers to the 

comparison of the FRFs after updating. 
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Fig. 5. Comparison of (input in dof 1; output in dof 1) FRF before updating: the input data 
(black continuous line) and the model (red dotted line). 
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Fig. 6. Evolution of the stiffness parameters jκ (j=1,...,8 in the legend) during iterations by 

adopting the proposed updating procedure. Example with 12 measurement  response dofs 

and without noise. 
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Fig. 7. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 12 measurement  response dofs 
and without noise. 
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Fig. 8. Comparison of the modal damping ratio used to simulate the measurements (red 

squares) and the identified ( )fζ  (black line; green filled squares refer to B-spline curve 

control coefficients). Example with 12 measurement  response dofs and without noise. 
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Fig. 9. Comparison of (input in point 1; output in point 1) FRF after updating (example with 
12 measurement response dofs without noise): the input data (black continuous line) and the 
updated model (red dotted line). 
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Fig. 10. Evolution of stiffness parameters jκ (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and without noise. 
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Fig. 11. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 

adopting the proposed updating procedure. Example with 4 measurement  response dofs 

and without noise. 
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Fig. 12. Comparison of the modal damping ratio used to simulate the measurements (red 

squares) and the identified ( )fζ (black line; green filled squares refer to B-spline curve 

control coefficients). Example with 4 measurement  response dofs and without noise. 
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Fig. 13. Comparison of (input in point 1; output in point 1) FRF after updating (example 
with 4 measurement  response dofs, without noise):  the input data (black continuous line) 
and the updated model (red dotted line). 
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Fig. 14. Evolution of stiffness parameters jκ  (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 3% noise. 
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4.3 Numerical simulations with noise 
In these two simulations, the same updating parameters of the previous examples are 
considered with the same starting values. A random noise is added in FRFs, by considering 
a normal distribution with a standard deviation set to 3% and 10% of the signal RMS value. 
Four FRFs data (dofs from 1 to 4, Fig.2) are employed in the updating process. 
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Fig. 15. Evolution of the damping parameters γz(z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 3% noise. 
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Fig. 16. Comparison of the modal damping ratio used to simulate the measurements (red 
squares) and the identified ( )fζ (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 4 measurement  response dofs and with 3% noise. 
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When 3% noise is added, the value of the identification parameters at each step, adopting 
the proposed procedure, is reported in Fig.14 for the stiffness coefficients, and in Fig.15 for 
the γz damping coefficients; Fig.16 refers to the comparison of the modal damping ratio used 
to simulate the measurements (red squares) and the identified curve (black line) where the 
green filled squares are the B-spline control coefficient γz. Fig.17 refers to the comparison of 
the input and updated FRFs. 
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Fig. 17. Comparison of (input point 1; output point 1) FRF considering noise (3% case) after 
updating (4 measurement  response dofs): the  input data (black line) and the updated 
model (red line). 
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Fig. 18. Evolution of stiffness parameters jκ  (j=1,...,8 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 10% noise. 
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For the simulation considering the 10% noise case, Fig.18 and Fig.19 show the evolution 
during iteration for, respectively, the stiffness coefficients and the γz damping coefficients; 
Fig.20 refers to the comparison of the modal damping ratio values used to simulate the 
measurements and the identified function. Fig.21 and Fig.22 refer to the comparison of the 
input and updated FRFs. 
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Fig. 19. Evolution of the damping parameters γz (z=1,...,7 in the legend) during iterations by 
adopting the proposed updating procedure. Example with 4 measurement  response dofs 
and with 10% noise. 
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Fig. 20. Comparison of the modal damping ratio ζ used to simulate the measurements (red 
squares) with the  identified ( )fζ (black line; green filled squares refer to B-spline curve 
control coefficients). Example with 4 measurement  response dofs and with 10% noise. 
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Fig. 21. Comparison of (input point 1; output point 1) FRF considering noise (10% case) after 
updating (4 measurement  response dofs): the input data (black line) and the updated model 
(red line). 
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Fig. 22. Comparison of (input point 1; output point 4) FRF considering noise (10% case) after 
updating (4 measurement  response dofs): the input data (black line) and the updated model 
(red line).   

5. Discussion 

Experimental measurement data were simulated by adopting the same B-spline analytical 

model used as the updating model. Numerical results showed good matching of the FRFs 
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after the updating process with both twelve and four measurement dofs, when noise is not 

considered. However, when only four measurement dofs are employed, more iterations 

were necessary to make updating parameter values become stable, with respect to the case 

in which twelve measurement dofs were adopted. The updated FRFs showed a good 

matching with the input FRFs even with the adoption of four measurement dofs and noisy 

data as input in the updating procedure: in the 10% noise case, the procedure required more 

iterations than in the 3% noise case example, but a moderately fast convergence was 

obtained anyway. A transformation of the updating variables was proposed to constrain the 

updated parameters to lie in a compact domain without using additional variables. This 

transformation ensured physical values to be assumed for all of the parameters during the 

iteration steps, and convergence was effectively and efficiently obtained in all of the cases 

under study. 

The approach needs to be tested by adopting true measurement data as input. However, the 

experimental estimate of input-output FRFs for big structures like bridges can be difficult 

and can also be affected by experimental model errors, mainly due to input force placement, 

spatial distribution and measurement estimate. A technique employing output-only 

measured data need to be considered in future studies. 

6. Conclusions 

An updating procedure of a B-spline FE model of a railway bridge deck was proposed, the 

updating parameters being the coefficients of a distributed constraint stiffness model and 

the damping ratios, both modeled by means of B-spline functions. The optimization 

objective function was defined by considering the difference between the measured 

(numerically synthesised) FRFs and the linearized analytical FRFs. The incompatibility 

between the measured dofs and the non-physical B-spline FE model dofs was overcome by 

employing the same B-spline shape functions, thus adding a small computational cost.  

A transformation of the updating variables was proposed to constrain the updated 

parameters to lie in a compact domain without using additional variables. Some test cases 

were investigated by simulating the experimental measurements by model based numerical 

simulations. Results are shown and critically discussed. Future applications will be 

addressed towards the development of a model updating technique employing output-only 

vibrational measured data. 
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