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1. Introduction  

A rectangular plate with a rectangular or a circular hole has been widely used as a 
substructure for ship, airplane, and plant. Uniform circular and annular plates have been 
also widely used as structural components for various industrial applications and their 
dynamic behaviors can be described by exact solutions. However, the vibration 
characteristics of a circular plate with an eccentric circular hole cannot be analyzed easily. 
The vibration characteristics of a rectangular plate with a hole can be solved by either the 
Rayleigh-Ritz method or the finite element method. The Rayleigh-Ritz method is an 
effective method when the rectangular plate has a rectangular hole. However, it cannot be 
easily applied to the case of a rectangular plate with a circular hole since the admissible 
functions for the rectangular hole domain do not permit closed-form integrals. The finite 
element method is a versatile tool for structural vibration analysis and therefore, can be 
applied to any of the cases mentioned above. But it does not permit qualitative analysis and 
requires enormous computational time. 
Tremendous amount of research has been carried out on the free vibration of various 
problems involving various shape and method. Monahan et al.(1970) applied the finite 
element method to a clamped rectangular plate with a rectangular hole and verified the 
numerical results by experiments. Paramasivam(1973) used the finite difference method for 
a simply-supported and clamped rectangular plate with a rectangular hole. There are many 
research works concerning plate with a single hole but a few work on plate with multiple 
holes. Aksu and Ali(1976) also used the finite difference method to analyze a rectangular 
plate with more than two holes. Rajamani and Prabhakaran(1977) assumed that the effect of 
a hole is equivalent to an externally applied loading and carried out a numerical analysis 
based on this assumption for a composite plate. Rajamani and Prabhakaran(1977) 
investigated the effect of a hole on the natural vibration characteristics of isotropic and 
orthotropic plates with simply-supported and clamped boundary conditions. Ali and 
Atwal(1980) applied the Rayleigh-Ritz method to a simply-supported rectangular plate with 
a rectangular hole, using the static deflection curves for a uniform loading as  admissible 
functions. Lam et al.(1989) divided the rectangular plate with a hole into several sub areas 
and applied the modified Rayleigh-Ritz method. Lam and Hung(1990) applied the same 
method to a stiffened plate. The admissible functions used in (Lam et al. 1989, Lam and 
Hung 1990) are the orthogonal polynomial functions proposed by Bhat(1985, 1990). Laura et 
al.(1997) calculated the natural vibration characteristics of a simply-supported rectangular 
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plate with a rectangular hole by the classical Rayleigh-Ritz method. Sakiyama et al.(2003) 
analyzed the natural vibration characteristics of an orthotropic plate with a square hole by 
means of the Green function assuming the hole as an extremely thin plate. 
The vibration analysis of a rectangular plate with a circular hole does not lend an easy 
approach since the geometry of the hole is not the same as the geometry of the rectangular 
plate. Takahashi(1958) used the classical Rayleigh-Ritz method after deriving the total 
energy by subtracting the energy of the hole from the energy of the whole plate. He 
employed the eigenfunctions of a uniform beam as admissible functions. Joga-Rao and 
Pickett(1961) proposed the use of algebraic polynomial functions and biharmonic singular 
functions. Kumai(1952), Hegarty(1975), Eastep and Hemmig(1978), and Nagaya(1951) used 
the point-matching method for the analysis of a rectangular plate with a circular hole. The 
point-matching method employed the polar coordinate system based on the circular hole 
and the boundary conditions were satisfied along the points located on the sides of the 
rectangular plate. Lee and Kim(1984) carried out vibration experiments on the rectangular 
plates with a hole in air and water. Kim et al.(1987) performed the theoretical analysis on a 
stiffened rectangular plate with a hole. Avalos and Laura(2003) calculated the natural 
frequency of a simply-supported rectangular plate with two rectangular holes using the 
classical Rayleigh-Ritz method. Lee et al.(1994) analyzed a square plate with two collinear 
circular holes using the classical Rayleigh-Ritz method. 
A circular plate with en eccentric circular hole has been treated by various methods. 
Nagaya(1980) developed an analytical method which utilizes a coordinate system whose 
origin is at the center of the eccentric hole and an infinite series to represent the outer 
boundary curve. Khurasia and Rawtani(1978) studied the effect of the eccentricity of the 
hole on the vibration characteristics of the circular plate by using the triangular finite 
element method. Lin(1982) used an analytical method based on the transformation of Bessel 
functions to calculate the free transverse vibrations of uniform circular plates and 
membranes with eccentric holes. Laura et al.(2006) applied the Rayleigh-Ritz method to 
circular plates restrained against rotation with an eccentric circular perforation with a free 
edge. Cheng et al.(2003) used the finite element analysis code, Nastran, to analyze the effects 
of the hole eccentricity, hole size and boundary condition on the vibration modes of  
annular-like plates. Lee et al.(2007) used an indirect formulation in conjunction with 
degenerate kernels and Fourier series to solve for the natural frequencies and modes of 
circular plates with multiple circular holes and verified the finite element solution by using 
ABAQUS. Zhong and Yu(2007) formulated a weak-form quadrature element method to 
study the flexural vibrations of an eccentric annular Mindlin plate. 
Recently, Kwak et al.(2005, 2006, 2007), and Heo and Kwak(2008) presented a new method 
called the Independent Coordinate Coupling Method(ICCM) for the free vibration analysis 
of a rectangular plate with a rectangular or a circular hole. This method utilizes independent 
coordinates for the global and local domains and the transformation matrix between the 
local and global coordinates which is obtained by imposing a kinematical relation on the 
displacement matching condition inside the hole domain. In the Rayleigh-Ritz method, the 
effect of the hole can be considered by the subtraction of the energy for the hole domain in 
deriving the total energy. In doing so, the previous researches considered only the global 
coordinate system for the integration. The ICCM is advantageous because it does not need 
to use a complex integration process to determine the total energy of the plate with a hole. 
The ICCM can be also applied to a circular plate with an eccentric hole. The numerical 
results obtained by the ICCM were compared to the numerical results of the classical 
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approach, the finite element method, and the experimental results. The numerical results 
show the efficacy of the proposed method. 

