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1. Induction 

1.1 Composite materials 
A composite is a multiphase solid material. It is incorporated by two or more individual 
materials through physical or chemical methods. The performance of different materials to 
complement each other will produce synergistic effects (Ivanov et al., 2008; Lu et al., 2010). 
The overall property of composite materials is better than that of each original material to 
meet different requirements. These properties include mechanical, electrical, thermal, 
optical, electrochemical, catalytic behaviors etc. For example (Lu et al., 2010), investigating 
the synergistic effect of carbon nano-fiber (CNF) and carbon nano-paper on the shape 
recovery of shape memory polymer  (SMP) composite shows that the combination of CNF 
and carbon nano-paper can improve the thermal and electrical conductivities of the SMP 
composite, which are much better than each of the components. The individual materials in 
a composite are referred to as two constituent materials. The two constituent materials are 
matrix and reinforcement. The matrix material is a frame to support the reinforcement 
material. So the reinforcement material can keep its relative position. The reinforcement is a 
functional material which can enhance the matrix properties. Composite metal matrix 
(substrates) includes aluminum, copper, titanium, magnesium and its alloys and non-
metallic matrix includes synthesized resin, rubber, ceramics, graphite and carbon and so on. 
Reinforcement mainly includes glass fiber, carbon fiber, boron fiber , aramid fiber, silicon 
carbide fiber , asbestos fiber, whisker, metal wire and fine grain etc. In order to make use of 
synergistic effect to improve composite properties, optimum combination of matrix and 
reinforcement should be chosen. 

1.2 Nanocomposites and their properties 
A nanocomposite is a special composite where one of the phases has one, two or three 
dimensions less than 100 nanometers (nm, 10-9 m). A nanocomposite also includes the 
material where the structures between the different phases that make up the material are in 
nano-scale (Beecroft & Ober, 1997). In the broadest sense, nanocomposites can also include 
porous media, colloids, gels and polymers, because in these materials the particles or 
structures are in nano scale. One nanometer is equivalent to the length to tightly line up 
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10~100 atoms. Nano-materials include nano-powders, nano-fibers, nano-particles and nano-
thin films. Their structures are between atom (molecular) size and macro size. Materials in 
nano-scale have special effects such as quantum size effect, surface effect, small-size effect 
and macroscopic quantum tunneling effect etc. 

Quantum size effect 

Quantum size effect is one of the fundamental physical properties of nano-particles. When 
the particle size decreases to a nano-scale, the electronic energy levels of the particle atom 
become discrete and the energy gap becomes wider. This phenomenon is called quantum 
size effect. This effect does not come into play when the particles are in micro dimensions. 
However, quantum effects become dominant when the particles sizes decrease to 
nanometer, especially when the dimensions are in 100 nanometers or less. So the nanometer 
size dimension is also called quantum realm. The quantum size effect leads the nano-
materials have very different magnetic, optical, acoustic, thermal, electrical and 
superconducting properties with conventional materials, such as very high non-linear 
optics, optical catalysis, high oxidability and reducibility etc.  Due to quantum size effect, 
the galvanomagnetic and thermoelectric properties (electrical conductivity s, the Hall 
coefficient RH, charge carrier mobility m, and the Seebeck coefficient S) of nano-size PbSe 
thin film oscillate with the thin film thickness (3-200 nm) (Rogacheva et al., 2002). Silica 
glasses are doped with CdS and ZnS micro-crystals. Because of the quantum size effect, the 
optical absorption spectra and the photoluminescence spectra show that the optical 
absorption edges and the photoluminescence peaks shift to the higher energy side with 
decreasing the size of the micro-crystals (Zhao et al., 1994).  

Surface effect 

For a spherical particle, the ratio of surface area and volume is inversely proportional to the 
particle diameter. When particle size decreases to nano-scale, more atoms appear on surface 
relatively. For example, when particle diameter is 10 nm, the surface atom is about 20% of 
the total atoms; the diameter of 1 nm, the percentage of surface atoms increases to 99%.  
Almost all of the atoms are in surface.  The particle surface becomes large relative the 
particle volume and the surface atoms are easy to combine with each other. This structure 
shows a high chemical activity. So, for the nano-materials, surface energy and surface 
binding energy are rapidly increasing compared to bulk particles. This change is called 
surface effect. For example, Au particles with dimension about 2 nm have no stable states; 
they change from octahedron, decahedron to icosahedron multicrystals. They are not liquid, 
not solid and can be called quasi-solid. 

Small-size effect  

When the particle size is close to or smaller than the light wavelength, the particle's de 
Broglie wavelength, semiconductor coherence length and the particle's penetration depth, 
the particle has new properties such as optical, thermal, acoustic, electrical, magnetic and 
mechanical properties etc. This phenomenon is the small size effect. For example, when the 
metal particle size is small than the light wavelength, the metal's color will become black. 
This means nano metal particles have very good light absorption and can be optothermal, 
photoelectrical materials. The melt temperature of bulk gold is 10640C, but 2 nm size gold 
particles melt temperature is only 3270C. Nano-scale metal particles can be insulator. 
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Macroscopic quantum tunneling effect 

Quantum tunneling refers to the phenomena of a particle's ability to penetrate energy 
barriers within electronic structures. Scanning tunneling microscope (STM) and Atomic 
force microscopy (AFM) are based on macroscopic tunneling effect. 

1.3 Nanocomposite classification 
Based on the matrix materials, the nanocomposites can be classified as ceramic-matrix 
nanocomposites, metal-matrix nanocomposites and polymer-matrix nanocomposites etc. 

Ceramic-matrix nanocomposites 

Ceramic materials such as oxides, nitrides, borides and silicides all can be the matrix of 
nanocomposites. Oxide ceramics include Al2O3, TiO2, ZnO, MgO·Al2O3, 3Al2O3·2SiO2, PZT etc.  
Nitride ceramics include Si3N4, BN, AlN. Boride ceramics include CrB2, ZrB2 and TiB2. Silicide 
ceramics include MoSi2 etc. The reinforcement materials of ceramic-matrix nanocomposites are 
metals such as Fe, Al, Cu, Zn etc. Ceramic-matrix nanocomposites have very good optical, 
electrical and magnetic properties. Normally, preparing ceramic nanocomposite needs very 
high temperature. Some of the metallic components may easily react with the ceramic and 
thereby loses its metallic character. So, it should be careful in choosing immiscible metal and 
ceramic phases. There are also bi-phase ceramic/ceramic nanocomposites (Sternitzke, 1997). 
For example, low temperature nanocomposites Al2O3/SiO2, SiO2/MgO, Al2O3/TiO2, AIN/BN; 
structure nanocomposites Al2O3/SiC, Si3N4/SiC, MgO/SiC etc.  

Metal-matrix nanocomposites 

Sometimes, or under special conditions, a metal can be the matrix of a nanocomposite. For 
example, Cu/Al2O3 metal matrix composite materials have both high strength and high 
conductivity. They can be used as electrodes and contact terminals. Here Cu is the matrix, 
and Al2O3 is the reinforcement. It has been identified that the Al2O3 particles in the 
consolidated composite material have the size smaller than 200 nm in diameter (Ying & 
Zhang, 2000). 

Polymer-matrix nanocomposites 

Polymers as the matrices of nanocomposites can enhance their performance, often in very 
dramatic degree. Nano-materials are the fillers, so, these materials are better described by 
the term nano-filled polymer composites. The fillers can be metals, metal oxides, polymers 
etc. This new class of composite materials has shown enhanced optical, electrical and 
dielectric properties. Polymer–inorganic nanocomposite materials are defined as inorganic 
nanofillers dispersed at a nanometer level in a polymer matrix. S.C. Tjong (Tjong, 2006) has 
reviewed polymer nanocomposites reinforced with respective layered silicates, ceramic 
nanoparticles and carbon nanotubes. The properties of nanocomposites depend not only on 
the properties of polymer matrices and nature of nanofillers but also on the way in which 
they are prepared. In order to achieve desired mechanical and physical characteristics, the 
nanofillers need disperse uniformly in the polymer matrices. Changli Lu et al (Lu et al, 2003) 
made ZnS–polymer nanocomposite films through chemical way. The ZnS nanoparticles 
were uniformly dispersed in the polymer matrix and the particles remained their original 
size 2.0–5.0 nm in diameter with a cubic phase structures. The resulting nanocomposite 
films have good thermal stability and exhibit excellent optical transparency in the visible 
region and higher refractive indices. 
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Nanocomposite materials are widely used in solar energy conversion. The application of 
solar cell is one of the most promising technologies in the last decade. Solar energy is clean 
and renewable. Converting solar energy into electricity provides a much-needed solution to 
the energy crisis the world is facing today. Solar cells convert sunlight into electricity based 
on photovoltaic effect.  Even though the first generation and the second generation solar 
cells have become commercial products successfully, much research needs to continue to 
improve the energy conversion efficiency and reduce the cost of the products. Some of these 
efforts have produced materials that have shown very unique and important properties in 
contrast to traditional materials. 

2. Sunlight and photovoltaic energy conversion 

2.1 Sunlight and spectra 
Almost all of the energy that drives the various systems (climate systems, ecosystems, 
hydrologic systems, etc.) found on the Earth originates from the sun. Solar energy is green 
power and renewable energy. Solar energy is abundant. Every day the sun radiates, or 
sends out, an enormous amount of energy to the earth, but only a little can be used. A 
sunlight or sunshine means the light radiates from the Sun and reaches to the earth. The 
sunlight contains energy. Based on quanta theory, the particle of light was given the name 
photon. A photon has an energy, E, proportional to its frequency ǎ. This relation between 
the energy and frequency is called Planck relation or the Planck–Einstein equation: 

 E=hv  (2-1) 

Since the frequency ǎ, wavelength ǌ, and speed of light c are related by ǌǎ = c, the Planck 
relation can also be expressed as 

 
hc

E=
ǌ

 (2-2) 

Where h is Planck's constant (h= 6.626068×10-34 m2 kg/s), c is the speed of light (c= 
299,792,458 m/s). Because of the reflection of the aerosphere, about 70% energy within the 
light arrives at the earth and is absorbed by clouds, oceans and land masses. The sunlight is 
a kind of electro-magnetic wave or electromagnetic radiation. The spectrum of solar light is 
continuous. According to increasing order of wavelengths, the lights are ultraviolet, visible 
and infrared parts. The wavelengths are as follows: 

       Ultraviolet radiation (UV): 100-400 nm (not visible). 

       Visible light: 400-700 nm.  

       Infrared radiation (IR): 700 nm-1 mm (not visible) 

On the contrary, the frequency decreases from ultraviolet, visible and infrared parts. 
Figure 2.1 shows the solar radiation spectrum. 
This figure shows the solar radiation spectrum for direct light at both the top of the Earth's 

atmosphere and at sea level. The Sun is like a blackbody and the surface temperature is about 
5525 K (5250°C). The red part in the figure is the energy absorbed on sea level. Based 
Planck–Einstein theory, high frequency photon contains high energy. But in the sunlight the 
most parts are visible light and infrared radiation, only small part is ultraviolet light. Figure 
2.1 shows that most of the energy is in visible and infrared spectrums. The solar energy 
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distribution according to wavelengths is visible light about 40%, infrared radiation about 
50% and ultraviolet light about 10%. 
 

 
Fig. 2.1. Solar irradiance spectrum above atmosphere and at surface 
Image created by Robert A. Rohde / Global Warming Art 
(http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png) 

2.2 Air mass 
When the sunlight passes through the atmosphere, some of light will be absorbed by the air 
and dust. This means part of the light power will be lost. The Air Mass quantifies the power 
reduction when the light passes through the atmosphere. It is defined as: 

 
1

AM=
cos(ǉ)

 (2-3) 

where ǉ is the angle from the vertical direction (Figure 2.2). When the sun is directly 
overhead, the Air Mass is 1 (ǉ=90°). 

 
Fig. 2.2. AM measurement 

The measurement of AM is in Figure 2.2.  Here h is the object height, s is the shadow length. 
From the geometry, the AM can be calculated: 
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21 s

AM= = 1+
cosǉ h

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2-4) 

The above formula is an ideal condition that assumes the atmosphere is a flat horizontal 
layer, but the Earth is a sphere and the atmosphere is like sphere shell. An equation which 
incorporates the curvature of the earth is:  

   
(2-5)

 

2.3  Standardised solar spectrum and solar irradiation  
The power and the spectrum of the incident light can affect the efficiency of a solar cell. For 
measuring the solar cell efficiency, a standard spectrum and power density has been defined 
for both radiations outside the Earth's atmosphere and at the Earth's surface. AM0 is the 
standard spectrum outside the Earth's atmosphere, it is used for space cell. AM1.5G and 
AM1.5D are the standard spectrums at the Earth's surface. AM1.5G is for global and 
includes both direct and diffuse radiation. AM1.5D only includes direct radiation. Due to 
absorption (18%) and to scattering (10%) the intensity of AM1.5D radiation can be 
approximated by reducing the AM0 spectrum by 28%. The global spectrum is 10% higher 
than the direct spectrum. For the convenience of calculation, AM1.5G spectrum has been 
normalized to 1kW/m2. 

