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Super-Resolution Object Recognition Approach 
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Rahmi Salman and Ingolf Willms  
Fachgebiet Nachrichtentechnische Systeme, 

Universität Duisburg-Essen, 47057 Duisburg 
Germany  

1.  Introduction   

Technical investigation, research and development in the wide field of security technology 
have been increased in recent years. Robotics as a great deal of this progress aims at 
advanced mobile security robots that can measure their surrounding environment 
accurately and provide various sensing applications. These robots will gain a steady 
increasing importance in private homes, industry and military. Such robots equipped with 
Ultra Wideband (UWB) Radar are promising for near field, non-contacting and non-
destructive sensing technologies. Compared to optical or infrared systems UWB Radar does 
not need a visual LOS condition which makes it suitable for smoke and dust filled 
emergency scenarios. In contrast to common CW-Radar, due to the wide frequency band 
which corresponds to a high resolution in time domain, UWB Radar is possible to separate 
multiple reflections of multipath propagation in sub-centimetre range. Because of the 
presence of low frequencies UWB Radar systems are able to penetrate dielectric materials to 
perform subsurface imaging. Hence, UWB has superior advantages compared to classical 
near-field sensing technologies which make it an ideal candidate for security robots. 
The object recognition (OR) method proposed in this work is part of a super-resolution 
Radar imaging system by backscattered UWB signals on the basis of a reference data set. 
The purpose of this method is detection, recognition and classification of unknown objects.   

2. System setup and system design 

Radar imaging is an active remote sensing technique meaning that the scene to be imaged is 
illuminated by a wave transmitted by the Radar system. The receiver of the system 
measures the variation of the electromagnetic field intensity over time collecting echoes 
which contain geometrical feature information of the area in the antennas footprint. The 
goal of the data processing is to generate a visual image of the target from the received 
electro-magnetic field. To get proper and sufficient information it is necessary to scan the 
scene, i.e. move the sensors along a certain trajectory and record UWB pulses. In case of 
UWB Radar, the measured pulse approximates the channel impulse response either directly 
or after post-processing. Plotting the measured channel impulse responses in a 2D 
Radarmatrix with the time-of-flight or the distance versus the antenna position leads to a so 
called radargram with the amplitude indicating the intensity of the received field. The 
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radargram is a convenient way of illustrating results of measurements and is the preferred 
method of displaying Radar data for further post-processing. 

2.1 Objects under test and reference alphabet 
The investigated objects and the reference alphabet derived from these consist of simple 
canonical and some polygonal complex objects in the form of beams with no variance in the 
3rd dimension. In figure 1 the used 12 objects are shown.  
 

o1 o2 o3 o4

o5 o6 o7 o8

o9 o10 o11 o12

6cm

6cm

 

Fig. 1. Cross-section of the used 12 objects and the reference alphabet (abstracted objects 
consisting only discrete values equal red dots) 

The reference alphabet is extracted out of a priori known dimensions of each object and 
consists of discrete values which are marked in figure 1 with red dots. For this purpose 
every edge and corner of each object is marked as a pixel with a value of 1 in a 1000 x 1000 
pixel grid according to 1 mm distance between two neighboured pixels. Straight segments of 
the object are neither sampled nor set in any other way as a pixel at first. Hence, in the rest 
of the reference image pixels are set to 0 yielding to binary reference images by means of the 
subsequent recognition process is performed. 

2.2 Simulated and measured radar data 
The performance investigations of the introduced OR algorithm are carried out based on 
simulated Radar data obtained by Ray Tracing. To enable a quantitative proving of the 
effectiveness of the proposed OR algorithm, the geometric structures of each massive object 
were modelled by polygons and fed into the aforementioned simulation tool, which is 
described in its basics in (Geng & Wiesbeck, 1998; Schultze et al., 2008). The similarity 
between these simulations and real measurements is significantly high which could be 
verified in (Salman et al., 2008). In each of the 12 investigated scenarios one of the objects of 
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figure 1 was located in the middle of a room of 10x10 m² size and a height of 4 m. In these 
scenarios a quasi-monostatic antenna configuration (one antenna above the other) was 
moved around each object on a circular track with a radius of 1 m and at a constant level 
above the floor. Here, the antennas perform a scan with a 1 degree grid resulting in 360 
impulse responses of a corresponding radargram. A frequency band between 2.5 and 12.5 
GHz with 1601 frequency points was used. This corresponds to a frequency resolution of 
6.25 MHz and thus to an unambiguous range of 48 m or 160 ns which is sufficient for most 
of indoor scenarios. Also antenna characteristics have been taken into account in the 
simulations. Here, two double-ridged horn antennas are applied. These antennas have 
approximately 20° opening angle (3 dB less than maximum beyond this angle). Their 
patterns have been measured in an anechoic chamber for all frequencies in the considered 
frequency band and were convoluted with the simulated channel impulse responses. 
Nevertheless, experimental validations were started to complement these investigations and 
therefore objects o2 – o7 were built in same dimensions and scanned with same track and 
same antennas which were analyzed by the Ray Tracer. The used sensor system consists of a 
UWB Maximum Length Binary Sequence (M-Sequence) Radar system for data acquisition. 
Compared to pulse Radar, the energy of the transmitted waveform is spread equally over 
time when using an M-sequence Radar thus eliminating the power spikes of short pulses. 
This provides reduction of complexity and costs for the analogue electronics in the Radar 
device which do not need to handle high-power short-time signals thus allowing for a 
cheaper hardware implementation. The block diagram of an M-sequence Radar is given in 
figure 2. 
 