2. Rayleigh-Ritz method for free vibration analysis of rectangular plate 

Let us consider a rectangular plate with side lengths a  in the X  direction and b  in the 
Y direction.  The kinetic and potential energies of the rectangular plate can be expressed as 

 2

0 0

1

2

a b

R rT h w dxdyρ= ∫ ∫ $  (1) 

 

22 22 2 2 2 2

2 2 2 20 0

1
2 2(1 )

2

a b r r r r r
R

w w w w w
V D dxdy

x yx y x y
ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎢ ⎥= + + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎦⎣
∫ ∫  (2) 

where ( , , )r rw w x y t=  represents the deflection of the plate, ρ  the mass density, h  the 

thickness, 3 2/12(1 )D Eh v= − , E  the Young’s modulus, and ν  the Poisson’s ratio. 

By using the non-dimensional variables, /x aξ = , /y bη =  and the assumed mode 

method, the deflection of the plate can be expressed as 

 ( , , ) ( , ) ( )r r rw t q tξ η Φ ξ η=  (3) 

where 1 2( , ) [ ... ]r r r rmΦ ξ η Φ Φ Φ=  is a 1 m× matrix consisting of the admissible functions and 

1 2( ) [ ... ]Tr r r rmq t q q q=  is a 1m×  vector consisting of generalized coordinates, in which m  is 

the number of admissible functions used for the approximation of the deflection. Inserting 

Eq. (3) into Eqs. (1) and (2) results in Eq. (4). 

 
1

2
T

R r r rT q M q= $ $ ,  
1

2
T

R r r rV q K q=  (4a,b) 

where 

 r rM hab Mρ= ,  
3r r

Db
K K

a
=  (5a,b) 

In which 

 
1 1

0 0

T
r r rM d dΦ Φ ξ η= ∫ ∫  (6a) 

 

2 2 2 2 2 2 2 2
1 1 4 2

2 2 2 2 2 2 2 20 0

2 2
22(1 )

T T T T
r r r r r r r r

r

T
r r

K

d d

Φ Φ Φ Φ Φ Φ Φ Φα να
ξ ξ η η ξ η η ξ

Φ Φν α ξ η
ξ η ξ η

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +⎢ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠⎣

⎤∂ ∂
+ − ⎥

∂ ∂ ∂ ∂ ⎥⎦

∫ ∫
 (6b) 

,r rM K  represent the non-dimensionalized mass and stiffness matrices, respectively, and 

/a bα =  represents the aspect ratio of the plate. The equation of motion can be derived by 

inserting Eq. (4) into the Lagrange’s equation and the eigenvalue problem can be expressed as 
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 2 0r rK M Aω⎡ ⎤− =⎣ ⎦  (7) 

If we use the non-dimensionalized mass and stiffness matrices introduced in Eq. (5), the 

eigenvalue problem given by Eq. (7) can be also non-dimensionalized. 

 2 0r rK M Aω⎡ ⎤− =⎣ ⎦  (8) 

where ω  is the non-dimensionalized natural frequency, which has the relationship with the 

natural frequency as follows: 

 
4ha

D

ρω ω=  (9) 

To calculate the mass and stiffness matrices given by Eq. (6) easily, the admissible function 

matrix given by Eq. (3) needs to be expressed in terms of admissible function matrices in 

each direction.  

 ( , ) ( ) ( ), 1,2,...,ri i i i mΦ ξ η φ ξ ψ η= =  (10) 

Then, the non-dimensionalized mass and stiffness matrices given by Eq. (6) can be 

expressed as [Kwak and Han(2007)] 

 ( )r ij ijij
M X Y=  (11a)  

 ( ) ( )4 2 2ˆˆ (1 ) , , 1,2,...,r ij ij ij ij ji ij ij ji ij ijij
K X Y X Y X Y X Y X Y i j mα α ν α ν= + + + + − =# ## #  (11b) 

where 

 
1

0ij i jX dφ φ ξ= ∫ , 
1

0ij i jX dφ φ ξ′ ′= ∫ ,  
1

0

ˆ
ij i jX dφ φ ξ′′ ′′= ∫ , 

1

0ij i jX dφ φ ξ′′= ∫#  (12a-d) 

1

0ij i jY dψ ψ η= ∫ , 
1

0ij i jY dψ ψ η′ ′= ∫ ,  
1

0

ˆ
ij i jY dψ ψ η′′ ′′= ∫ , 

1

0
, , 1,2,...,ij i jY d i j mψ ψ η′′= =∫#  (12e-h) 

If n admissible functions are used in the X and Y directions and the combination of 

admissible functions are used, a total of 2n  admissible functions can be obtained, which 

yields 2m n= .  If each type of admissible functions are considered as ( 1,2,..., )i i nχ = and 

( 1, 2,..., )i i nγ = , then the relationship of between the sequence of the admissible function 

introduced in Eq. (10) and those of separated admissible functions can be expressed as 

 

1

2

3

2

1

1 2

2 1 3

( 1) 1

k

n

k n

n k n

n k n

n n k n

χ
χ

φ χ

χ

⎧ ≤ ≤
⎪

+ ≤ ≤⎪
⎪= + ≤ ≤⎨
⎪
⎪
⎪ − + ≤ ≤⎩

B
, 2

2
( 1)

1

1 2

2 1 3

( 1) 1

k

k n

k k n

k n n

k n

n k n

n k n

n n k n

γ
γ

ψ γ

γ

−

−

− −

⎧ ≤ ≤
⎪

+ ≤ ≤⎪
⎪= + ≤ ≤⎨
⎪
⎪
⎪ − + ≤ ≤⎩

B
 (13a,b) 
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Therefore, instead of integrating 2 4m n= elements in Eq. (12), 2n integrations and matrix 
rearrangement will suffice. First, let us calculate the following. 