2.4 Photovoltaic energy conversion 
The "photovoltaic effect" is the basic physical process through which a solar cell converts 
solar energy into electricity. Solar cell is actually a semiconductor diode. Sunlight is 
composed of photons, or "packets" of energy. These photons contain various amounts of 
energy corresponding to the different wavelengths of light. When photons strike a solar cell, 
they may be reflected or absorbed. When a photon is absorbed, the energy of the photon is 
transferred to thermal energy or electrical energy. The thermal energy can heat up the solar 
cell to a very high temperature and damage the solar cell. The absorbed energy can excite an 
electron in an atom of the cell. With its newfound energy, the electron is able to escape from 
its normal position associated with that atom to become part of the current in an electrical 
circuit. The absorbed energy of a photon is changed to thermal energy or electrical energy is 
related to the band-gap of the semiconductor material of the PV cell. A photon with energy 
equal to or greater than the band-gap of the materials is able to excite one electron when 
absorbed. If a photon with energy less than the band-gap all its energy will become thermal 
energy when absorbed. For the photons with more energy than the band-gap, the excess 
energy above the band-gap will also become thermal energy when absorbed. Because of this 
constraint, the efficiency of solar cell is very low.  A good designed solar cell tries to absorb 
all the sunlight and change all the solar energy to electrical energy. This means the solar cell 
materials can be composites with different band-gap according to different sunlight photons 
energy. 
Figure 2.3 shows photovoltaic current which is produced from semiconductor diodes. The 
diode connected with the current source represents the solar cell. I is the output current, and 
Ip is the photocurrent. Figure 2.3(a) shows the simplest solar cell model, where a diode and 
a current source are connected in parallel. It is noted that the source current (photocurrent) 
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is directly proportional to the solar radiation. The diode represents the p-n junction of a 
solar cell. The current (I) passes through the load is the difference between the photocurrent 
(Ip) and the current through the diode (ID), and can be expressed by: 

 p D p S
T

V
I=I -I =I -I exp -1

mV

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2-6) 

In formula (2-6), m is the diode ideality factor, in the simplest cell m is represented by the 
ideal diode model, m=1. IS is the reverse saturation current of a diode. IS is in the order of 10-

8 A/m2. VT is the thermal voltage of a diode. The relationship of the VT and the temperature 
of the solar cell (T) can be shown in formula (2-7): 

 T
kT

V =
q

 (2-7) 

where ǋ is the Boltzmann constant, and
 

-23 J
k=1.38×10

K
⎛ ⎞
⎜ ⎟
⎝ ⎠

. q is the charge of electron, and  

-19q=1.6×10 (C) . 
Figure 2.3(b) shows a real solar cell circuit. There are serial (Rs) and parallel or shunt (RSH) 
resistance in the equivalent circuit. The output current is 

 p D SH p S
T SH

V V+IRs
I=I -I -I =I -I exp -1 -

mV R

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2-8) 

where ISH is the current passing through the shunt resistance and RSH is the shunt resistance. 
Formula (2-8) is a transcendental equation, there is no analytical solution. But for an 
operating voltage V, the output current I can be determined numerically. In addition, the 
open circuit voltage, VOC, can be calculated by setting I=0, i.e. 

 p

S

IkT
VOC ln -1

q I
⎛ ⎞

≈ ⎜ ⎟⎜ ⎟
⎝ ⎠

 (2-9) 

In figure 2.3, short circuit current (Isc) is the current when the terminals are connected to 
each other (zero load resistance). For a high-quality solar cell (low RS, and high RSH) the 
short-circuit current ISC is  

SC pI I≈  

 
Fig. 2.3. The equivalent circuits of solar cell (a) Ideal model; (b) Practical model. 
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Current density 

The values of IS, RS, and RSH are dependent upon the physical size of the solar cell. In order 
to specify the properties of solar cell clearly, current density is introduced. It is the current 
produced per unit cell area: 

 S
p S

T SH

V+JrV
J=J -J exp -1 -

mV r

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (2-10) 

where 
J = current density (amperes/cm2)  
JP = photogenerated current density (amperes/cm2) 
JS = reverse saturation current density (amperes/cm2) 
rS = specific series resistance (Ω-cm2) 
rSH = specific shunt resistance (Ω-cm2) 

Efficiency η: 

The power density is the product of voltage and current density. 

 P=J V  (2-11) 

The maximum power density occurs somewhere between V = 0 (short circuit) and V = Voc 
(open circuit) at a voltage Vm. The corresponding current density is Jm, and thus the 
maximum power density is Pd,m = Jm Vm. (Figure 2.4). 
The efficiency of a solar cell is defined as the input power divided by the output power. If 
the incoming light has a power Ps, the efficiency will be:  

 d,m

s

P
ǈ=

P
 (2-12) 

FF is the solar cell fill factor. 
It is defined as  

 m m

SC OC

J V
FF=

J V
 (2-13) 

It gives a measure of how much of the open circuit voltage and short circuit current is 
"utilized" at maximum power (Figure 2.4). Using FF we can express the efficiency as:  

 SC OC

S

J V FFǈ=
P

 (2-14) 

The four quantities Jsc (short circuit current density), Voc, FF and ǈ are frequently used to 
characterize the performance of a solar cell. They are often measured under standard 
lighting conditions, which implies Air Mass 1.5 spectrum, light flux of 1000W/m2 and 
temperature of 25°C.  
If shadows and defects present, they cause power loss because these areas become loads 
instead of generating power. The DC power may be converted to AC power by an inverter. 
The conventional energy causes pollution and greenhouse effect. Energy shortage is critical 
for most of the countries. These problems cause the demand for clean and renewable energy 
and lead to the significant expansion of the manufacture of solar cells. Currently available  
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Fig. 2.4. The current-voltage and power-voltage characteristics of an ideal solar cell. 

solar cells have the efficiencies about 6% (for the first generation silicon cells) to 40% (for the 
second and third generation multiple junction cells, Figure 2.5). It is estimated that over 8000 
MW useful energy can be harvested over the world from sunlight each year with the 10% 
efficiency. But even now, the cost of photovoltaics is around $0.30/kWh, which is much 
higher than conventional power. The solar cell projects still need government support for 
the high cost. Only when the cost is close to that of the traditional power, the solar energy 
era will come. 
 

 

Fig. 2.5. NREL compilation of best research solar cell efficiencies 
Chart courtesy of Larry Kazmerski, NREL 
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The National Renewable energy Lab (NREL) gives solar cell efficiencies based on different 
solar cell materials. Figure 2.5 shows the efficiencies of all kinds of solar cells and displays a 
very good prospect for all kinds of solar cells. Spectrolab (subsidiary of The Boeing 
Company) has set a new world record for terrestrial concentrator solar cell efficiency. The 
cell can convert 41.6% of concentrated sunlight into electricity. This is a multi-junction solar 
cell. This type of cell achieves a higher efficiency by capturing more of the solar spectrum. In 
a multi-junction cell, individual cells are made of layers, where each layer captures part of 
the sunlight passing through the cell. So this solar cell can absorb more energy from the 
sun's light (King, 2009). Table 2.1 gives the efficiencies description of the different solar cells 
in Figure 2.5. 
 

Classification 
Area  
cm2 

VOC      
(V) 

JSC 

(mA/cm2) FF   (%)
Efficiency 

(%) Reference 

GaInP/ GaInAs/ Ge 0.3174 3.192 1.696 88.74 41.6 (King, 2009) 

Organic 0.0441 0.756 14.7 70.9 7.9 (Green et al., 2010) 

CdTe 1.032 0.845 26.1 75.5 16.7 
(Wu  et al., 2001;  

Wu, 2004) 
CIGS 0.419 0.69 35.5 81.2 19.9 (Repins et al., 2008) 

Dye-Sensitized 0.219 0.736 20.9 72.2 11.1 (Chiba et al., 2006) 

Table 2.1. Best efficiencies from Figure 2.5 

First generation solar cell: single crystal silicon wafers (c-Si).  

Because of broad spectral absorption range, Single crystal silicon solar cell can get high 
efficiency as 27.6% (Fig 2.5). The first generation photovoltaic cells are the dominant 
commercial products of solar cells taking more than 80% of the solar cell market. But the 
material processing and manufacturing are expensive. 

Second generation: thin film 

Based on thin film technology, the second generation solar cells also become commercial 
products. Thin film technology can reduce mass of material required for cell design, so it can 
reduce the cost for manufacturing solar cell.  Normally, the efficiencies of thin-film solar 
cells are lower than the first generation solar cells. But thin film technology can make the 
solar cell panels on such substrates as light or flexible materials, even textiles. The second 
generation solar cells mainly include amorphous silicon (a-Si), polycrystalline silicon (poly-
Si, not thin film), cadmium telluride (CdTe), copper indium gallium diselenide (CIGS) alloy 
etc.  CdTe and CIGS are the mainly thin film solar cells on the market. The highest 
efficiencies of CdTe and CIGS can reach 16.5% and 19.9% respectively (Figure 2.5). Thin film 
solar cells are developing very fast. The market share is from about 10% (2007) to about 19% 
(2009). 

Third generation and fourth generations: 

The third generation solar cells include nanocrystal solar cells, photoelectrochemical (PEC) 
cells, polymer solar cells (thin film), dye sensitized solar cell (DSSC, thin film). The efficiency 
of the third generation is about 10%. The fourth generation cells are considered to be hybrid-
inorganic crystals within a polymer matrix. 
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3. Nanocomposite manufacturing 

In thin film soar cell, the basic manufacturing processing is the ability to deposit thin films 
of material. In this section, the main nano-manufacturing techniques for thin film solar cell 
will be introduced. These techniques include chemical bath deposition (CBD), close space 
sublimation (CSS), chemical vapor deposition (CVD), Magnetron sputtering and 
Electrodeposition (ED). There are many aspects should be considered for chose which 
process, such as cost, area size, in lab or in industry etc.  The most important is the solar cell 
manufacturing technique includes a serial deposition processes. Each process has many 
possible choices. For example, making a CdS/CdTe solar cell includes transparent 
conductive oxides (TCO) deposition, buffer layer (CdS) deposition, absorber layer (CdTe) 
deposition and back contact deposition. CdTe layer can be deposited through one of CBD, 
CVD, CSS, mangnetron sputtering and electrodeposition. When one process is chosen, this 
process also affects the former (CdS) process and  latter process (back contact), even the 
annealing process. The current status of technique for nanomanufacturing is discussed 
below. 

3.1 Chemical bath deposition (CBD) 
In 1933 Bruckman deposited PbS thin film by chemical bath deposition (CBD) or solution 
grown method. From then chemical bath deposition (CBD) has been used for decades to 
deposit thin films of various semiconductors (Hodes, 2003). The chemical bath deposition 
method is one of the cheapest methods to deposit thin films and nanomaterials. The CBD is 
very sample. It does not depend on expensive equipment and requires only solution 
containers and substrate mounting devices. CBD is a scalable technique that can be employed 
for large area batch processing or continuous deposition. The key advantages are low cost, 
large area, low temperature and atmospheric processing. With the development of thin film 
solar cell technology, CBD as the economical method is widely used in depositing buffer layers 
of CdS (and similar materials) in thin-film photovoltaic cells based on CdTe and CuInSe2 
(Mendoza-Perez et al., 2009; Ochoa-Landın et al., 2009; Lee, 2005; Castillo-Alvarado et al., 
2010; Rose et al, 1999; Guillemoles et al., 2000; Hariskos et al., 2005; Romeo et al., 2004; Kylner, 
1999; Shirakata et al., 2009; Noufi, 2006; Ennaoui et al., 2001). It takes advantage of the use of a 
reaction from a solution were different precursors can be dissolved easily. Depending on the 
deposition condition, the film growth can take place by ion–ion condensation or by adsorption 
of colloidal particles (cluster by cluster) from the solution onto substrates. Films deposited by 
this technique are proved to be of comparable quality with those produced by other 
sophisticated and expensive methods. There are some drawbacks of this method, such as the 
low material yield for film formation and the wastage of solution after every deposition which 
leads to treatment costs. Figure 3.1 shows the typical CBD devices. 
Figure 3.1 shows the typical CBD-CdS devices in lab. The container is a beaker. Hot plate 
can heat the solution up to 90°C. The chemical solution contains Cadmium Acetate, 
Ammonium Acetate, Ammonium Hydroxide, and Thiourea. The chemical reaction results 
in the deposition of CdS onto all surfaces in the bath, including the surfaces of the ITO 
coated glass. Typically, for a 20-minute run, a thickness of 800-1000 Å can be achieved. The 
bath parameters such as concentration, bath temperature and deposition time greatly affect 
the morphology, thickness, refractive index, electrical resistivity, even the band gap of the 
deposited film (Lee, 2005;  Contreras et al., 2002; Eze & Okeke, 1997; Marayanan et al., 1997). 
These properties of the buffer layer affect the performance of CdTe and CIGS solar cells. 

www.intechopen.com



 Advances in Composite Materials for Medicine and Nanotechnology 

 

222 

 
Fig. 3.1. Chemical bath deposition (CBD) devices for CdS in lab 

3.2 Close space sublimation (CSS) 
The close space sublimation (CSS) is widely used in CdS (and similar semiconductors) and 
CdTe thin film deposition in CdTe solar cells (Matsune et al., 2006; Kumazawa et al., 1997; 
Aramoto et al., 2003; Tsuji et al., 2000; Britta & Ferekides., 1993; Dzhafarov et al., 2005; 
Dobson et al., 2000; Enrıquez et al., 2007; Romeo et al., 2004; Khrypunov et al., 2006; 
Okamotoet al., 2000; Dhere et al., 1997; Ferekides et al., 2000). CSS is an attractive process 
and has many advantages. Compared with other deposition techniques, it can offer high 
deposition rate, it is able to produce films with large grains and can be easily scaled up for 
manufacturing purposes. CdTe CSS process is about 550-620°C, and CdS CSS process is 
about 500-600°C. The temperature is over CdTe and CdS recrystallization temperature, So, 
the grains size is larger than that with PVD or CVD process.  CSS-CdTe grains size is about 
290nm, PVD-CdTe giains size is 13nm (Moutinho et al., 2008). 
Unlike other thin film deposition techniques, the distance between the source and the 
substrate is very short with millimeters or less, the source chosen is very important, because 
the source strongly affects the control of the deposition parameters, especially the deposition 
rate (Pinheiro et al., 2006). The close space sublimation (CSS) technique is characterized by 
the short distance between the source and the substrate, which is usually less than 1 mm. 
Figure 3.2 shows the CSS system in lab. 

 
Fig. 3.2. CSS-CdTe deposition system  

The CSS system is set up in a closed quartz chamber. When depositing films, the chamber 
can be filled a flow of gas from gas inlet. The gas can be hydrogen or inert gas such as Argon 
or Helium. O2 is also found in CSS system. For example, CSS-CdS and CSS-CdTe deposition 
is in the ambient with O2 (Ferekides et al., 2000). This was due to the fact that solar cells 
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fabricated with CdS films prepared in O2 ambient exhibited higher efficiencies than devices 
fabricated with CdS films deposited in inert ambient. Some CSS systems also work under 
vacuum conditions of about 1 Torr. 
The reactor consists of a source (CdS or CdTe) and a substrate, separated by quartz spacers. 
The source is in underside and the substrate is above. They are held by two graphite 
susceptors (blocks) respectively. Each graphite block is set one thermocouple to monitor the 
temperature of the source and the substrate. The aim of the CSS technique is to provide a 
temperature difference between the source and the substrate. This temperature difference 
enables a diffusion controlled transport mechanism. 
Radiant heat from outside lamps can heat the graphite blocks and this heat then is 
transmitted to the source and the substrate. The heat can also be provided by the electrical 
current (resistance heating), using the two graphite blocks as resistances. A combination of 
the two can also be adopted. 
In CSS system, the main parameters acting on the deposition rates are the spacing, the 
source and the substrate temperature, pressure and the ambient gas.  

3.3 Chemical vapor deposition (CVD) 
Chemical vapor deposition (CVD) is a chemical process used to produce high-purity, high-
performance solid materials. In solar cell industry, CVD process is often used to produce 
semiconductor thin films such as SnO2 (Wu et al., 2006), ZnO, CdS (Kumazawa et al., 1997) 
and CdTe (or similar semiconductors). In a typical CVD process, the sources (precursors) are 
volatile. When heated, they react/or decompose on the substrate surface to produce the 
desired deposit. Frequently, volatile by-products are also produced, which are removed by 
gas flow through the reaction chamber. Figure 3.3 shows the CVD system and process. 