 
1

0ij i jdΣ χ χ ξ= ∫ , 
1

0ij i jdΣ χ χ ξ′ ′= ∫ ,
1

0
ˆ

ij i jdΣ χ χ ξ′′ ′′= ∫ ,  
1

0ij i jdΣ χ χ ξ′′= ∫#  (14a-d) 

 
1

0ij i jdΓ γ γ η= ∫ , 
1

0ij i jdΓ γ γ η′ ′= ∫  
1

0
ˆ

ij i jdΓ γ γ η′′ ′′= ∫  , 
1

0
, , 1,2,...,ij i jd i j nΓ γ γ η′′= =∫#  (14e-h) 

And then the matrices given by Eq. (12) can be derived as follows: 

 

11 12 1

21 22 2

1 2

n

n

n n nn

I I I

I I I
X

I I I

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

A
B B D B

A

, 

11 12 1

21 22 2

1 2

n

n

n n nn

I I I

I I I
X

I I I

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

A

A
B B D B

A

 (15a,b) 
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ˆ ˆ ˆ
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Σ Σ Σ

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

A

A
B B D B

A

,  

11 12 1

21 22 2

1 2

n

n

n n nn

I I I

I I I
X

I I I

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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# # #A
# # #A#
B B D B

# # #A

 (15c,d) 

 Y

Γ Γ Γ
Γ Γ Γ

Γ Γ Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

A
A

B B D B
A

,  Y

Γ Γ Γ
Γ Γ Γ

Γ Γ Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
A

B B D B
A

, (15e,f) 

 

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

Y

Γ Γ Γ

Γ Γ Γ

Γ Γ Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
A

B B D B
A

,  

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

Y

Γ Γ Γ

Γ Γ Γ

Γ Γ Γ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A
A

B B D B
A

 (15g,h) 

where I is an n n×  matrix full of ones. 
Let us consider the simply-supported case in the X direction. In this case, the eigenfunction 
of the uniform beam can be used as an admissible function. 

 2 sin , 1,2,...i i i nχ πξ= =  (16) 

In the case of the clamped condition in the X direction, the eigenfunction of a clamped-
clamped uniform beam can be used.  

 (sinh sin )cosh cosi i i ii iχ σ λ ξ λ ξλ ξ λ ξ= − −− ,  1,2,...,i n=  (17) 

where iλ =4.730, 7.853, 10.996, 14.137,… and ( ) ( )cosh cos / sinh sini i i i iσ λ λ λ λ= − − . In the 
case of a free-edge condition in the X direction, we can use the eigenfunction of a free-free 
uniform beam. 
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 1 1χ = , 
2

1
12

2
χ ξ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 (18a,b) 

 2 (sinh sin )cosh cosi i i ii iχ σ λ ξ λ ξλ ξ λ ξ+ = + − + ,  1,2,... 2i n= −  (18c) 

where iλ  and iσ are the same as the ones for the clamped-clamped beam, and the first and 
the second modes represent the rigid-body modes.  ijΣ , ijΣ , ˆ

ijΣ , ijΣ# for each case are 
given in the work of Kwak and Han(2007). 
For the admissible functions in the y direction, iγ , the same method can be applied. The 
combination of different admissible functions can yield various boundary conditions. 

3. Rayleigh-Ritz method for free vibration analysis of circular plate 

Let us consider a uniform circular plate with radius, R , and thickness, h . The kinetic and 
potential energies can be expressed as follows: 

 
2 2

0 0

1

2

R

C cT h w rdrd
π

ρ θ= ∫ ∫ $  (19a) 

 

22 2 2 2
2

2 2 2 2 2 20 0

22 2

2 2

1 1 1 1 1
2(1 )

2

1 1

R c c c c c c
C

c c

w w w w w w
V D

r r r rr r r r

w w
rdrd

r r r

π
ν

θ θ

θ
θ θ

⎧ ⎡⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎪= + + − − +⎢⎜ ⎟ ⎜ ⎟⎜ ⎟⎨⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂∂ ∂ ∂ ∂⎢⎪⎝ ⎠ ⎝ ⎠⎝ ⎠⎣⎩
⎫⎤⎛ ⎞∂ ∂ ⎪⎥− −⎜ ⎟ ⎬⎜ ⎟ ⎥∂ ∂ ∂ ⎪⎝ ⎠ ⎦⎭

∫ ∫
 (19b) 

Unlike the uniform rectangular plate, simply-supported, clamped, and free-edge uniform 
circular plates have eigenfunctions. Hence, the deflection of the circular plate can be 
expressed as the combination of eigenfunctions and generalized coordinates. 

 
1

( , , ) ( , ) ( ) ( , ) ( )
cn

c ci ci c c
i

w r t r q t r q tθ Φ θ Φ θ
=

= =∑  (20) 

where ( , )ci rΦ θ  represents the eigenfunction of the uniform circular plate and ( )ciq t  
represents the generalized coordinate. Inserting Eq. (20) into Eq. (19) results in the 
following. 