 
Fig. 3.3. CVD system and process 

In this process, the substrate is placed inside a reactor to which reactants and inert dilute 
gases are supplied. The gaseous species move to the substrate and reactants are adsorbed 
onto the substrate with condenses. The gaseous by-products of the reactions are desorbed 
from the surface of the specimens and removed from the reaction chamber. The exhaust is 
subsequently trapped in a recycle tank through a vacuum pump. To precisely control the 
temperature at different locations in the chamber, multi-zone resistance heaters are used. 
The deposition rate in a CVD process is controlled by the temperature. In high temperature 
range, mass-transfer controls the whole process of deposition. Nevertheless, in the low 
temperature range, the chemical reaction determines the rate of deposition. Transition 
between the two mechanisms is also found.  
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In thin film solar cell application, a number of forms of CVD are in wide use and are 
frequently referenced in the literature. The different types of CVD processes as follows: 
According to pressure: 
a. Atmospheric pressure CVD (APCVD) - CVD processes at atmospheric pressure 
b. Low-pressure CVD (LPCVD) (Kumazawa et al., 1997; Rose et al., 1999)- CVD processes 

at subatmospheric pressures. Most modern CVD processes are either LPCVD or 
UHVCVD. The LPCVD process produces layers with excellent uniformity of thickness 
and material characteristics. The main problems with the process are the high 
deposition temperature (higher than 550°C) and the relatively slow deposition rate. 

c. Ultrahigh vacuum CVD (UHVCVD) - CVD processes at a very low pressure, typically 
below 10−6 Pa (~10−8 torr).  

Other methods: 

PECVD―Plasma-Enhanced CVD; CVD processes that utilize plasma to enhance chemical 
reaction rates of the precursors. PECVD processing allows deposition at lower temperatures, 
which is often critical in the manufacture of semiconductors. 
ALCVD―Atomic layer CVD (Naghavi et al., 2003); It is based on the sequential use of a gas 
phase chemical process. The majority of ALD reactions use two chemicals (precursors). 
These precursors react with a surface one-at-a-time in a sequential manner. By exposing the 
precursors to the growth surface repeatedly, a thin film is deposited. 
MOCVD―Metalorganic chemical vapor deposition; CVD processes based on metal organic 
precursors. MOCVD is a common process for thin film solar cell deposition. It can be used 
on TCO, buffer layer and absorber layer, such as SnO2 (Ferekides et al., 2000), CdS (Matsune 
et al., 2006; Kato et al., 2001; Tsuji et al., 2000), ZnO (Hariskos et al., 2005; Ennaoui et al., 
2001) and CdTe (Sharma et al., 2003) etc. 
There are also other type of CVD for different materials. The quality of the material varies 
from process to process, but in general, higher process temperature yields a material with 
higher quality and less defects. 

3.4 Magnetron sputtering 
Sputter deposition is a physical vapor deposition (PVD) method of depositing thin films by 
sputtering. In sputtering process, the material is released from the source at much lower 
temperature than evaporation. Figure 3.4 shows the sputter deposition process. 

 
Fig. 3.4. Typical RF sputtering system. 

The sputtering is ejecting material from a "target" (source), and then is deposited onto a 
"substrate". In figure 3.4, the substrate is placed the upside of a vacuum chamber with the 
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source material, named a target, underside. An inert gas (such as argon) is introduced at low 
pressure from gas inlet. The radio frequency (RF) power source causes the gas to become 
ionized. The ions are accelerated towards the target to bombard the atoms of the source 
material. The surface atoms are broken off from the target in vapor form and condense on 
the substrate surface to form thin film. The basic principle of sputtering is the same for all 
sputtering technologies. The sputtering is considered as a low temperature evaporation, 
which is realized by the ion bombardment of the target.  
Normally the sputtering inert gas is argon. The principle for inert chosen is that the atomic 
weight of the sputtering gas should be close to the atomic weight of the target as for efficient 
momentum transfer.  Neon is for sputtering light elements and krypton or xenon is for 
heavy elements. Reactive gases such as F2, O2, H2 and N2 etc can also be used to sputter 
compounds. The compound can be formed on the target surface, in-flight or on the substrate 
depending on the process parameters. The compounds have very good properties for 
application. 
For example ZnTe:N is nitrogen-doped ZnTe. It can be the transparent back contact of a 
CdS/CdTe solar (Compaan et al., 2004).  ZnTe:N films with ~750 nm thickness were 
deposited by reactive RF sputtering at ~350°C with 3% N2 in the Ar sputter gas on 
aluminosilicate glass (Corning 1737). CdS:O (Wu, 2004) is CdS sputtered at room 
temperature in an oxygen/argon gas mixture. The CdS:O film has a higher optical bandgap 
(2.5–3.1 eV) than the poly-CdS film. The bandgap increases with an increase of oxygen 
content. A CdS thin film sputtered in a 2% oxygen/argon environment is still 
polycrystalline, but average grain size is around 3–5 nm, much smaller than the CdS film 
sputtered in an oxygen-free environment (~25 nm). 
Sputtering is used extensively in the semiconductor industry to deposit thin films of various 
materials. For making efficient thin film photovoltaic (CdTe and CIGS) solar cells, sputtering 
is very useful technique.   
In thin film CdTe solar cell, every layer can be deposited by sputtering including front 
contact transparent conductive oxide (TCO) (Wu et al., 2006; Wu et al., 2005; Romeo et al., 
2010; Gupta et al., 2004; Santos-Cruz et al., 2006; Romeo et al., 2007; Tiwari et al., 2004;  Lee, 
2005; Romeo et al., 2003; Singh & McClure, 2003; Rose et al., 1999; Mitchell et al., 1977; 
Compaan et al., 2004; Wu, 2004; Colombo et al., 2009; Romeo et al., 2006; Minami, 2005; 
Singh et al., 1999; ], buffer layer CdS (Wu et al., 2006; Wu et al., 2005; Romeo et al., 2010; 
Gupta et al., 2004; Lee, 2005; Romeo et al., 2003; Krishnan et al., 2009; Gupta et al., 2006; 
Compaan et al., 2004; Wu, 2004; Colombo et al., 2009; Singh et al., 1999), CdTe (Compaan et 
al., 2004; Gupta et al., 2004; Santos-Cruz et al., 2006; Mathew et al., 2004; Krishnan et al., 
2009; Gupta et al., 2006; Compaan et al., 2004) and back contact (Compaan et al., 2004; 
Romeo et al., 2003; Fahrenbruch, 2007).  
Xuanzhi Wu (Wu, 2004) introduced a kind of CdTe solar cell with a new structure and a 
new deposition process. In this structure, three layer of TCO film CTO, buffer layer ZTO, 
and window layer nano-CdS:O are deposited by RF sputtering in room temperature. RF 
sputtering is a mature technology with demonstrated production scalability. The new 
process has only one heat-up segment in the entire device fabrication process. The 
recrystallization of the first three layers and the interdiffusion at the three interfaces 
(CTO/ZTO, ZTO/CdS, and CdS/CdTe interfaces) are completed during CdTe deposition 
by the CSS technique. This process provides attractive alternatives for producing CdTe 
modules with a potential of high throughput and low cost by (1) increasing device efficiency 
up to 16.5%, (2) improving device yield,and (3) simplifying the device fabrication process. 
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Some researches made CdTe solar cell with all sputtering process. Gupta & Compaan 
(Gupta & Compaan, 2004) developed ZnO:Al/CdS/CdTe solar cell with all sputtering 
process. High temperature will make ZnO:Al degraded. This cell got efficiency as 14%. This 
result confirms that the moderate temperatures possible with magnetron sputtering can 
provide important advantages in cell fabrication and expand the range of materials available 
for thin- film polycrystalline solar cells. Marsillac et al (Marsillac et al., 2007) developed an 
Ultra-thin bifacial CdTe solar cell SnO2:F/CdS-/CdTe/ZnTe:N/ITO with all sputtering 
process. The efficiency can get over 5%.  
In thin film CIGS solar cell, sputter is also a very common deposition process for thin film. 
Buffer layer (CdS or ZnO) and transparent conductive oxide (TCO, such as ITO, ZnO, 
ZnMgO and In2S3 etc) can be deposited by sputtering (Hariskos et al., 2005; Nakada & 
Mizutani, 2002;  
Wuerz et al., 2009;  Kylner, 1999; Romeo et al., 2004; Bhattacharya et al., 2001; Ennaoui et al., 
2001; Ohashi et al., 2001; Delahoy et al., 2004; AbuShama et al., 2004; Contreras et al., 1999; 
Romeo et al., 2003). CIGS absorber layer also can be deposited by sputter. Zhang et al 
(Zhang et al., 2010) introduced a magnetron-sputtering process for CIGS absorber layer 
deposition. The deposition of CIGS films using CIGS quaternary-alloyed target is fabricated 
through sintering process. Cu2Se, In2Se3, and Ga2Se3 powders are used as raw materials. 
Selenium can be directly incorporated into absorbers from the sputtering of CIGS target. The 
results indicated that it is feasible to prepare CIGS absorbers with this method. Therefore, 
the selenization process that is difficult to control and perhaps use toxic H2Se gas may be 
unnecessary. 
Alan E. Delahoy et al (Delahoy et al., 2004) used hybrid process to form CIGS thin film. This 
hybrid process includes both thermal evaporation and sputtering. The linear source thermal 
evaporation supplied the In, Ga and Se, and the sputtering provided Cu. This hybrid 
process is applied to both stationary and moving glass substrates. The motivation for this 
work was the need to improve the ease and uniformity of Cu delivery. The hybrid process 
for CIGS formation shows good reproducibility, and shows promise for being 
manufacturable.  
In the method of sputtering CIGS absorbers, a metal film of Cu, In, and Ga is sputtered at or 
near room temperature and reacted in a Se atmosphere at high temperature. This process 
has higher throughput than coevaporation and compositional uniformity can be more easily 
achieved. Dhere (Dhere, 2006) reviewed the CIGS layer deposition technique and 
introduced the reactive co-sputtering CIGS layer process. Co-sputtering Cu, In, Ga and Se 
together has the problem that Se can make the target insulated and prevents the accelerating 
ions to bombard the targets. The new reactive co-sputtering process is dual cylindrical 
magnetron sputtering from Cu–In–Ga targets in the presence of selenium vapor. In Cu-In-
Ga sputtered cycle, each of the two targets becomes negatively biased alternatively. The 
sputtering takes place for a part of the cycle from one target and for the remainder of the 
cycle from the other target. This deposition process is efficient and can get appropriate 
Cu:In:Ga composition and allows the deposition of slightly Cu-poor, near-stoichiometric 
CIGS thin films. 
Sputter deposition is a low temperature PVD process and evaporation is a high temperature 
process. Even the materials have very high melting points, they also can be easily deposited 
by sputtering. But for these materials with high melting points, evaporation is problematic 
or impossible. Sputter deposited films have a composition close to that of the source 
material. These films typically have a better adhesion on the substrate than evaporated 
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films.  Sputtering process is in low temperature, this is compatible with reactive gases such 
as oxygen. 
In sputtering process, the atoms can go anywhere after bombarded, which can lead to 
contamination problems. Also, active control for layer-by-layer growth is difficult compared 
to pulsed laser deposition and inert sputtering gases are built into the growing film as 
impurities. 

3.5 Electrodeposition (ED) 
Electrodeposition is also called electroplating. It is a plating process that uses electrical 
current to reduce cations of a desired material from a solution (electrolyte) and coat a 
conductive object with a thin layer of the material. Figure 3.5 shows a very simple 
electrodepostion device. The main components include DC voltage source, Anode, Cathode 
and electrolyte. There are additional devices such as heater and stirrer not shown here. In 
the electroplating process, the substrate is setup as cathode in the liquid solution 
(electrolyte).  The electrolyte contains one or more dissolved metal salts as well as other ions 
that permit the flow of electricity. The Anode is a kind of metal. After added positive 
potential on the anode, the Anode metal atoms will be oxidized and dissolve in the solution. 
At the cathode, the dissolved metal ions in the electrolyte solution are reduced to atom and 
form a metal thin film on the cathode surface. The ions in the electrolyte bath are 
continuously replenished by the anode metal. This process is also called sacrificing anode 
method.  

 
Fig. 3.5. Electrodeposition device in lab. 

Metal thin films such as copper, molybdenum, gold and nickel etc can be deposited by 
electrodeposition process. The film thickness is in variations from nanosize to 100Ǎm, which 
is controlled by the external electrical potential. In any process, the surface of the substrate 
must have an electrically conducting coating before the deposition can be done.  
In thin film solar cells, such as CdTe, CIGS and DSSC solar cells, most of the thin film solar 
cell layers can be deposited by electrodeposition. For example, in a CdTe/PMeT structure 
solar cell (Gamboa et al., 1999), the CdTe absorber layer was deposited by electrodeposition 
process. In CdTe/ZnO structure solar cell, buffer layer ZnO was deposited on a conductive 
glass substrate by electrodeposition process (Levy-Clement et al., 2002). The glass was 
covered by a fluorine -doped tin dioxide (F:SnO2) thin film. 
Electroposition is quite slow process. Normally in CdS/CdTe solar cell, depositing a 2Ǎm 
thin film of CdTe by electrodeposition process needs 2-3 hours. With a channel flow cell, this 
process was grown rapidly and the time can be cut to 20 min. The as-deposited films are 
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structurally more disordered, but after annealing and type-conversion they display superior 
electronic properties. The solar cell fabricated using a film prepared in the channel cell 
achieved efficiency 6% (Peter & Wang, 1999). 
Electrodeposition is an economic, simple and successful method for preparing large area 
thin films. It is also a very convenient method for preparation of thin film CdTe on metallic 
(stainless steel) substrates (Mathew et al., 1999).  
As a low cost process, electrodeposition is also widely used on CIGS solar cell thin film 
deposition. Kois et al (Kois et al., 2008) introduced a CIGS deposition process. Cu–In–Ga 
(CIG) layers of graded composition have been grown by one-step electrodeposition from 
thiocyanate complex electrolytes. Then the as-prepared CIG precursors are selenizated at Se-
vapour to form CIGS thin film. In this process, the Ga-content in CIG films can be tailored 
by stirring in the process of simultaneous electrodeposition of Cu-In-Ga thin films.  
Electrodeposition can be used in DSSC solar cell thin film deposition. In a ZnO/DSSC 
structure solar cell, electrodeposited nanoporous ZnO films exhibiting enhanced 
performance in dye-sensitized solar cells. Nanoporous ZnO films with grain size of 20–40 
nm were grown by cathodic electrodeposition from an aqueous zinc nitrate solution. DSSCs 
were fabricated from nanoporous ZnO films and the cell performance could be greatly 
improved with the increase of ZnO film thickness. This kind of DSSC with double-layer 
ZnO films (8 Ǎm thick nanoporous ZnO films on a 200 nm thick compact nanocrystalline 
ZnO film) achieved efficiency as high as 5.08% (Chen et al., 2006). 
A counter electrode was prepared for a dye-sensitized solar cell (DSSC) through 
electrochemical deposition of mesoporous platinum can improve the performance of the 
solar cell. This kind of DSSC rendered a higher solar-to-electricity conversion efficiency of 
7.6%, which is much higher than that of the sputter-deposited or most commonly-employed 
thermal deposited Pt counter electrodes (about 6.4%) (Yoon et al., 2008). 