 1

2
T

C c c cT q M q= $ $ , 1

2
T

C c c cV q K q=  (21a,b) 

where 

 2
cM h R Iρ π= ,    

2c c

D
K

R

π Λ=  (22a,b) 

in which I is an c cn n×  identity matrix, cΛ is an c cn n× diagonal matrix whose diagonals are 
4
iλ . The eigenvalue has the expression, 4 2 4 /hR Dλ ω ρ= . 

Since our study is concerned with either a rectangular or a circular hole, we consider only a 
free-edge circular plate [Itao and Crandall(1979)]. If the eigenfunctions are rearranged in 
ascending order, we can have 
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 1 1cΦ = , 2 cosc

r

R
Φ θ= , 3 sinc

r

R
Φ θ=  (23a-c) 

 
( 3) ( ), 1,2,...

k kc k k n k k n k k

r r
A J C I f k

R R
Φ λ λ θ+

⎡ ⎤⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (23d) 

where 
knJ and 

knI are the Bessel functions of the first kind and the modified Bessel functions 

of order kn , respectively. The first three modes represent the rigid-body modes and other 

modes represent the elastic vibration modes. The characteristic values obtained from Eq. 

(23d) are tabulated in the work of Kwak and Han(2007) by rearranging the values given in 

reference [Leissa(1993)]. In this case,  cΛ  has the following form. 

 ( )4 4 4 4
1 2 3 30 0 0

cc ndiagΛ λ λ λ λ −⎡ ⎤= ⎣ ⎦A  (24) 

4. Free vibration analysis of rectangular plate with a hole by use of global 
coordinates 

Let us consider a rectangular plate with a rectangular hole, as shown in Figure 1. 
 

 

Fig. 1. Rectangular plate with a rectangular hole with global axes. 

In this case, the total kinetic and potential energies can be obtained by subtracting the 
energies belonging to the hole domain from the total energies for the global domain.  

 

*

*

1 1
( )

2 2
1 1

( )
2 2

T T
total R RH r r rh r r rrh r

T T
total R RH r r rh r r rrh r

T T T q M M q q M q

V V V q K K q q K q

= − = − =

= − = − =

$ $ $ $
 (25a,b) 

where 

 * *,rrh r rh rrh r rhM KM M K K= =− −  (26a,b) 

in which ,r rM K are mass and stiffness matrices for the whole rectangular plate, which are 

given by Eq. (5), and * *,rh rhM K  reflect the reductions in mass and stiffness matrices due to 
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the hole, which can be also expressed by non-dimensionalized mass and stiffness matrices, 

respectively. 

 * *
rh rhM Mhabρ= , 

3
* *
rh rh

Db
K K

a
=  (27a,b) 

where 

 * x c y c

x y

r a r b T
r rrrh r

M d dΦ Φ ξ η
+ +

= ∫ ∫  (28a) 

 

2 2 2 2 2 2 2 2
4 2

2 2 2 2 2 2 2 2

2 2
2

*

2(1 )

x c y c

x y

T T T T
r a r b

rh
r r r r r r r r

r r

T
r r

K

d d

Φ Φ Φ Φ Φ Φ Φ Φα να
ξ ξ η η ξ η η ξ

Φ Φν α ξ η
ξ η ξ η

+ + ⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢⎣ ⎝ ⎠

⎤∂ ∂
+ − ⎥

∂ ∂ ∂ ∂ ⎥⎦

∫ ∫
 (28b) 

in which / , / , / , /x x y y c c c cr r a r r b a a a b b b= = = =  represent various aspect ratios. Hence, 

the non-dimensionalized eigenvalue problem for the addressed problem can be expressed 

as: 

 ( )2 0rrh rrhK M Aω− =  (29) 

where 

 
* *,rrh r rh rrh r rhM KM M K K= =− −  (30a,b) 

To calculate the non-dimensionalized mass and stiffness matrices for the hole domain given 

by Eq. (28), we generally resort to numerical integration. However, in the case of a simply-

supported rectangular plate with a rectangular hole, the exact expressions exists for the non-

dimensionalized mass and stiffness matrices for the hole[Kwak & Han(2007)].  

5. Independent coordinate coupling method for a rectangular plate with a 
rectangular hole 

Let us consider again the rectangular plate with a rectangular hole, as shown in Fig. 2. As 

can be seen from Fig. 2, the local coordinates fixed to the hole domain is introduced. 

Considering the non-dimensionalized coordinates, /h h cx aξ = , /h h cy bη = , we can express 

the displacement inside the hole domain as 

 ( , ) ( , )h h h h h h hw qξ η Φ ξ η=  (31) 

where 1 2( , ) [ ... ]
hh h h h h hmΦ ξ η Φ Φ Φ=  is the 1 hm×  admissible function matrix, and 

1 2( ) [ ... ]
h

T
h h h hmq t q q q= is the 1hm ×  generalized coordinate vector. If we apply the 

separation of variables to the admissible function as we did in Eq. (10), then we have 

 ( , ) ( ) ( ), 1,2,...,hi h h hi h hi h hi mΦ ξ η φ ξ ψ η= =  (32) 
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Fig. 2. Rectangular plate with a rectangular hole with local axes. 