3.6 Other manufacture for thin film solar cell 
There are still many process for thin film deposition such as close space vapor transport 
(CSVT) for CdTe thin film (Mendoza-Perez et al., 2009), physical vapor deposition (PVD)for 
CIGS thin film (Hermann et al., 2001) etc. 

4. Nanocomposite application in thin film solar cell (Photovoltaic Cell) 

A thin-film solar cell is made by depositing one or more thin layers (thin films) of 
photovoltaic materials on a substrate. The thickness of the thin-films is from a few 
nanometers to tens of micrometers. Thin film nano-composite solar cell materials include 
possible combinations of CdTe, TiO2, CdS, CuInS2, CuInGaSe2 (CIGS), ZnS, ZnO, ZnTe, 
HgS, CuSCN, Ge, PbS etc. Some of them become commercial products, for example CdTe, 
CuInGaSe2 (CIGS). However, most of them are still in lab research. 

4.1 Solar cell structures  
There are four basic structures for the photovoltaic solar cells, homojunction, heterojunction, 
p-i-n and n-i-p, multijunction. 

Homojunction 

Crystalline silicon solar cell is homojunction device. It is a simple P/N junction 
semiconductor. The free electrons and holes generated by light deep in the silicon diffuse to 
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the P/N junction, then separate to produce a current if the silicon is of sufficient high 
quality. 

Heterojunction 

Thin film solar cell such as CdTe and CIGS are heterojunction device. This device has two 
different semiconductors. For example, CIGS has two semiconductors as CdS and Cu(In, 
Ge)Se2. The solar cell with this structure can absorb light much better than silicon. The two 
semiconductors layers have different roles. The top layer (CdS) is a "window" layer. This 
layer is transparent to light and allows almost all incident light to reach the bottom layer. 
The bottom layer is absorber which can generate electrons and holes when absorbs the 
sunlight. Figure 4.1 gives two kinds of heterojunction structure CdTe and CIGS solar cells 
(Romeo et al., 2004). 
 

 
Fig. 4.1. Schematic cross-section of ‘superstrate’ and ‘substrate’ configurations for CdTe and 
CIGS solar cells 

CdTe and CIGS have the same structures and compose 5 parts: substrate; front contact; 
buffer layer; absorber layer and back contact. 

p-i-n /n-i-p Devices  

Amorphous silicon thin-film cells are p-i-n structures. This structure has sandwiched three 
layers, p-type, i-type (intrinsic, undoped) and n-type layers. An electric field between the p- 
and n-type regions is set up which stretches across the middle intrinsic resistive region. The 
electric field can separate the free electrons and holes which generated by the incident light 
in the intrinsic region. 

Multijunction Devices 

Multijunction solar cells are called tandem cells. Normally, 2-junction or 3-junction solar cell 
is researched. This structure can achieve very high total conversion efficiency by capturing a 
larger portion of the solar spectrum. For example a 3-junction solar cell can achieve 41.6% 
efficiency (Figure 2.5). This cell is formed with individual cells and different band-gaps cells 
are stacked on top of one another. Each individual cell can capture one part of solar 
radiation. The band-gaps order is from top to bottom position with large to small band-gap. 
Most research in multijunction cells focuses on gallium arsenide cells.  
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4.2 CdS/CdTe thin film solar cell 
CdS/CdTe thin-film solar cells have the potential to be mass-produced at low cost. 
Cadmium telluride (CdTe) has a band-gap of ~1.5 eV and the absorption spectrum is about 
850nm. It is nearly ideal for sunlight absorption. So it has been recognized as a strong 
candidate for thin film solar cell applications. Cadmium telluride (CdTe) thin film solar cell 
is based on the use of cadmium telluride thin film, a semiconductor layer designed to absorb 
and convert sunlight into electricity. CdTe is a heterojunction p-type semiconductor. The cell 
was completed by adding top and bottom contacts. CdTe solar cells have very good optical 
property that one or two microns thickness thin film can absorb 98 percent of the sunlight. 
Although CdTe is most often used in PV devices without being alloyed, it is easily alloyed 
with zinc, mercury, and a few other elements to vary its properties. Many methods have 
been used for the fabrication of CdTe layers, for example close-spaced sublimation (CSS) 
(Chu et al., 1991; Kumazawa et al., 1997; Aramoto et al., 2003; Ferekides et al., 2000), 
electrodeposition (Gamboa et al., 1999), magnetron sputtering (Compaan et al., 2004; Gupta 
& Compaan, 2004), chemical vapor deposition (CVD) (Meyer & Saura., 1992), and metal-
organic chemical vapor deposition (MOCVD) (Zoppi et al., 2006) and vapor phase epitaxy 
(VPE) (Levy-Clement et al., 2002). 
CdS is one of the most crucial films, which serves as the window layer. Cell performance 
depends primarily on the electrical and optical properties of CdS film. The deep research 
shows the conversion efficiency of CdS/CdTe solar cells strongly depends on the 
ruggedness of the CdS surface (Tsuji et al., 2000). CdS is an n-type semiconductor. The 
optimum band gap is ~2.4 eV for solar spectrum and the direct band gap yields high optical 
absorption coefficient. CdS can be deposited by many methods such as CSS (Luschitz et al., 
2009), MOCVD (Matsune et al., 2006; Tsuji et al., 2000), CVD (Kumazawa et al., 1997), 
magnetron sputtering (Gupta & Compaan., 2004), chemical bath deposition (CBD) and 
vacuum evaporation (Lee, 2005). 
Much research has been performed on CdS/CdTe solar cells and very high energy 
conversion efficiencies have been achieved (Table 4.1).  
 

JSC (mA/cm2) VOC(V) F.F. (%) Efficiency % reference 

23.6 0.814 73.25 14 (Compaan et al., 2004) 

25.5 0.82 72 15.1 (Matsune et al., 2006) 

25.36 0.826 72.2 15.12 (Kumazawa et al., 1997) 

25.1 0.843 74.5 15.8 (Britta & Ferekides, 1993) 

25.88 0.845 75.51 16.5 (Wu, 2004) 

Table 4.1 High efficiencies CdS/CdTe solar cell parameters 
(Measured under the standard condition: AM1.5, 100 mW/cm2) 

Morales-Acevedo (Morales-Acevedo, 2006) has made a physical analysis of the typical CdS-
/CdTe superstrate solar cell. It shows that present record efficiencies are very close to the 
practical efficiency limit for a CdS/CdTe hetero-junction cell. The estimation of the 
maximum efficiency of hetero-junction CdS/CdTe solar cells is around 17.5%. The recorded 
highest efficiency is 16.5% (Wu, 2004), only 1% lower than the efficiency limitation. His 
work explains why the record efficiency for this kind of cells has been stable for the last 10 
years, going up by less than 1% from 15.8% (Britta & Ferekides, 1993) to only 16.5%. 
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4.2.1 CdS/CdTe solar cell structure 
Figure 4.2 gives the conventional structures of CdS/CdTe thin film solar cell.  This structure 
has been developed over 30 years. Normally it has 5 parts: 
1. Substrate-Glass or metal foil; 
2. Front contact-Transparent conducting oxide (TCO); 
3. CdS window layer;  
4. CdTe absorber;  
5. Back contact.  
A transparent conducting oxide (TCO) is used as an antireflection coating. It can provide a 
low resistance contact to CdS layer. SnO2 is traditional TCO. SnO2 has two thin film layers. 
The first thin film is the fluorine doped tin oxide layer (SnO2:F). This layer also called 
conductive tin oxide or c-SnO2. It is the transparent contact that provides current collection 
from the front of the device. The second thin film is the undoped SnO2 layer (also called i-
SnO2 for 'intrinsic' or `insulating' SnO2). It can help protect the open-circuit voltage of the 
device in some situations (Rose et al., 1999). Cd2SnO4 (Cadmium tin oxide, CTO) is the new 
development TCO. CTO has much more advantages than SnO2, such as high conductivity 
and better optical property. The n-type CdS layer serves as the window layer and the CdTe 
layer serves as the absorber layer for the incident light. P-type CdTe films will lead to large 
internal resistance losses. So, in this structure, the CdTe layer is intrinsic (that is, neither p-
type nor n-type, but natural), and add a layer of p-type zinc telluride (ZnTe) between the 
CdTe and the back electrical contact. This is n-i-p structure. The electrical field is formed 
between the n-type CdS and the p-type ZnTe which extends right through the intrinsic 
CdTe. The buffer layer ZnTe:Cu–doped graphite with high conductivity can improve the 
Ohmic conductance. The HgTe:Cu-doped graphite layer also can be used as buffer layer 
which produces an ohmic contact to the CdTe, then the silver layer is used to decrease the 
lateral resistivity of the back contact (Rose et al., 1999). 
 

 
Fig. 4.2. Conventional CdS/CdTe structure 

4.2.2 Unconventional structure 
Base on the conventional CdS/CdTe solar cell structure, Wu. (Wu, 2004) introduced a new 
structure CTO/ZTO/CdS/CdTe solar cell. This structure has been developed since the year 
of 2001 with total-area efficiency of 16.5% (Voc=845.0 mV, Jsc=25.88 mA/cm2, FF=75.51%, and 
area=1.032 cm2). This is the highest efficiency ever reported for CdTe solar cells. 
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Fig. 4.3. Modified CTO/ZTO/CdS/CdTe device structure (Wu, 2004) 

Figure 4.3 shows the CTO/ZTO/CdS/CdTe solar cell structure. The cadmium stannate 
(Cd2SnO4, or CTO) transparent conductive oxide (TCO) films have lower resistivity, higher 
transmittance and smoother surfaces than conventional SnO2 TCO films. They can improve 
the Jsc and FF of a solar cell. Thin film ZnSnOx (ZTO) is a buffer layer, it can improve device 
performance and reproducibility. The ZTO film has a high optical bandgap (~3.6 eV) and 
near-zero absorbance. This device performance can be enhanced and transmission loss due 
to the TCO front-contact can be reduced by use of the CTO and ZTO bilayers (Wu et al., 
1998; Wu et al., 2006). ZTO buffer layer can significantly reduce resistivity between the CTO 
and CdS layers in two reasons. First it can reduce the probability of forming a localized 
TCO/CdTe junction with low Voc and FF when the CdS film is thinned. Second, it can 
greatly reduce shunting problems (Wu et al., 2001). A buffer layer could help relieve stresses 
between these layers, thereby improving adhesion during the CdCl2 treatment. 
Zinc stannate films have the properties of high bandgap, high transmittance, low 
absorbance, and low surface roughness. These films are chemically stable and exhibit higher 
resistivity. They can match well with CdS window layer. In fact ZTO buffer layer can 
significantly enhance the performance and reproducibility of both SnO2-based and Cd2SnO4 
(CTO)-based CdS/CdTe devices (Wu et al., 1998; Gayam et al., 2007). 

4.2.3 Substrate   

Soda-lime glass 

Soda-lime glass is also called soda-lime-silica glass.  It is the most common glass and widely 
used for windowpanes and glass containers (bottles and jars) for beverages, food, and some 
commodity items. Soda-lime glass is the basic substrate materials for CdS/CdTe thin film 
solar cell (Matsune et al., 2006). But soda-lime (SL) glass has poorer properties than 
borosilicate glass, such as a higher thermal expansion coefficient, higher Na and Fe content, 
higher absorbance, and lower softening temperature. 

Borosilicate glass  

Borosilicate glass is noted for its low thermal expansion and chemical resistance. Therefore it 
is widely used in laboratory equipment and near heat sources such as lamps. Borosilicate 
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glass is very good for thin film substrate. Corning glass is one kind of alkali free borosilicate 
glass. It was originally developed for thin film electronic circuits, which require an 
extremely smooth substrate with special electrical properties. Corning glass has very good 
surface flatness, surface smoothness and very low thermal expansion. The glass has an alkali 
level under 0.3%. This is very important since alkali ions are known to be detrimental to 
performance, reliability, and longevity of thin film devices. Corning glass 7059 (Wu et al., 
2006; Compaan et al., 2004; Kumazawa et al., 1997; Britt & Ferekides, 1993) and 1737 
(Matsune et al., 2006) are ideal substrate glass for CdS/CdTe thin film solar cell.  

4.2.4 Front contact-transparent conducting oxide (TCO) 
The most important characteristics that a transparent conductive oxides (TCO) front contact 
must exhibit are a low sheet resistance and a high transparency in the visible region. TCOs 
are important semiconductors thin films used on solar cells. Most of these films are 
fabricated with polycrystalline or amorphous microstructures. They are nanocomposites. 
The important TCOs are impurity-doped ZnO, In2O3 , SnO2 and CdO as well as multi-
component oxides consisting of combinations of ZnO, In2O3 and SnO2, including some 
ternary compounds existing in their systems (Minami, 2005). The ternary compounds 
include Cd2SnO4, CdSnO3, CdIn2O4, Zn2SnO4, MgIn2O4, CdSb2O6 and In4Sn3O12, ZnSnO3, 
Zn2In2O5, Zn3In2O6, In2SnO4. Sn doped In2O3 (ITO) and F doped SnO2 TCO thin films are the 
preferable materials for most present applications. In solar cells, TCOs need meet some 
requirements such as low resistivity (below 10-3 Ω·cm) and good transmittance of incident 
light (over 80%). The industry standard in TCO is ITO, or tin-doped indium-oxide. This 
material has a low resistivity of ~10−4 Ω·cm and a transmittance of greater than 80%. But ITO 
is very expensive. Alternative materials such as ZnO:Al (AZO) and ZnO:Ga (GZO) can be 
the solution. Figure 4.4 gives the practical TCO used on thin film transparent electrodes. Cd 
containing TCOs are not listed here because of the toxicity of Cd. 
 

 
Fig. 4.4. Practical TCO semiconductors for thin-film transparent electrodes. 