Using Eqs. (31) and (32), we can express the kinetic and potential energies in the hole 
domain as 

 
1

2
T

RH rh rh rhT q M q= $ $ , 
1

2
T

RH rh rh rhV q K q=  (33a,b) 

Hence, the total kinetic and potential energies can be written as 

 
1 1

2 2
T T

total r r r rh rh rhT q M q q M q= −$ $ $ $ ,  
1 1

2 2
T T

total r r r rh rh rhV q K q q K q= −  (34a,b) 

Where ,r rM K are defined by Eqs. (5) and (6), and 

 rh c c rhM ha b Mρ= , 
3

c
rh rh

c

Db
K K

a
=  (35a,b) 

in which 

 
1 1

0 0

T
rh h h h hM d dΦ Φ ξ η= ∫ ∫  (36a) 

 

2 2 2 2 2 2 2 2
1 1 4 2

2 2 2 2 2 2 2 20 0

2 2
22(1 )

T T T T
h h h h h h h h

rh c c
h h h h h h h h

T
h h

c h h
h h h h

K

d d

Φ Φ Φ Φ Φ Φ Φ Φ
α να

ξ ξ η η ξ η η ξ

Φ Φ
ν α ξ η

ξ η ξ η

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +⎜ ⎟⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢⎣ ⎝ ⎠

⎤∂ ∂
+ − ⎥

∂ ∂ ∂ ∂ ⎥⎦

∫ ∫
 (36b) 

and /c c ca bα = . Note that the definite integrals in Eq. (36) has distinctive advantage 
compared to Eq. (28) because it has an integral limit from 0 to 1 thus permitting closed form 
expressions. Therefore, we can use the same expression used for the free-edge rectangular 
plate.  
Since the local coordinate system is used for the hole domain, we do not have to carry out 
integration for the hole domain, as in Eq. (28). However, the displacement matching 
condition between the global and local coordinates should be satisfied inside the hole 
domain. The displacement matching condition inside the hole domain can be written as 
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 ( , ) ( , )rh h h rw wξ η ξ η=  (37) 

The relationship between the non-dimensionalized global and local coordinates can be 
written as 

 ,   
yx c c

h h

rr a b

a a b b
ξ ξ η η= + = +  (38a,b) 

Considering Eqs. (3), (10), (31) and (32), and inserting them into Eq. (37), we can derive 

 
1 1 1 1

( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )
h hm m m m

rhj h h rhj hj h hj h rhj rk rk k k rk
j j k k

q t q t q t q tΦ ξ η φ ξ ψ η Φ ξ η φ ξ ψ η
= = = =

= = =∑ ∑ ∑ ∑  (39) 

Multiplying Eq. (39) by ( ) ( )hi h hi hφ ξ ψ η  and performing integration, we can derive 

 

1 1

0 0
1

1 1

0 0
1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ),    1,2,...,

hm

hi h hi h hj h hj h h h rhj
j

m

hi h hi h rk rk h h rk h
k

d d q t

d d q t i m

φ ξ ψ η φ ξ ψ η ξ η

φ ξ ψ η φ ξ ψ η ξ η

=

=

=

= =

∑∫ ∫

∑∫ ∫
 (40) 

Using the orthogonal property of the eigenfunctions of the uniform beam, Eq. (40) can be 
rewritten as 

 

( )

1 1

0 0
1

1

( ) ( ) ( ) ( ) ( ) ( )

( ), 1,2,...,

m

rhi hi h k h hi h k h rk
k

m

rrh rk hik
k

q t d d q t

T q t i m

φ ξ φ ξ ξ ψ η ψ η η
=

=

=

= =

∑∫ ∫

∑
 (41) 

If we express Eq. (41) in the matrix form, we can have 

 rh rrh rq T q=  (42) 

where rrhT  is the hm m×  transformation matrix between two coordinates. Inserting Eq. (42) 

into Eq. (34), we can derive 

 
1 1 1

2 2 2
T T T

total r r r rh rrh rh rrh rh r rrh rT q M q q T M T q q M q= − =$ $ $ $ $ $  (43a) 

 
1 1 1

2 2 2
T T T T

total r r r rh rrh rh rrh rh r rrh rV q K q q T K T q q K q= − =  (43b) 

where 

 T
rrh r rrh rh rrhM M T M T= − , T

rrh r rrh rh rrhK K T K T= −  (44a,b) 

Equation (44) can be expressed by means of non-dimensionalized parameters 

 rrh rrhM hab Mρ= , 
3rrh rrh

Db
K K

a
=  (45a,b) 
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where  

 ( ) T
rrh r c c rrh rh rrhM M a b T M T= − , 

3
Tc

rrh r rrh rh rrh
c

b
K K T K T

a
= −  (46a,b) 

Hence, the non-dimensionalized eigenvalue problem can be written in the same form as  
Eq. (29). 

 In deriving the mass and stiffness matrices, Eq. (46), for the eigenvalue problem, we only 
needed the transformation matrix, rrhT . ,r rM K can be easily computed by Eq. (11) 
according to the edge boundary conditions and ,rh rhM K  can be computed from the results 
of Eq. (11) for the all free-edge rectangular plate.  On the other hand, the computation of 

* *,rh rhM K  based on the global coordinates is not easy because of integral limits. Compared to 
the approach based on the global coordinates, the numerical integration for the 
transformation matrix, rrhT , is easy because the integral limits are 0 and 1. The process 
represented by Eqs. (42) and (46) is referred to as the ICCM in the study by Kwak and 
Han(2007). The ICCM enables us to solve the free vibration problem of the rectangular plate 
with a rectangular hole more easily than the previous approaches based on the global 
coordinates do. The advantage of the ICCM becomes more apparent when we deal with a 
circular hole, as will be demonstrated in the next section. 

6. Free vibration analysis of rectangular plate with multiple rectangular 
cutouts by independent coordinate coupling method 

As in the case of single rectangular hole, the total energy can be computed by subtracting 
the energy belonging to holes from the energy of the whole rectangular plate, which is not 
an easy task when applying the classical Rayleigh-Ritz method. However, the ICCM enables 
us to formulate the free vibration problem for the rectangular plate with multiple holes 
more easily than the CRRM.  
Let us consider a rectangular plate with n rectangular holes as shown in Fig. 3.  
 