The study on impurity-doped ZnO, In2O3 and SnO2 thin film TCO shows that the obtained 
minimum resistivities of impurity-doped ZnO are still decreasing and close to those of 
In2O3, whereas those of impurity-doped SnO2 and In2O3 films have essentially remained 
unchanged for more than the past twenty years (Minami, 2005). So, AZO is the best 
alternative for ITO. 
In the tandem thin-film solar cells, the requirements for TCO front-contact are high band-
gap, high transmission and high conductivity (low resistivity). This TCO can be a 
transparent contact in the top cell. It must also have high transmission in the sunlight 
wavelength. But the conventional TCOs (such as ITO, SnO2, and ZnO) cannot completely 
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meet these requirements. Wu. developed a high-quality CTO TCO film (Fig 4.3), which has 
transmission of 80-90% in the region 400–1300 nm and bulk resistivity of  1.8x10-4Ω٠cm (Wu, 
2004). The problem of this TCO contains Cd element, it is toxic. 

SnO2:F TCO 

 SnO2:F is the SnO2 films doped with fluorine. SnO2:F is the conventional TCO and used for 
more than 30 years. The SnO2:F TCO has good absorbance (A) and transmittance (T) in the 
visible region (Chu et al., 1991; Wu et al., 2006; Compaan et al., 2004; Britt & Ferekides, 
1993). It is a quite stable material but it exhibits a high resistance and not good for this kind 
of solar cells.  

Indium tin oxide (ITO) TCO 

Indium tin oxide (ITO) (Matsune et al., 2006; Minami, 2005) is one of the most widely used 
transparent conducting oxides (TCO) on thin film solar cell because of its very good 
electrical conductivity and optical transparency. Normally, ITO is In2O3,  but some In can 
diffuse into CdS and/or CdTe when this material is used as a front contact. In this case a 
SnO2 buffer layer can be used as a diffusion barrier.  ITO thin film is a composite with 
indium (III) oxide (In2O3) and tin (IV) oxide (SnO2), typically 90% In2O3, 10% SnO2 by 
weight. It is transparent and colorless. In the infrared region of the spectrum it is a metal-
like mirror. Like other transparent conducting oxides, when a compromise (In2O3 and SnO2) 
has to be reached during its film deposition, the high concentration of charge carriers will 
increase the material's conductivity, but decrease its transparency. ITO thin films are most 
commonly deposited on surfaces by electron beam evaporation (EBE), physical vapor 
deposition (PVD), or a range of sputter deposition (SD) techniques. 
A new TCO that is fluorine doped In2O3 was developed. It exhibits very good properties 
that the resistivity is 2x10-2Ωm, the transparency better than 90% between 400 and 800 nm 
and this materials is quite stable at a temperature of 5000C. The best CdS/CdTe solar cells 
with an efficiency of approximately 14% are obtained by using 0.4 Ǎm of fluorine doped 
In2O3 as a TCO (Romeo et al., 2003). 
Nano-scale ITO thin films can provide a path to a new generation of solar cells. These 
materials applied on solar cells can make the cells to be low-cost, ultra-lightweight, and 
flexible. Because of the nanoscale dimensions of the nanorods, quantum-size effects 
influence their optical properties. But a stable supply of indium-tin-oxide (ITO) cannot be 
assured because indium is a very expensive and scarce material. 
The main problem about ITO is the cost. ITO's price is several times that of aluminum zinc 
oxide (AZO). But ITO is much better than AZO in almost every performance. For example, 
ITO has very good chemical resistance to moisture and it can survive in a CIGS cell for 25–
30 years on a rooftop.  

ZnO:Al (AZO) TCO 

ITO is very expensive TCO.  AZO is one of alternatives to ITO. AZO thin films, with a low 
resistivity of the order of 10−5 Ω·cm and source materials that are inexpensive and non-toxic, 
are the best candidates (Minami, 2005; Minami, 2008). AZO has relative good optical 
transmission performance in the solar spectrum. The ZnO:Al film is more transparent than 
SnO2:F over the whole spectrum due to higher electron mobility. But the SnO2:F has more 
better absorbance than ZnO:Al (Figure 4.5). ZnO:Al has high transparency well into the 
infrared and excellent sheet resistance with high mobility. Thus it is an attractive candidate 
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as a TCO. AZO has been used on CdS/CdTe solar cell and achieve a CdTe solar cell with 
14.0% efficiency at one sun for an air-mass-1.5 global spectrum (Compaan et al., 2004). 
 

 
Fig. 4.5. ZnO:Al & SnO2:F optical properties (Compaan et al., 2004). 
A- absorbance and T- transmittance  

But In comparison to sputtered cells on commercial SnO2:F, the stability of ZnO:Al-based 
cells is poorer. This may be due to interdiffusion across the ZnO:Al/CdS interface (Gupta & 
Compaan., 2004). 

4.2.5 Back contact 
The back contacts on CdS/CdTe solar cells often show a non-Ohmic behavior because of the 
semiconductor Schottky barrier. This Schottky barrier acts as a diode reverse biased to the 
CdS/CdTe junction diode and increases the contact resistance, thereby reducing the solar 
cell performance [Te901]. The main function of back contacts is to eliminate the Schottky 
barrier to reduce the contact resistance. It is well known that the addition of Cu to back-
contacts is commonly used to improve the performance of CdS/CdTe solar cells. This may 
be due to the reaction with a Te-rich CdTe layer and the formation of a CuxTe/CdTe back-
contact (Wu, 2006). But copper is a fast diffuser and it influences the long-term stability of 
such cells. Cu should be avoided in the back contact to obtain a long term stable CdTe/CdS 
solar cell 
Conventional back contacts on CdS/CdTe solar cells are commonly made with Cu/Au or 
Hg (Compaan et al., 2004) or Pb and Cu/graphite (Aramoto et al., 2003). Cu-containing back 
contacts can influence the solar cells efficiency and the performance degrades because of Cu 
diffusion to the junction. Cu can easily combine with Te to form Cu2Te. This material is 
unstable. In order to get stable back contacts Sb has been applied [Te901]. Sb/Au back 
contact also shows typical diffusion which is causing degradation just like Cu/Au back 
contact. But the degradation for the Sb/Au back contact is not as strong as that for the 
Cu/Au contact. Different back contact materials have been investigated so far, such as 
CuxTe (Wu et al, 2006), ZnTe:Cu (Wu et al, 2006), As2Te3:Cu (Romeo et al., 2010; Romeo et 
al., 2007), Bi (Vigil-Galán et al., 2007), Sb2Te3 (Romeo et al., 2007), even ITO (Romeo et al., 
2007; Tiwari et al., 2004).  
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ZnTe:N/ITO (Marsillac et al., 2007) is one kind back contact of CdS/CdTe solar cell. The cell 
structure is SnO2:F/CdS/CdTe/ZnTe:N/ITO. After CdCl2 treatment, ZnTe:N was achieved 
through sputtering an undoped ZnTe in a 5% nitrogen–95% argon environment. Then ITO 
thin film was deposited. Because the ZnTe:N layer is too thin and the conductivity of the 
ZnTe:N film is not very high, a secondary transparent electrode was used to collect the 
photogenerated current. ITO TCO film can be used as the secondary transparent electrode. 
This back contact is the same as CuxTe/ITO (Wu et al, 2006). It is for ultra-thin absorber (eta) 
soalr cell. This back contact is transparent just like transparent front contact. It can be used 
in polycrystalline thin-film tandem cells because there is enough light transmitted to the 
bottom cell (Romeo et al., 2007; Tiwari et al., 2004). TCO back contact on CdTe provides 
superior cell stability, simplified processing and a potential for low-cost production. The 
average efficiency of reference solar cells with standard Cu/Au back contacts on CdTe is in 
the range of 10-11%. It was observed that most of the solar cells with ITO back contact were 
in the efficiency range of 7-8%. A. N. Tiwari et al developed a kind of CdTe solar cell with 
SnO2:F as a front contact for CdS and ITO as a back contact on CdTe. The efficieny achieved 
7.9% (Voc=702mV, Jsc=18.2 mA/cm2, FF=0.62) (Tiwari et al., 2004). 

4.2.7 Fabrication 
Fabricating CdTe solar cell includes a serial deposition processes such as TCO layer, CdS 
layer, CdTe layer, and back contact layer etc deposition processes. Each individual process 
has many deposition methods such as CBD, CSS, CVD, Ed and sputtering process etc. 
Figure 4.6 gives the deposition processes of one example of conventional structure and one   
 

 
Fig. 4.6. The conventional solar cell and CTO/ZTO/CdS/CdTe solar cell deposition process 
(Noufi, 2006).  

www.intechopen.com



Nanocomposites for Photovoltaic Energy Conversion   

 

237 

example of CTO/ZTO/CdS/CdTe device structure (Noufi, 2006). For conventional 
structure, both SnO2 (c-Sno2 and i-SnO2) can be deposited on glass by CVD; thin film CdS is 
formed on SnO2 layer by CBD, CVD or CSS; CdTe film is deposited by CSS. CSS has 
received the most attention for CdTe deposition recently because it is well-suited to large-
scale manufacturing (Rose et al., 1999).  
For the CTO/ZTO/CdS/CdTe structure, the first three layers Cd2SnO4 (CTO), Zn2SnO4 
(ZTO) buffer layer and CdS window layer are prepared by the same deposition technique-
RF magnetron sputtering at room temperature. RF sputtering is a mature technology with 
many advantages such as thickness control and easy operation. This deposition process has 
only one heat-up segment (CdTe CSS process) in the entire device fabrication process. In the 
CdTe CSS process, the recrystallization of the first three layers and the elements 
interdiffusion at the three interfaces (CTO/ZTO, ZTO/CdS and CdS/CdTe interfaces) are 
completed. This kind of solar cell can reach efficiency of 14.7% (Voc = 833.8 mV, Jsc = 24.06 
mA/cm2, FF = 73.29%, and area=1.159cm2) (Wu, 2004). 
After CdTe CSS deposition, there is a CdCl2 annealing in both processes. The main effect of 
the CdCl2 heat treatment on the physical properties of CdTe thin films is to promote 
recrystallization and grain growth. But here the CSS process is in a higher temperature and 
has large grain size. The recrystallization process has finished in CdTe CSS process. CdCl2 
treatment has several substantial benefits such as: grain-boundary passivation, increased 
CdS/CdTe interface alloying, and reduced lattice mismatch between the CdS and CdTe 
layers. The ZTO (ZnSnOx) films were deposited by RF sputtering at room temperature 
which has a very high resistivity. After CdCl2 annealing at a higher temperature, the film 
resistivity is reduced greatly. The ZTO band-gap (Eg) remains the same (~3.6 eV), but its 
optical transmission is slightly improved. The reason is the inter-diffusion at the interfaces. 
The inter-diffusion of the CdS and ZTO layers improved the quantum efficiency of a CdTe 
cell over the entire active wavelength region (400-860 nm). Even in the conventional device 
structure, the inter-diffusion also can improve device performance and reproducibility. In 
spite of the 9.7% lattice mismatch between hexagonal CdS and cubic CdTe, this structure 
still can get very high efficiency due to the interdiffusion. After anneal, the Voc and FF 
increase, so does the efficiency. Cells made without the anneal generally have efficiencies 
between 6% and 10%, whereas cells made with the anneal are generally more than 12% 
efficient.  (Wu et al., 2005; Rose et al., 1999; Wu et al., 2004).  

4.2.8 Cu in CdS/CdTe solar cell  
K. Barri et al has studied the role of copper in CdTe solar cell. Copper is typically introduced 
in CdTe during the application of the back electrode, to enhance device performance by 
facilitating the formation of an ohmic back contact. But Cu and Te can form unstable 
component Cu2Te, which is associated with long time stability (Barri et al, 2005, Dobson et 
al., 2000). Here, Cu was introduced in the CdS film prior to the deposition of the CdTe and 
both plain graphite and Sb2Te3/Mo were used as back contacts (Fig.4.7). The high 
performance of the solar cell achieved (VOC of 830 mV and FF’s in the high 60’s) clearly 
indicates that Cu enhances device performance, even when intentionally introduced in CdS. 
But excessive amounts of Cu can lead to shunting and poor collection. The formation of 
Cu2Te may not be necessary to achieve effective back contacts to CdTe (Barri et al, 2005). 
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Fig. 4.7. Cu was incorporated into the device prior to the CdTe deposition (Barri et al, 2005) 

4.2.9 Thickness influence 
Large scale manufacturing of CdS/CdTe solar cells is constrained by the cadmium and 
tellurium materials. Because the tellurium is rare element and limited availability and the 
cadmium is hazardous to human health. Gupta et al (Gupta et al., 2006) found that it is 
possible to reduce the CdTe layer thickness without much compromise in efficiency. 
Normally the thickness of CdTe is about 2-8Ǎm. But in the ultra-thin films solar cells, the 
thickness is 0.7-1.28Ǎm. The CdS/CdTe solar cells were fabricated using magnetron 
sputtering method. The best thin CdTe cell was obtained with 1Ǎm CdTe and had efficiency 
of 11.9%. Cells with 0.7 Ǎm CdTe show efficiency 11.2%, this is the thinnest CdTe cell ever 
reported with efficiency above 10%. The standard CdTe cells (2.3 Ǎm CdTe thickness) 
efficiency is 13%.   
The thickness of CdS film is a critical factor affecting cell performance. Kumazawa et al 
(Kumazawa et al., 1997) made this study. As the thickness of CdS film decreases, the open-
circuit voltage (Voc) becomes low and when the CdS film thickness is less than 60nm the Voc 
decreases dramatically. The short-circuit photocurrent density (Jsc) becomes a little higher 
when the thickness of CdS decreases (figure 4.8). It shows that CdS thickness best range is 
~60 nm. 
 

 
Fig. 4.8. The Voc and Jsc as a function of CdS film thickness 
Data comes from (Kumazawa et al., 1997) 
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4.2.10 Other type CdTe structure 

1. ZnO/CdTe/CuSCN heterostructure  (Tena-Zaera et al., 2005) 

This structure can be made as eta (extremely thin absorber) solar cell. It uses SnO2:F as the 
TCO. ZnO/CdTe is an n-type window layer semiconductor and CuSCN is a p-type absorber 
layer semiconductor. The energy gap of ZnO is 3.31 eV and that of CdTe is 1.54 eV. In the 
400–800 nm (AM1.5) solar spectrum range, the effective absorption (AE) is about 87% and 
the effective reflectance (RE) is only 10%. It is very favorable for the use of extremely thin 
absorber (eta) solar cell. TiO2/CdTe/ZnTe and TiO2/CuInS2/CuSCN have the similar 
heterostructures as that of ZnO/CdTe/CuSCN. 

2. Au–Cu/p–CdTe/n–CdO/glass-type solar cells (Santos-Cruz et al., 2006) 

The CdO:F films were grown by the sol-gel method, The resistivity is 4.5X10-4Ω·cm and the 
optical transmission is higher than 85%. The CdTe:Sb films were prepared by the RF 
sputtering technique, the resistivity value is 106Ω·cm.The Au–Cu contacts were thermally 
evaporated. This kind of heterostructure PV solar cell can achieve the highest energy 
conversion efficiency 5.48%.  