 

Fig. 3. Rectangular plate with multiple rectangular holes 

By employing the same formulation used in the case of a rectangular hole with a single 
rectangular hole, the non-dimensionalized mass and stiffness matrices can be derived 
considering a single hole case: 
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1

( )
n

T
rrh r k k rrhk rh rrhk

k

M M a b T M T
=

= −∑ , 
3

1

n
Tk

rrh r rrhk rh rrhk
k k

b
K K T K T

a=
= −∑  (47a,b) 

where the following non-dimensionalized variables are introduced for the analysis 

 / , / , / , /xk xk yk yk k k k kr r a r r b a a a b b b= = = =  (48a-d) 

And the transformation matrix can be expressed by considering Eq. (41) 

 ( ) 1 1

0 0
( ) ( ) ( ) ( )rrhk hi hi j hi hi hi j hiij

T d dφ ξ φ ξ ξ ψ η ψ η η= ∫ ∫  (49) 

In order to validate the efficacy of the ICCM for the rectangular plate with multiple 
rectangular holes, the rectangular plate with two square holes as shown in Fig. 4 is 

considered as a numerical example, in which 0.3ν = . The results of the ICCM are compared 

to those obtained by the classical Rayleigh-Ritz method. 
 

 

Fig. 4. Square plate with two square holes 

Ten admissible functions in each direction were employed, which implies one hundred 
admissible functions, for both CRRM and ICCM. In the case of the ICCM, the additional 
admissible functions are necessary for the hole domain. In our study ten admissible 
functions in each direction of the rectangular hole domain, which implies one hundred 
admissible functions, were used. The number of admissible functions guaranteeing the 
convergence are referred to the work of Kwak and Han(2007). 

Fig. 5 shows the non-dimensionalized natural frequencies obtained by the CRRM and ICCM 
for the case that the plate shown in Fig. 4 has all simply-supported boundary conditions, 
where h ha a a= .  As shown in Fig. 5, the results obtained by the ICCM agree well with the 
results obtained by the CRRM. The fundamental frequency increases as the size of the hole 
increases but higher natural frequencies undergo rapid change as the size of the hole 
increases. This result is similar to the one obtained by Kwak and Han(2007) for a single hole 
case. 
In the case of the simply-supported rectangular plate with a hole, the solutions of integrals 
can be obtained in a closed form without numerical integral technique. However, in the case 
of the clamped rectangular plate, the closed-form solution can’t be obtained, so the 

www.intechopen.com



Independent Coordinate Coupling Method for Free Vibration Analysis of a Plate With Holes   

 

91 

numerical integrations are necessary. Figure 6 shows the advantage of the ICCM over the 
CRRM regarding the computational time. As can be seen from Fig. 6, the computational 
time increases enormously in the case of the CRRM compared to the ICCM as the size of the 
hole increases. Hence, it can be readily recognized that the ICCM has the computational 
efficiency compared to the CRRM, which was confirmed in the work of Kwak and 
Han(2007) for a single hole case.  
 

ICCM

CRRM

h  

Fig. 5. Simply-supported square plate with two square holes 

 

CRRM

ICCM

h  

Fig. 6. CPU time vs. hole size 
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7. Independent coordinate coupling method for a rectangular plate with a 
circular hole  

Let us consider a rectangular plate with a circular hole, as shown in Fig. 7. The global 

coordinate approach used in Section 4 can be used for this problem but we must resort to 

numerical integration technique. If we use the ICCM, we can avoid the complex numerical 

computation and thus simplify the computation as in the case of a rectangular hole. 

 

 

Fig. 7. Rectangular plate with a circular hole. 

The total kinetic and potential energies of the rectangular plate with a circular hole are 

obtained by subtracting the energies of the circular hole domain from the energies of the 

whole plate, as we did for the case of a rectangular hole. Hence, the following equations can 

be obtained by using Eqs. (4) and (21). 

 
1 1

2 2
T T

total r r r ch ch chT q M q q M q= −$ $ $ $ ,  
1 1

2 2
T T

total r r r ch ch chV q K q q K q= −  (50a,b) 

In order to apply the ICCM, the displacement matching condition should be satisfied. 

Hence, the following condition should be satisfied inside the circular hole domain. 

 ( , ) ( , )c rw r wθ ξ η=  (51) 

Considering Eqs. (20), (3) and (10), we can obtain. 

 
1 1 1

( , ) ( ) ( , ) ( ) ( ) ( ) ( )
cm m m

cj chj rk rk k k rk
j k k

r q t q t q tΦ θ Φ ξ η φ ξ ψ η
= = =

= =∑ ∑ ∑  (52) 

Multiplying Eq. (52) by ( , )ci rΦ θ  and performing integration over the circular hole domain 

result in 

 

2 2

0 0 0 0
1 1

( , ) ( , ) ( ) ( , ) ( ) ( ) ( ),

1,2,...,

cm mR R

ci cj chj ci k k rk
j k

c

r r rdr d q t r rdr d q t

i m

π π
Φ θ Φ θ θ Φ θ φ ξ ψ η θ

= =
=

=

∑ ∑∫ ∫ ∫ ∫  (53) 
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Using the orthogonal property of ( , )ci rΦ θ , Eq. (53) can be rewritten as  

 ( )2

0 0
1 1

( ) ( , ) ( ) ( ) ( ) ( ), 1,2,...,
m mR

chi ci k k rk ch rk cik
k k

q t r rdr d q t T q t i m
π

Φ θ φ ξ ψ η θ
= =

= = =∑ ∑∫ ∫  (54) 

Equation (54) can be expressed in matrix form. 

 ch rch rq T q=  (55) 

where chT  is a cm m×  transformation matrix. We also need the relationship between the 

global and local coordinates, which can be expressed as follows.  

 
cos sin

,   
yx

rr r r

a a b b

θ θξ η= + = +  (56a,b) 

Using Eq. (55), the mass and stiffness matrices can be easily derived as in the case of a 
rectangular hole. 