3. ZnS and ZnCd as window layer (Contreras-Puente et al., 2000)  

G. Contreras-Puente et al developed SnO2/Zn0.9Cd0.1/CdTe and SnO2/ZnS/CdTe two types 
semiconductor thin films solar cells. The efficiencies are 1.26% (Voc = 489 mV, Jsc = 8.9 
mA/cm2, FF = 29%) and 3.12%((Voc = 324 mV, Jsc = 22 mA/cm2, FF = 42%) respectively. The 
efficiencies are very low.  

4.2.11 CdTe/CdS Solar cells on flexible substrates 
Normally, the substrates of thin film CdS/CdTe solar cells are glass. But glass are hard, 
weight and fragile. The post deposition annealing of the films needs a high temperature 
(420°C). This temperature can cause rupture of the glass substrate. On the other hand, solar 
cells on flexible metallic substrates are light weight, free of damage and are suitable for 
storage, transportation and installation. CdTe has been successfully electrodeposited on 
various foils such as stainless steel (SS), Mo, Ni and Cu. Molybdenum is considered as the 
suitable substrate material from the point of view of the matching thermal expansion 
coefficient with CdTe. Pantoja Enriquez et al (Pantoja Enriquez et al., 2004) developed a 
CdTe/CdS device on flexible molybdenum (Mo) substrate with the efficiency of 3.5% 
(Voc=0.5 V, Jsc=10.6mAcm-2, FF=0.4 ). 
Figure 4.9 gives another unconventional CdS/CdTe solar cell structure (Singh et al., 1999) 
 

 
Fig. 4.9. Schematic of device configuration on Mo foil substrate (Singh et al., 1999) 

www.intechopen.com



 Advances in Composite Materials for Medicine and Nanotechnology 

 

240 

The substrate is molybdenum foil. CdS is deposited on top of CdTe. Thin film inter-layers 
(approximately 50 nm thick) of Cu and Te are used to improve the conductivity between Mo 
and CdTe. Thin film Cu and Te has the same role of ZnTe as in fig. 4.1. Cu and Te can dope 
CdTe and make it heavily p-type, which facilitates tunneling. Also Cu and Te can form 
compound Cu2~xTe between Mo and CdTe and make tunneling more effective. This 
structure is made as follows: Inter-layers of Cu and Te are evaporated onto the Mo 
substrate; CdTe is deposited by thermal evaporation and then treated with a CdCl2 solution 
and annealed; CdS film is deposited by thermal evaporation and then treated with CdCl2, 
annealed and indium doped. The thermal evaporation processes are in low temperature 
(220°C), so CdCl2 treatment has two functions: one is to promote the diffusion of Te and Cu 
into CdTe to create a p-type region and improve the conductivity between CdTe film and 
molybdenum; the other is to promote crystal growth of CdTe and CdS through 
recrystalization. The top contacting material is made by sputtering ZnO, ITO or a 
combination of ZnO and ITO. This molybdenum foil substrate solar cell cannot get such 
high efficiency as that of glass substrate solar cell. One reason is the high series resistance of 
the device, The other reason is that the high defect density associated with rough CdTe/CdS 
interface, which results in low shunt resistance. 
Matulionis et al (Matulionis et al., 2001) made the same structure of Mo/CdTe/CdS/ITO 
thin-film solar cells by radio-frequency magnetron sputtering. The conversion efficiency is 
7.8 percent on 0.05 cm2 area device. The high efficiency is due to the back contact. Here, the 
back contact between the molybdenum and the CdTe is ZnTe:N, it can improve the 
conductivity. 
Au/Pd alloy layer also can be the interlayer between Mo substrate and CdTe layer (Pantoja 
Enriquez et al., 2004). 
The polymer also can be the substrate of CdTe/CdS solar cell. The problems of this substrate 
are low light absorption and high temperature stability. The highest reported efficiency of a 
flexible CdTe/CdS solar cell on polymer substrate is 11.3% (Romeo et al., 2006). This 
efficiency can compare well with the efficiency of CIGS or a-Si solar cells developed on 
polymer foils. 

4.3 Cu(In, Ga)Se2 (CIGS) thin film solar cell  
Copper indium gallium (di)selenide (CIGS), is a compound semiconductor material 
composed of copper, indium, gallium, and selenium. It is used as light absorber material for 
thin-film solar cells. The chemical formula of this material is CuIn(1-χ)GaχSe2, where the value 
of χ can vary from 0 to 1. When χ is 0, it is copper indium selenide (CIS) and when χ is 1, it is 
copper gallium selenide (CGS). In laboratory research, the efficiency of CIGS solar cell is 
approaching 20%. CIGS solar cell can be deposited on a variety of cheap substrates (e.g., 
glass, plastic, foil) and has acceptable environmental stability characteristics. There is no 
toxic Cd in the absorber layer, even the window layer (CdS) can be replaced by Cd-free 
materials. These advantages attract much focus on CIGS-based devices.  
Depending on the Ga/(In+Ga) ratio, the bandgap of CIGS can be varied continuously 
between 1.04 (CuInSe2) and 1.68 eV (CuGaSe2). The current high-efficiency devices are 
prepared with bandgaps in the range 1.20–1.25eV, this corresponds to a Ga/(In+Ga) ratio 
between 25 and 30% (Romeo et al., 2004). 
Compared with CdTe thin film solar cell, CIGS solar cell absorber layer is complex. It has 
four elements as Cu, In, Ga and Se. The properties of the device are significantly impacted 
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by the detailed compositional profile in the absorber. CuInGaSe2 has some drawbacks due 
to limited availability and increasing cost of indium and gallium elements. 

CIS, CIGS,CGS and Ga grading 

CIS is an abbreviation of copper indium selenide (CuInSe2). If added gallium, it will become 
CIGS. CGS is an abbreviation of copper gallium selenide (CuGaSe2). If added indium, it 
change to CIGS. So, CIGS is a variation of CIS or CGS. CuInSe2 and CuGaSe2 have the 
chalcopyrite lattice structure; it is a diamond-like structure. CIS and CGS have high optical 
absorption coefficients and versatile optical and electrical characteristics and is especially 
attractive for thin film solar cell application. CIS (no Ga) and CGS (no In) solar cells have 
achieved 15% and 10.2% efficiencies respectively (NERL) (AbuShama et al., 2004). At 
present the manufacture of CIS or CGS solar cells is high when compared with amorphous 
silicon solar cells. The use of gallium increases the optical band-gap of the CIGS layer as 
compared to pure CIS, thus increasing the open-circuit voltage, but decreasing the short 
circuit current. Figure 4.10 gives the CIS Ternary phase diagram. 
 

 
Fig. 4.10. Ternary phase diagram of the Cu-In-Se system (Anderson et al., 2003) 

The binary phase Cu2Se and In2Se3 can be alloyed to form CuInSe2; similarly the binary 
phase Cu2Se and Ga2Se3 can be alloyed to form CuGaSe2. Ternary phase CuInSe2 can be 
alloyed in any proportion (χ) with ternary CuGaSe2 to form Cu(In,Ga)Se2. The chemical 
formulas as follows:  

Cu2Se+In2Se3→2CuInSe2 

Cu2Se+Ga2Se3→2CuGaSe2 

(1-χ)CuInSe2+χCuGaSe2→CuInχGa1-χSe2 

So, Cu(In,Ga)Se2 can accomodate large variations in composition. The compositional ratios 
of Cu/(In+Ga) and Ga/(In+Ga) play critical roles on the characteristics of CIGS solar cells. 
The Cu/(In+Ga) ratio largely affects the morphology of the CIGS absorber, while the 
Ga/(In+Ga) ratio determines the band-gap, both of which are critical for cell performance 
(Sakurai et al., 2003). 
The ratio (χ) of Ga/(In+Ga) can change the band-gap of the CIGS absorber layer. According 
to different Ga/(In+Ga) ratio, the CIGS solar cells with different band-gap can be 
manufactured. The most important is this ratio not only to optimize the general band gap 
level, but also to obtain different band gaps at different depths in the CIGS thin film. This is 
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called band gap profiling. In CIGS thin film solar cells an in-depth band gap variation due to 
changes in the Ga/(In+Ga) ratio is commonly referred to as Ga-grading (Lundberg et al., 
2005). By increasing the Ga/(Ga+In) ratio (χ) from 0 to 1 the band-gap varies continuously 
from about 1.02 eV (CIS) to about 1.66 eV (CGS). The various band gaps are suitable to the 
solar spectrum to improve light absorption and thereby further improve the solar cell 
performance and increase the efficiency. For high performance devices, the ratios are 
Ga/(In+Ga)=0.2-0.3 and Cu/(In+Ga)=0.7-1.0. In the recorded high efficiency (19.9%) CIGS 
solar cell, the ratios are Ga/(In+Ga)=0.3 and Cu/(In+Ga)= 0.81 (Repins et al., 2008).  

4.3.1 Structure of a CIGS thin-film solar cell 
CIGS thin film solar cell has the same structure as CdTe solar cell (Figure 4.2). It has 5 
different thin film layers as: 
1. Substrate; 
2. Front contact-Transparent conducting oxide (TCO); 
3. CdS window layer;  
4. CIGS absorber;  
5. Back contact. 
 

 

Fig. 4.11. CIGS thin-film solar cell structure. 

Basic CIGS thin film solar cell structure is depicted in Figure 4.11. The Individual layer 
thicknesses are approximate and may differ somewhat among laboratories. The substrates 
can be glass (NAKADA & MIZUTANI, 2002), metal foils (Wuerz et al., 2009) or plastics 
(Huang et al., 2004). The most common substrate is soda-lime glass, which is about 1–3 mm 
thickness. Metal molybdenum (Mo) is coated on the substrate as back contact pole 
(NAKADA & MIZUTANI, 2002). The semiconductors CIGS, CdS and ZnO are shaped into 
the heterojunction. Here CIGS is p-type semiconductor and ZnO is n-type semiconductor. 
CdS is buffer layer. In this asymmetric structure, the CIGS layer serves as an absorber, ZnO 
and CdS layers serve as window layers and the band-gaps: Eg,ZnO=3.2 eV and Eg,CdS=2.4 eV. 
ZnO layer also serves as front contact pole for current collection.  
CIGS absorber layer is complex, according to detailed thin film composition. It can be CIS, 
CIGS or CGS.  
CdS window layer can be replaced by ZnS etc thin film to realize Cd-free thin films CIGS 
solar cells. Front contact TCOs can be ZnO (Repins et al., 2008), ZnO:Al (NAKADA & 
MIZUTANI, 2002), ITO etc. Back contact can be Mo (formation of MoSe2, back surface field), 
Cr (Na barrier), Cu (CIS Cut process) or TCOs (superstrate cells, reversed configuration). 
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The standard thickness of the Cu(In,Ga)Se2 (CIGS) absorber thin film layer is 1–2.5 Ǎm 
(Figure 4.11).  Reducing the thickness can reduce the materials cost and lower the 
production cost. Lundberg et al (Lundberg et al., 2003) research shows that when the 
thickness of the CIGS absorber layer is down to 0.8-1.0 Ǎm, this structure can maintain a 
very high performance. When the CIGS layer was further reduced in thickness the loss in 
performance increased.  When the thickness is 1.8 Ǎm, the efficiency is 16.1%; when the 
thickness is 1.0Ǎm, the efficiency is 15%; but when the thickness is 0.6 Ǎm, the efficiency is 
12.1%. A pronounced loss in the efficiency is shown. 

4.3.2 Manufacturing  
The CIGS layer can be deposited in a polycrystalline form directly onto molybdenum coated 
glass sheets or steel bands. Compared to large crystal, it can save energy. CIGS films can be 
manufactured by several different methods. A vacuum-based process (NAKADA & 
MIZUTANI, 2002; Repins et al., 2008; Delahey et al., 2004) is very common. Co-evaporating 
or co-sputtering copper, gallium, and indium can form a CuInGa thin film. Then the film is 
annealed in a selenide vapor to form the CIGS structure. The CIGS also can be formed with 
directly co-evaporating copper, gallium, indium and selenium onto a heated substrate. A 
non-vacuum-based process deposits nanoparticles of the precursor materials on the 
substrate and then sinters them in situ. CIGS layer also can be achieved through 
electroplating, which is the low cost way. Vacuum processes are expensive and can achieve 
very high efficiency of almost 20% (NAKADA & MIZUTANI, 2002; Repins et al., 2008). 
Non-vacuum solution processes progressed quickly and can get efficiencies of 10%-15% 
(Bhattacharya et al., 2001; Kapur et al., 2003), such companies as ISET, Nanosolar and IBM 
have this technology. 
The recorded high efficiency (19.9%) CIGS solar cell deposition process is so-called three-
stage process introduced by NREL (Gabor et al., 1994). It is a vacuum process. In first stage, 
In, Ga and Se are co-deposited to form (Inx,Ga1-x)2Se3, followed by the co-deposition of Cu 
and Se until Cu-rich composition CIGS is reached, and finally the overall Cu concentration 
is readjusted by subsequent deposition of In, Ga and Se. The process yields smooth films 
and can result in compositional profiles contributing to both high currents and voltages in 
the devices. This smoother surface facilitates the uniform conformal deposition of a thin 
buffer layer and prevents ion damage in CIGS during sputter deposition of ZnO/ZnO:Al 
(Gabor et al., 1994; Pomeo et al., 2004). The overall solar cell is made as follows: Soda-lime 
glass (SLG) substrate, sputtered Mo back contact, three stage co-evaporated CIGS, chemical-
bath-deposited (CBD) CdS, sputtered resistive/conductive ZnO bi-layer, e-beam-evaporated 
Ni/Al grids, MgF2 antireflective coating, and photolithographic device isolation (Repins et 
al., 2008; Contreras et al., 1999; Ramanathan et al.,2003). 
There are many deposition processes of CIGS thin film. Co-evaporation and two-step are the 
main processes (Shafarman & Stolt., 2003). Figure 4.12 shows the schematic of co-
evaporation process. 
The process uses line-of-sight delivery of the Cu, In, Ga, and Se from open-boat sources to 
the heated substrate.  The source evaporation temperature is under control. Typical ranges 
are 1300 to 1400°C for Cu, 1000 to 1100°C for In, 1150 to 1250°C for Ga, and 300 to 350°C for 
Se evaporation. The advantage of the coevaporation process to deposit CIGS thin film is its 
considerable flexibility to choose the process specifics and to control film composition and 
band gap. The disadvantage is the difficulty in control, particularly the control of the Cu-
evaporation source. The deposition, diagnostic, and control technology need be improved. 
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Fig. 4.12. Configuration for multisource elemental coevaporation. 
(Shafarman & Stolt., 2003). 

Two-step process is also called selenization. In selenization, copper, indium and gallium 
source atoms are ejected from solid targets by high-energy ions (also called “sputtering”). 
The selenium is added in a second step through a “selenization” process using a high 
temperature hydrogen selenide gas or solid source selenization. Sputtering is a mature 
technique. This is the primary advantage of selenization. But this process has the limited 
ability to control composition and increase band gap, which may limit device and module 
performance. Other difficulties that must be overcome include poor adhesion and the use of 
hydrogen selenide, which is hazardous and costly to handle. 
Other Deposition includes hybrid sputtering in which Cu, In, and Ga are sputtered while Se 
is evaporated, closed space sublimation (CSS), chemical bath deposition (CBD) etc. These 
methods are reviewed in Reference (Shafarman & Stolt., 2003).  
CIGS thin film solar cells have become commercial products successfully. A lower-cost 
process should feature high deposition rates, high material utilization, and simpler 
equipment capable of processing very large substrates. In order to lower the cost, there are 
still some critical issues for CIGS application (Ullal, H.S. & Roedern, B. von. 2007): 
1. Standardization of equipment and technology for the growth of the CIGS absorber 

films; 
2. Higher module efficiencies (over 20%); 
3. Prevention of moisture ingress for flexible CIGS modules; 
4. Thinner absorber layers of less than 1 micrometer or less; 
5. CIGS absorber film stoichiometry and uniformity over large areas. 

4.3.3 Efficiency 
CIGS (CuInxGa(1-x)Se2) is one of the most prospective absorber materials for low cost 
polycrystalline thin film solar cells. Unlike the homojunction silicon cells, the structure of 
CIGS cells is a more complex heterojunction system. CIGS solar cell can achieve very high 
efficiencies such as 19.5% (x~0.3) (Contreras et al., 2005) ,19.9% (x~0.3) (Repins et al., 2008) 
etc. In National Renewable Energy Laboratory (NREL), the new world record total area 
efficiencies of 15.0% for CIS and 10.2% for surface modified CGS solar cells had been 
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achieved.  The use of gallium increases the optical band gap of the CIGS layer as compared 
to pure CIS, thus increasing the open-circuit voltage. Crystalline silicon solar cells can get 
efficiency as high as 24.7%, and CIGS efficiency is lower than 20%. But CIGS is much 
cheaper due to the much lower material cost and potentially lower fabrication cost. CIGS 
has very strong light absorption as a direct band-gap material. Most of the sunlight can be 
absorbed with 1-2um thickness CIGS layer. Compared to CdTe solar cells, CIGS are more 
pro-environmental solar cells. Because CIGS can consume smaller cadmium than CdTe, and 
cadmium is toxic material. Table 4.2 lists some conventional CIGS solar cell efficiencies. 
 

 
Table 4.2. CIGS solar cell efficiencies 

4.3.4 Cd-Free Cu(In, Ga)Se2 thin-film solar cells 
The recent trend in buffer layers is to substitute CdS with ‘Cd-free’ wide-bandgap 
semiconductors and to replace the CBD technique with in-line-compatible processes. The 
standard device structure of Cu(In,Ga)Se2 (CIGS)-based solar cells use a very thin chemical-
bath-deposited (CBD) CdS buffer layer as window layer. But Cd is a kind of toxic materials. 
In the last decade, serious efforts to substitute the CdS buffer layer by other nontoxic low-
absorbing materials have been made and the results are encouraging. For example, M.A. 
Contreras et al (Contreras et al., 2003) developed a Cd-free Cu(In,Ga)Se2 thin-film solar cell. 
Thin film ZnS is used as window layer, which is a wider band gap material than CdS and 
can improve the quantum efficiency at short wavelengths. This structure solar cell can get 
energy conversion efficiency as high as 18.6%. This result suggests that CIGS thin film solar 
cells with efficiencies as high as those fabricated using CdS buffer can be achieved even if 
toxic Cd compounds are not utilized.  
As an alternative to CdS, various materials show promising results. CBD-ZnS, MOCVD-
ZnSe, ALD-ZnSe, CBD-ZnSe, CBD-ZnO, co-sputtered (Zn,Mg)O, CBD-In(OH)3, ALCVD-
In2S3, Co-evap-In2Se3, Co-evap-InZnSex, CBD-SnO2 etc can be alternative buffer layers to 
replace the traditional CdS window layer and realize the Cd-free CIGS solar cells. The 
deposition methods can be: chemical bath deposition (CBD), atomic layer chemical vapour 
deposition (ALCVD), metal organic chemical vapour deposition (MOCVD), ion layer gas 
reaction (ILGAR), sputtering, thermal evaporation, and electrodeposition (ED) (Hariskos et 
al., 2005). Some processes can get very high efficiencies. CBD ZnS based buffer layer CIGS 
solar cells have 18.6% efficiency which is comparable with the CBD CdS.  However, Zn-
based compounds tend to form a blocking barrier due to the band alignment with CIGS. If 
the layer thickness is less than 50 nm, and the deposition quality is high, and the CIGS 
surface is uniform, the barrier can be reduced (Remeo et al., 2004).  Hariskos et al has over-
viewed the development of Cd-free materials and manufacture for Cu(In,Ga)Se2-based thin-
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film solar cells and modules. Table 4.3 lists some CIGS solar cells condition with different 
buffer layer materials. 
 

Material   Method Efficiency (%) Reference 

CdS  CBD 19.9 Repins et al., 2008 

ZnS-based   CBD  18.6 Hariskos et al., 2005 

In(OH)3:Zn-based   CBD  14 Tokita et al., 2003 

In2S3-based ALCVD 16.4 Naghavi et al., 2003 

ZnSe-based   CBD  15.7 Ennaoui et al., 2001 

ZnInSex   Coevap.  15.3 Hariskos et al., 2005 

InxSey  Coevap.  13 Hariskos et al., 2005 

ZnMgO   Sputtering  16.2 Negami et al., 2002 

ZnO   CBD  15.7 Hubert et al., 2009 

SnO2  CBD  12.2 Hariskos et al., 2005 

Table 4.3. CIGS efficiencies and manufacture with different window layers 
(Hariskos et al., 2005).  

4.4 Nanocomposite application in dye-sensitized solar cells 
A dye-sensitized solar cell (DSSC or DSC) is a low-cost solar cell like CdTe and CIGS thin 
film solar cells. DSSC has developed many years, but for a very long time the energy 
conversion efficiency is less than 1%. The high efficiency DSSC solar cell (over 7%) was 
invented by Michael Grätzel and Brian O'Regan at the École Polytechnique Fédérale de 
Lausanne (one of the two Swiss Federal Institutes of Technology) in 1991 (O'Regan & 
Grätzel., 1991). For this significant discovery, DSSC solar cell attracted considerable 
attention as a potential alternative to conventional inorganic photovoltaics and developed 
rapidly during the 1990s. Dr. Grätzel created DSSC solar cell from low to medium-purity 
materials through low-cost process, which exhibits a commercially realistic energy-
conversion efficiency. So, DSSC solar cell is called as Grätzel cell also. Up to date, the DSSC 
solar cell can reach 11.1% efficiency (CHIBA et al., 2006; Han et al., 2006). 
DSSC can be classified into the group of nanocomposite thin film solar cells. It is based on a 
semiconductor formed between a photo-sensitized anode and an electrolyte, a 
photoelectrochemical material. Because of the high surface area of the semiconductor film 
and the ideal spectral characteristics of the dye, the device harvests a high proportion of the 
incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion 
of incident photons to electrical current (more than 80%) (O'Regan & Grätzel., 1991). DSSC 
solar cell is insensitive to temperature change. When the temperature rises from 20 to 60°C, 
which is the normal natural condition, the power conversion efficiency has no change. In 
contrast, conventional silicon cells exhibit a significant decline over the same temperature 
range amounting to about 20%.  DSSC solar cell has the lower sensitivity to angle of light 
incidence as compared to silicon-based cells. These advantages made DSSCs attractive for 
practical applications (Grätzel, 2004). Unlike solid semiconductor solar cell, the dye-
sensitized solar cell uses liquid electrolyte to transport electron excited by sunlight. The 
liquid electrolyte dye-sensitized solar cell has some problems such as leaking and 
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degradation. It is not stable. So colloids are developed and used in dye-sensitized solar cells. 
Normally a dye-sensitized solar cell uses nano-crystalline TiO2 as the semiconductor 
material (O'Regan & Grätzel., 1991). Here the semiconductor is solely used for separating 
charge. Photoelectrons are generated from the photosensitive dye. Photovoltaic performance 
of the solar cell depends remarkably on the semiconductor materials.  

4.4.1 DSSC solar cell structure and working cycle 
Figure 4.13 is a schematic diagram of a DSSC solar cell. A typical DSSC includes back 
contact transparent conducting oxide (TCO), semiconductor titanium dioxide (TiO2) thin 
film, electrolyte (usually a ruthenium bipyridyl complex), Pt catalyst and front contact TCO. 
The two transparent conducting oxide (TCO) glass slides are coated with fluorine doped tin 
oxide (FTO). TCO can be ZnO, ITO and SnO2 etc. TCO in DSSC solar cell has the same 
functions with that in CdTe and CIGS solar cells. The n-type semiconductor TiO2 thin film is 
attached to the substrate serves as a back electrode. The electrolyte contains a reduction-
oxidation (redox) couple ( 3I /I− − ). The counter electrode TCO glass is covered with a very 
small amount of platinum (5–10 Ǎg/cm2), which is responsible for catalytic cathodic 
reduction of triiodide to iodide. The electrolyte fully fills the space between the two 
electrodes. 
 

 
Fig. 4.13. A schematic diagram of structure and components of a DSSC solar cell 
http://www.umk.fi/en/newsletter_newsletter_0108_Aitola_more.html 

The semiconductor TiO2 thin film is about 10Ǎm thickness with the particles in nano-size 
about 20nm (O'Regan & Grätzel., 1991). Dye molecules are attached to the TiO2 surface. TiO2 
is porous nano-crystalline structure and the internal surface area is thousands of times 
greater than the dimension of the cell (Yongbai, 2007). Under solar radiation, the dye 
molecules absorb the photons and excite electrons. The charge separation from the dye to 
the TiO2 happens at the surface between the semiconductor and electrolyte surface. The 
application of porous nanocrystalline TiO2 semiconductor and organic electrolytes 
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(ruthenium complex) was Dr. Grätzel's great invention. The smooth surface between 
electrolyte and non-porous crystalline TiO2 can absorbs incident light less than 1%. But the 
interface between electrolyte and porous nanocrystalline TiO2 can absorb incident light over 
80%. 
 

 
Fig. 4.14. Principle of operation and energy level scheme of the dye-sensitized 
nanocrystalline solar cell. Potential are referred to the standard calomel electrode (SCE) 
(Hagfeldtt & Grätzel, 1995). The redox system is iodide/triiodide-based redox eletrolyte. 
S stands for sensitizer; S*, electronically excited sensitizer; S+, oxidized sensitizer 

The DSSC is different with any other solar cells. This photovoltaic device uses molecules to 
absorb photons and convert them to electric charges without the need of intermolecular 
transport of electronic excitation, whereas others use atoms. DSSC solar cell separates the 
two functions of light harvesting and charge-carrier transport, whereas conventional and all 
of the other known photovoltaic devices perform both operations simultaneously (Grätzel, 
2009). Figure 4.14 shows the DSSC solar cell working cycle and the relative energy levels of 
the cell. Incident sunlight passes through the transparent electrode into the dye layer where 
it can excite electrons that then flow into the semiconductor TiO2 layer. The electrons flow 
toward the transparent electrode where they are collected for powering a load. After 
flowing through the external circuit, they are re-introduced into the cell on a metal electrode 
on the back, flowing into the electrolyte. The electrolyte then transports the electrons back to 
the dye molecules. This cycle includes 5 steps of photoelectronic chemistry process (Figure 
4.14) (Yongbai, 2007): 
1. An incident photon is absorbed by the dye molecule and an electron from a molecular 

ground state S is then excited to a higher energy state S* (at anode); 

 S + hν → S+ (1) 

2. the excited electron is injected to an oxidized state S+ (at anode); 

 S* → S+ + e- (2) 
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 + - -
32S +3I 2S+I→  (3) 

3. the injected electron passes through the porous nanocrystalline material and reaches the 
transparent conducting oxide layer; 

4. the electron is transferred to the triiodide in the electrolyte to yield iodine (at cathode); 

 - - -
3I +2e (Pt)=3I  (4) 

5. the reduction of the oxidized dye by the iodine in the electrolyte. 

 + -S +e S→  (5) 

hv is the photon energy; S stands for sensitizer; S*, electronically excited sensitizer; S+, 
oxidized sensitizer. 

4.4.2 Dye and efficiency 
Different sensitizers have different transparency and absorbance on the sunlight spectral 
region. In dye solar cells, the dye is one of the key components for high power conversion 
efficiencies. Since highly efficient dye-sensitized solar cells (DSSCs) were first reported by 
Grätzel, substantial research has been carried out in the engineering of novel dye structures 
in order to enhance the performance of the system. At least 80 groups attended this research. 
The energy conversion efficiencies have been achieved over 10%.  
Scientifically, a DSSC can achieve efficiency as high as 15% or more (Grätzel, 2003; Kroon et 
al., 2007). But till now, the highest efficiency is around 12%. This means there is a high 
potential for improvement in efficiency. The efficiency (ǈ) is the function of the open circuit 
voltage (Voc), the short circuit current (Jsc) and Fill factor (FF). The limitation of efficiency is 
on the three parts (Kroon et al., 2007): 
a. Inefficient light absorption by existing sensitizer dyes in whole sunlight spectrum. 

Some are sensitized on UV-visible region but insensitive on IR region; some are 
sensitized on IR region, but insensitive on UV-visible region.  

b. Sub-optimum photovoltage output. The improvements in the photovoltage could  
substantially increase device efficiencies by up to 50%. 

c. Fill factors (FF) are limited in general by series resistance losses, light-intensity 
dependent recombination, non-ideal dark diode currents and, in some cases, shunt 
resistance losses. 