 T
rch r rch ch rchM M T M T= − , T

rch r rch ch rchK K T K T= −  (57a,b) 

Eq. (57) can be nondimensionalized using Eqs. (5) and (22) as for the rectangular hole. 

Hence, we obtain 

 rch rchM hab Mρ= , 
3rch rch

Db
K K

a
=  (58a,b) 

where 

 ( )2 T
rch r rch rchM M T Tπαβ= − , 

2
T

rch r rch c rchK K T T
πα Λ
β

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (59a,b) 

in which /R aβ = . 
As shown in the process from Eq. (55), (57) and (59), it can be readily seen that the 

application of the ICCM is very straightforward and the theoretical background is solid. The 

efficacy of the ICCM are fully demonstrated in the numerical results[Heo and Kwak(2008), 

Kwak et al.(2005,2006,2007)]. 

8. Free vibration analysis of rectangular plate with multiple circular cutouts 
by independent coordinate coupling method  

Let us consider a rectangular plate with multiple circular holes as shown in Fig. 8.  We can 

easily extend the formulation developed in the previous section to the case of a rectangular 

plate with multiple circular holes. The resulting mass and stiffness matrices can be 

expressed as: 

 2

1

n
T

r k rchk rchk
k

M M T Tπαβ
=

= −∑ , 
2

1

n
T

rch r rchk c rchk
k k

K K T T
πα Λ
β=

= −∑   (60a,b) 
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where rchkT  represents the transformation matrix for kth circular hole  

 ( ) ( ) ( ) ( )
2

0 0
,

kR

rchk ki k k j jij
T r rdrd

π
Ψ θ φ ξ ψ η θ= ∫ ∫  (61) 

We also need the relationship between the global and local coordinates, which can be 

expressed as follows:  

 
cos sin

,
kykx k k k k

rr r r

a a b b

θ θξ η= + = +  (62a,b) 

For the numerical study, we considered a square plate with two circular holes as shown in 

Fig. 9. The results of the ICCM were compared to those obtained by the commercial finite 

element method, ANSYS. 0.3ν = , 76GPaE = , 1ma = , 37800 kg mρ = were used and non-

dimensionalized frequencies were estimated from the computed natural frequencies. For the 

ICCM, ten admissible functions were used for each direction of the square plate and fifty 

admissible functions were used for each circular hole. 
 

 

Fig. 8. Rectangular plate with multiple circular holes with local axes  

 

 

Fig. 9. Square plate with two circular holes 
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Figure 10 shows the non-dimensionalized natural frequencies obtained by the ICCM and 

ANSYS for simply-supported square plate with two circular hole, where hR aβ = . As 

shown in the figure, the results obtained by the ICCM are in good agreement with those 

obtained by ANSYS. 
 

 

Fig. 10. Simply-supported square plate with two circular holes ( —: ICCM, □:ANSYS) 

9. Independent coordinate coupling method for a circular plate with an 
eccentric circular hole 

Let us consider a circular plate with an eccentric circular hole as shown in Fig. 11 to 

demonstrate the efficacy of the ICCM.  

The total kinetic and potential energies can be written as  

 total C CHT T T= − , total C CHV V V= − . (63a,b) 

However, it is not easy to express the energies belonging to the eccentric circular hole using 

the global coordinate system whose origin is fixed to the circular plate since the integral 

limits cannot be easily established. In addition, the numerical integration for the eccentric 

circular hole is also not an easy task. These complexities can be avoided with the use of the 

ICCM [Heo and Kwak(2008)]. Based on the ICCM, the deflection of the circular plate with 

the eccentric circular hole can be expressed as a combination of eigenfunctions and 

generalized coordinates, which are based on the local coordinates, ,c cr θ , as shown in Fig.11. 
Inserting Eq. (21) into Eq. (63), the total kinetic and potential energies can be written as 

 
1 1

2 2
T T

total c c c ch ch chT q M q q M q= −$ $ $ $ , 
1 1

2 2
T T

total c c c ch ch chV q K q q K q= −  (64a,b) 
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Fig. 11. Circular plate with an eccentric hole for coordinate system 

In the next task in the ICCM, the displacement matching condition is satisfied inside the 
eccentric circular hole domain, i.e. 

 ( , ) ( , )ch c c cw r w rθ θ= . (65) 

Inserting Eqs. (20) into (65), we then obtain 

 
1 1

( , ) ( ) ( , ) ( )
cn n

cj c c chj j cj
j j

r q t r q tΦ θ Φ θ
= =

=∑ ∑ . (66) 

Multiplying Eq. (661) by ( , )ci c crΦ θ  and integrating over the eccentric circular hole domain 
result in 

 

2 2

0 0 0 0
1 1

( , ) ( , ) ( ) ( , ) ( , ) ( )

1,2,...,

c
c c

n nR R

ci c c cj c c c c c chj ci c c j c c c j
j j

c

r r r dr d q t r r r dr d q t

i n

π π
Φ θ Φ θ θ Φ θ Φ θ θ

= =

=

=

∑ ∑∫ ∫ ∫ ∫ . (67) 

Using the orthogonal property of ( , )ci c crΦ θ , Eq. (67) can be rewritten as  

 ( )2

0 0
1 1

( ) ( , ) ( , ) ( ) ( ), 1,2,...,
c

n nR

chi ci c c j c c c j cch jk cik
j k

q t r r r dr d q t T q t i n
π

Φ θ Φ θ θ
= =

= = =∑ ∑∫ ∫ . (68) 

Equation (68) can be expressed in matrix form 

 ch cch cq T q=  (69) 

where cchT  is a cn n×   transformation matrix. The relationships between the global and 
local coordinates are needed to compute each element in the transformation matrix, which 
can be expressed as follows.  