Table 4.4 provides a summary of the best performance data obtained (state of the art) to date 
in solar light conversion, as well as open circuit voltages (VOC) at various fill factors (FF) 
using various dyes for a number of surface areas. 
In the new reports from M. Graetzel, EPFL has got very high efficiencies about sensitizers of 
C101 (11.3%, Thampi et al., 2008) and Z991 (11.91% (Grätzel, 2008),12.3% (Grätzel, 2009). 
There are still a lot of work to do to achieve the theory efficiency 15% (Kroon et al., 2007). 
Many different dyes with a variety of chromophoric ligands have been synthesized and 
studied in DSSCs: polypyridine complexes of transition metals, metalloporphyrins, and 
metallo-phathalocyanines as well as different metal-free, donor-acceptor type dyes 
(Kalyanasundaram & Grätzel 2009). In most of the experiments, Ruthenium-based dyes are 
the main sensitizers. They are the best choices for DSSCs. They includesN3, N719, N749 
(Black dye), N621 (ǈ=9.57%, (Nazeeruddin et al., 2005), C104, Z907 (ǈ=9.5%, 
Kalyanasundaram & Grätzel 2009) etc. 
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EPFL: Ecole Polytechnique Federale de Lausanne 
AIST: the National Institute of Advanced Industrial Science and Technology (Japan) 

Table 4.4 High efficiencies dye-sensitized solar cells development 

N3 dye is one of the most commonly used sensitizing dyes for high-performance DSSCs. 
N719 dye is one of its derivatives,in which two protons are replaced by tetrabutylammonium 
cations (TBA) (figure 4.14). Both N3 and N719 have very good absorbance in UV-visible 
spectrum region, and can reach very high solar-energy-to-electricity-conversion efficiency 
(table 4.4). N749 (black dye) is sensitive in the low-frequency range of red and IR light. 
Figure 4.15 and Table 4.5 show the structures and compositions of some of these high 
performance dyes respectively. 
Recently some organic dyes have been developed. For example the D205 indoline dye (Ito et 
al., 2008) and C217 (Zhang et al., 2009) achieved efficiencies 9.5% and 9.8%, respectively. 
 
 

 
                     N3                             N719                              Z907                     Black dye (N749) 

                   ǈ= 11.04%               ǈ= 11.18%                    ǈ= 9.5%                     ǈ= 11.1% 
 

Fig. 4.15. Structures of some of the most efficient Ru-based DSSCs 
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Dye Name 

N3 cis-bis(isothiocyanato)bis(2,2’-bipyridil-4,4’-dicarboxylate) ruthenium(II) 

N719 
cis-bis(isothiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) bis-
tetra-n-butylammonium 

N621 
cis-bis(isothiocyanato)(2,2’-bipyridyl-4,4’-dicarboxylate)(4,4′-ditridecyl-2,2′-
bipyridine)ruthenium(II) 

Z907 
cis-bis(isothiocyanato)(2,2’-bipyridyl-4,4’-dicarboxylate)(4,4′-dinonyl-2,2′-
bipyridine)ruthenium(II) 

N749 tris(cyanato)-2,2',2”-terpyridyl-4,4',4”-tricarboxylate)Ru(II) 

Table 4.5. Some dyes' compositions 

4.4.3 Metal oxides 
Semiconductor oxides used in dye-sensitized solar cell include TiO2, ZnO, SnO2, Nb2O5 etc., 
which serve as the carrier for the monolayers of the sensitizer using their huge surface and 
the medium of electron transfer to the conducting substrate. Anders Hagfeldtt et al 
(Hagfeldtt & Grätzel., 1995) even introduced nano-crystalline CdSe, CdS, WO3, Fe2O3, In2O3 
and Ta2O5 etc as the semiconductor oxides on the DSSC applications. Conventional high 
efficiency DSSC uses nano-crystalline TiO2 as the semiconductor because TiO2 has the 
properties such as low-cost price, abundance in the market, nontoxicity etc.  ZnO has an 
energy gap of 3.37 eV, nearly identical to that of TiO2. DSSCs built from ZnO nanoparticles 
show the second highest efficiencies after TiO2.  Karin Keis et al (Keis et al., 2002) developed 
a DSSC solar cell with nanoporous ZnO as the semiconductor to replace TiO2 and N3 as the 
sensitizer. By improving the interfacial contact between dyes and ZnO particles in the film, 
overall solar-to-electric energy conversion efficiencies of up to 5% were obtained. Ming-
Hong Lai et al (Lai et al., 2010) developed a new structure DSSC solar cell using ZnO to 
replace TiO2. In this structure, a ZnO thin film is used as the TCO and a ZnO nanorod layer 
as semiconductor. There are also a lot of research about ZnO-based DSSC (Hongsith & 
Choopun., 2010; Martinson et al., 2007). Unfortunately, the ZnO-based DSSC efficiency is 
much lower compared to that based on TiO2. One of the reasons for the low efficiency of 
ZnO-based DSSCs is the excessive dye aggregation on the ZnO surface, which in turn causes 
slower electron injection from the dye to ZnO (Zhang et al., 2008). The conditions as SnO2 
and other semiconductors are same low efficiencies. Up to date Nano-porous TiO2 is still the 
best choice in semiconductor. 

4.4.4 Electrolytes 
The electrode in DSSC is to transport the charge carrier between photoanode and counter 
electrode. In the DSSC working cycle, the dye releases the electrons excited by the incident 
light into the conduction band of TiO2. The dye loses electrons and must be reduced to its 
ground state rapidly. The ionic electrolyte must send electrons to the dye quickly. So, the 
electrode should have very good conductivity and good interfacial contact with the porous 
nanocrystalline layer and the counter electrode. 
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The electrolyte mixtures used in high-efficiency DSSC cells include liquid, solid-state and 
quasi-solid-state electrolytes. 
Liquid electrolyte is widely used in DSSC. Most experiments of DSSC use liquid electrolyte 
including 3I /I− −  redox couple. The light-to-electricity conversion efficiency based on 3I /I− −   
redox couple liquid electrolyte has been achieved to over 12%. This is the most efficient 
electrolyte. But the problem about this electrolyte is the corrosion for metals, which can 
cause sealing and long-time stability. Other kind redox couples such as Br–/Br2, SCN–

/SCN2, SeCN–/SeCN2 also can be used in liquid electrolyte, but the light-to-electricity 
conversion efficiency is low. The limitations of liquid electrolyte are leakage of device, 
volatilization of organic solvents and long term stability. Solid-state electrolytes with no 
liquid materials can overcome the disadvantage of fluidity and volatility for liquid 
electrolytes and has long term stability. But the light-to-electricity conversion efficiency of 
DSSC with solid-state electrolytes is very low because of poor interface contact property and 
lower conductivity (Wu et al., 2008). Quasi-solid-state electrolyte is between liquid 
electrolyte and solid-state electrolyte. It has better long-term stability than liquid electrolytes 
but less than that of solid-state electrolyte. It has better ionic conductivity and interfacial 
contact property than that of solid-state electrolyte, but not as good as that of liquid 
electrolyte. Now DSSCs based on quasi-solid-state electrolyte are attracting more interest. 
Some researches got good results and the light-to-electricity conversion efficiencies are very 
high, such as 6.9% (Stathatos & Lianos., 2007) and 7.3% (Sathiya Priya et al., 2008). 
Compared with liquid electrolyte based DSSCs, the efficiencies of quasi-solid-state based 
DSSCs are very low. 

4.4.5 Tandem-structure and dye-bilayer structure DSSC 
Up to date, no sensitizer has good incident absorbance along the whole sunlight spectrum. 
Like conventional solar cell, the DSSC also can be synthesized as tandem-structure. But 
DSSC has special property that the nanocrystalline dye-sensitized solar cell DSSC can be 
designed by appropriate choice of the sensitizer to absorb incident photons in selective 
spectral regions of the solar spectrum while maintaining high transparency in the remaining 
wavelength range (Liska et al., 2006). So, in the tandem-structure DSSC, just choosing 
different sensitizers which have different transparency and absorbance on the sunlight 
spectral region to make top and bottom cells can get high conversion efficiencies. For 
example, Yanagida et al  in AIST group developed a kind of DSSC tandem-structure dye-
sensitized solar cell (Yanagida et al., 2010). N719 is sensitized on UV-visible region and 
N749 (black dye) is sensitized near infrared region (figure 4.16).  The spectral response of the 
two systems is complementary to each other and reveals the advantage of employing them 
in a tandem mode. Tandem-structure DSSC with N719 as top cell and N749 as bottom cell  
sensitized on incident light from UV to infrared region can reach the highest photovoltaic 
conversion efficiency of 10.6% (parallel structure) under solar-simulating light conditions 
(AM1.5, 100mWcm-2). 
A DSSC cell can combine a CIGS cell to buildup a tandem-structure cell.  Liska et al developed 
a photovoltaic tandem cell comprising a nanocrystalline dye-sensitized solar cell (N719 based) 
as a top cell for high-energy photons and a copper indium gallium selenide (CIGS) thin-film 
bottom cell for lower-energy photons (Liska et al., 2006).  Figure 4.17 shows photon-to-current 
conversion efficiency (IPCE) of this DSSC/CIGS tandem-structure solar cell. The DSSC top cell 
shows a strong response in the UV, blue, and green wavelength domains and the CIGS bottom 
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cell exhibits high external quantum efficiencies in the red and near IR parts of the spectrum 
extending from 700 to 1150 nm where the DSSC is insensitive to light. This DSSC/CIGS 
tandem-structure is sensitized on the spectrum from UV to IR region. 

 
Fig. 4.16. The incident monochromatic photon-to-current conversion efficiency (IPCE) 
spectra of a PT-DSSC (solid line) and its top and bottom cells (dashed and dotted lines, 
respectively). 
 

 
Fig. 4.17. Spectral response curves of the photon-to-current conversion efficiency (IPCE) for 
a DSSC top cell (bold line) and a CIGS bottom cell (dotted line) (Liska et al., 2006) 

This cell can achieve photovoltaic conversion efficiencies as high as 15.75% which was 
significantly higher than that of the individual cells. Here the N719 based DSSC top cell 
efficiency is 7.85% and the CIGS bottom cell efficiency is 8.17%. 
Inakazu et al studied a dye-sensitized solar cells (DSSC) containing dye-bilayer structure of 
black dye and NK3705. This structure was fabricated by staining one TiO2 layer with these 
two dyes, step by step. The short circuit current (Jsc) and the incident photon to current 
efficiency (IPCE) of this cell are almost the sum of those of DSSC stained with black dye only 
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and DSSC stained with NK3705 only. The efficiency of this dye-bilayer solar cell is 9.16%, 
which is higher than that of black-dye based solar cell (7.28%) and NK3705 based cell 
(1.85%) (Inakazu et al., 2008). 

4.5 Polymer solar cells 
A polymer solar cell is also called an organic solar cell or a plastic solar cell. The polymer as 
substrate can make the cell flexible. The polymer solar cell is typically made from a 
nanocomposite thin film material. Such a solar cell produces electricity from sunlight by the 
polymer. Compared with silicon-based solar cells, polymer solar cells can greatly lower the 
cost. For a polymer solar cell, there are three major ways to lower the cost. First, it uses low 
cost plastic as the active materials to convert solar energy into electricity; second, the active 
plastic layer thickness is in nano-scale, this means the raw materials consumption will be 
significantly decreased; the third aspect is the low manufacturing cost, the solution 
processing is low easy and low cost. The ink-jet printing, micro-contact printing, and other 
soft lithography techniques have further improved the potential of conjugated polymers for 
low-cost fabrication of large-area integrated devices on both rigid and flexible substrates. 
These techniques are similar to printing on newspaper and the cost is very low. Polymer 
solar cells is cheaper to make than thin-film cadmium-telluride (CdTe) or copper indium 
gallium selenide (CIGS) ones because they use low-cost materials and are easy to print. The 
main reason for the extensive interest in polymer semiconducting materials is their potential 
for the realization of a low cost, easily processed, light-weight and mechanical flexible 
device. The main problems of polymer solar cell are photochemical degradation and low 
light-electric conversion efficiency. The research of polymer solar cells concentrates on 
increasing photochemical stability and energy conversion efficiency.  

4.5.1 Structure of polymer solar cell 
Figure 4.18 shows the polymer solar cell structure. It is similar with CdTe, CIGS and DSSC. 
The difference is the active layer. It is polymer blend, including a p-type semiconductor 
(donor) and an n-type semiconductor (acceptor). The basic process includes absorption of 
light, charge transfer and separation of the opposite charges, charge transport and charge 
collection. The process is the same with DSSC. So, it can also be classified as dye-sensitized 
solar cell.  
 

 
4.18. Typical polymer solar cell structure 
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Donors:  
MDMO-PPV = poly[2-methoxy-5-(3´,7´-dimethyloctyloxy)-p-phenylene vinylene]; 
 P3HT= poly(3-hexylthiophene); 
PFDTBT: poly[2,7-[9-(2´-ethylhexyl)-9- hexylfluorene]-alt-5,5-(4´,7´-di-2-thienyl-2´,11´,3´-
benzothiadiazole)]. 
Acceptors:  
PCBM: 3´-phenyl-3´H-cyclopropa[1,9][5,6]fullerene-C60-Ih-3´-butanoic acid methyl ester;  
PCBM: 3´-phenyl-3´H-cyclopropa[8,25][5,6]fullerene-C70-D5h(6)-3´-butanoic acid methyl 
ester. 

4.5.2 Efficiency 
Due to the inferior charge-transport properties and limited spectral absorption range of the 
polymer active layer, the overall power conversion efficiencies (PCE) reported are still low. 
Green et al have reported the high efficiencies polyer solar cells. For single solar cell, the 
efficiency is 5.15% (Voc, 876mV; Jsc, 9.39mA/cm2; FF, 62.5%). For 2-cell tandem solar cell, 
the efficiency is 6.1% (Voc, 1589mV; Jsc, 6.18mA/cm2; FF, 61.9%) (Green et al., 2010). This 
low efficiency limits the application of commercialization.  Solarmer Energy, Inc is the 
leading developer company in polymer solar cell technology. In 2009 alone, Solarmer 
produced three certified world records: 6.8%, 7.6% and 7.9%. Recently a new world record 
of 8.13% for their organic photovoltaic (OPV) cell efficiency was achieved, which was 
certified by the National Renewable Energy Laboratory (NREL). (http://www.solarmer.com). 
This new development made the commercialization of polymer solar cells is possible. This 
cutting-edge technology has the potential to drive energy production cost down to 12-15 
cents/kWh. But for polymer solar cell, the efficiency over 15% can have a major impact on 
the solar cell power market. In theory, the efficiency with 15-20% is possible.  This means 
there is still much work to do to improve the efficiency. 

5. Summery and conclusions 

Based on the review of thin film typed nanocomposites for solar energy conversion, the 
following conclusions may be made. Various nanocomposite thin films for solar cell 
fabrication are still under development. The principle of photovoltaic energy conversion of 
nanocomposites is different from that of the first generation of solar cells, i.e. silicon cells 
because of the structure complexity. The efficiency of solar cells could potentially be 
improved by using two dimensional nanocomposite cells such as CuInGaSe2(CIGS), dye-
sensitized solar cell (DSSC). There are many challenges in polymer based solar cells research 
because they have very low efficiencies.  
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