 2 2 1 sin( )
2 cos( ) , tan

cos
c c

c e c e c
e c c

r
r r R r R

R r

π θπ θ θ
θ

− ⎛ ⎞−
= + − − = ⎜ ⎟

+⎝ ⎠
. (70a,b) 
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Using Eqs. (69) into (64), we can derive the mass and stiffness matrices as follows: 

 T
cch c cch ch cchM M T M T= − , T

cch c cch ch cchK K T K T= − . (71a,b) 

which can be expressed in terms of the non-dimensionalized mass and stiffness matrices 

 2
cch cchM h R Mρ π= , 

2cch cch

D
K K

R

π
=  (72a,b) 

where 

 2 T
cch cch cchM I T Tα= − , 

2

1 T
cch cch c cchK T TΛ Λ

α
= −  (73a,b) 

in which /cR Rα =  is the ratio of the radius of the eccentric circular hole to the radius of the 
circular plate. Hence, the non-dimensionalized eigenvalue problem for the circular plate 
with an eccentric circular hole can be expressed as 

 2 0cch cchK M Aω⎡ ⎤− =⎣ ⎦   (74) 

where 4hR Dω ω ρ=  is the non-dimensionalized natural frequency. 

The finite element commercial code, ANSYS, was used for the calculation of non-
dimensionalized natural frequencies of the simply-supported circular plate with an eccentric 
circular hole, where material constants, 32700 , 69 , 0.3kg m E GPaρ ν= = = and h =2 mm, 
R =1 m were used. Figure 12 shows the mesh configuration of two cases for 

0.25α = , 0.4e =  and 0.5α = , 0.4e = , respectively, where the non-dimensionalized eccentric 
constant, /ee R R= , is introduced. The mesh for the first case consisted of 4261 elements 
and 4395 nodes and the mesh for the second case consisted of 3197 elements and 3357 nodes. 
 

    

(a) 0.25, 0.4eα = =                                                 (b) 0.5, 0.4eα = =  

Fig. 12. Mesh Configurations by ANSYS 

Figures 13 and 14 show the changes in the non-dimensionalized natural frequencies of the 
simply-supported circular plate with an eccentric circular hole with respect to the eccentricity 
when α = 0.25 and 0.5, respectively. Figs. 13 and 14 show the good agreement between the 
results obtained by the ICCM and the results by ANSYS. Eccentricity had a small effect on the 
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fundamental mode, regardless of the hole size. However, the increases of the hole size and 
eccentricity had a large effect on higher natural frequencies, which changed unpredictably. 
Instead of commercial finite element codes, the ICCM can be used as an effective tool for the 
estimation of natural frequencies of a circular plate with an eccentric circular hole. Different 
boundary conditions were treated in the work by Heo and Kwak(2008). 
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Fig. 13. Non-Dimensionalized Natural Frequency vs. Eccentricity for 0.25α =  
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Fig. 14. Non-Dimensionalized Natural Frequency vs. Eccentricity for 0.5α =  

10. Discussion and conclusions 

In general, the free vibration problem of a plate with holes can’t be solved analytically. 

Therefore, we have to resort to numerical approach such as the finite element method. The 
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classical Rayleigh-Ritz method has been popularly used for the analysis of a uniform 

rectangular plate and the exact solution exists for uniform circular plate. The procedure of 

the classical Rayleigh-Ritz method was first explained in detail. In applying the classical 

Rayleigh-Ritz method based on the global coordinates only, the kinetic and potential 

energies of the rectangular plate with a hole were calculated by subtracting the hole domain 

in the integrals. However, the Rayleigh-Ritz method can’t be effectively used when the plate 

has holes because the numerical computation of integrals is required. If the plate hole 

geometry belongs to either rectangular or circular shape, the newly developed method, so 

called the independent coordinate coupling method (ICCM) can be effectively used. The 

ICCM has proved its effectiveness in analyzing the free vibration of a rectangular plate with 

a rectangular hole, a rectangular plate with multiple rectangular holes, a rectangular plate 

with a circular hole, a rectangular plate with multiple circular holes, and a circular plate 

with a circular hole. However, the ICCM can be easily extended to a circular plate with a 

rectangular hole and circular plate with multiple circular holes.  

To apply the ICCM to the addressed problem, the global coordinates are set up for the plate 

and the local coordinates are set up for the hole domain, independently. The kinetic and 

potential energy expressions for the plate and the inner hole were then derived 

independently. Since the plate inside the hole domain can be regarded as a virtual free-edge 

plate, the energies, which are to be subtracted from the total energies, can be easily 

expressed in closed form. The resulting total energies are expressed in terms of generalized 

coordinates, which belong to either global or local coordinates. Hence, we need to unify the 

generalized coordinates. To this end, the relationships between the generalized coordinates 

belonging to the global and local coordinates were then derived using the displacement 

matching condition inside the hole domain and the orthogonal property of the admissible 

functions. In this way, the total kinetic and potential energies can be easily obtained and 

used for the calculation of the natural frequencies and modes of the circular plate with holes. 

To verify results of the proposed ICCM, numerical calculations were carried out using the 
classical Rayleigh-Ritz method based on the global coordinates only and the commercial 
finite element program. Experiments have been also carried out for the free-edge square 
plate with a square and circular hole. Both numerical and experimental results showed that 
good agreement exists between the results by the ICCM and the results obtained by the 
different algorithms and experiments. Hence, it can be concluded that the proposed ICCM 
can be effectively used for the free vibration analysis of a plate with holes. 
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