 

Fig. 2. Basic structure of an M-Sequence Radar with attached IQ Up/Down-converter 

The shift register generates periodically (using a ring-register) the binary M-sequence with 

the clock frequency cf which is the stimulus signal. The M-sequence is a special binary 

pseudo random code which has a very short triangular auto-correlation function. Due to 

Nyquist the range of the frequency spectrum is DC - cf /2 meaning that the width of the 

pulse is adjustable directly by the clock frequency. This signal is sent to the Tx port of the 

device. The Tx port can either be connected directly to the transmit antenna for baseband 

transmission (DC - 4.5 GHz) or an additional IQ up-converter can be used which modulates 
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the waveform to a carrier frequency of 9 GHz for passband transmission. The reflected 

signal is received by the receive antenna, downconverted to baseband (if the IQ up-

converter is employed) and sampled. In most wideband RF-systems, the data gathering is 

based on sub-sampling in order to reduce the data throughput, this is also the case with the 

M-sequence Radar. Usually the sampling time control is a challenging task but this is not the 

case for M-sequence sub-sampling, since a simple binary divider does this job in a very 

stable way by keeping an absolute linear (equivalent) time base of the captured signal. The 

divided pulse directly pushes the ADC and the track and hold circuit (T&H). The T&H 

captures the wideband input signal and provides it to the ADC which can work at a suitable 

low sampling rate sf . In order to increase the signal to noise ratio, it is of advantage to apply 

synchronous averaging in the digital domain. More detailed information can be found in 

(Sachs et al., 2005). 

2.2 Sensor track 
The emulation of the free movement of a mobile robot platform is provided by two 
symmetric arrangements of linear rails. Each of them has 2 degrees of freedom in the 
movement plane. On each of them there is a rotating platform actuated by another step-
motor. These platforms serve as mounting points for either antennas or targets. With this 
setup the circular scan was performed with the antennas fixed and the target rotating 
around its own axis on the rotor platform. This emulated the case where a robot is moving 
on a circle around a target. The setup of the measurement configuration with its essential 
devices is sketched in figure 3 for a better overview. 
 

 

Fig. 3. Layout of the measurement setup with its main devices for experimental validations 

Figure 4 shows an example of a simulation-based radargram of object o3 with a triangular 
cross section. Each object has a specific radar cross section that is strongly angle of radiation 
dependent. For the purpose of comparison Figure 5 shows the radargram of a real object 
with same dimensions measured by aforementioned M-Sequence Radar in the passband, i.e 
4.5 GHz – 13 GHz. On the left side of both figures 4 and 5 each radargram is determined by 
a circular track with the object positioned in the centre and the sensors at 1m distance. This 
is expectedly ideal in the simulated case as both sides of the equal-sided triangular at 45° 
and 135° cause a specular reflection. However, in the measured radargram of figure 5 a 
misalignment of the object is noticeable. There is a translative shift of approximately 2 cm to 
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the centre of rotation which has absolutely no influence onto the whole post-processing at 
all. As far as the position of the sensors is known, the track can be arbitrarily. 
 

 

Fig. 4. Radargram of simulated object o3 (left) and every 8th pulse of same Radar data (right) 

 

Fig. 5. Measured radargram of object o3 (left) and every 8th pulse of same Radar data (right) 

Also for other objects the similarity between simulations and measurements is significantly 
high. Thus, the performance of the UWB Ray Tracer is verified and serves as basis for 
further investigations. 

2.3 Pre-processing of measured data 
Before any algorithm for object reconstruction can be applied, a number of signal processing 
steps have to be applied onto the raw-data of the M-Sequence Radar device. The raw-data 
must be up-sampled and up-converted, if the IQ-converter is attached. The signal is 
provided in the equivalent complex baseband (ECB), as it is usual in high frequency 
hardware realizations to avoid the effort of high sampling rates. Furthermore, calibration 
and interpolation is necessary to provide processing-ready data for subsequent algorithms 
like the imaging and the OR. 
In the measured scenario the reference signal is obtained without the object. A reference 
pulse is needed for the subtraction of the background reflections (clutter) and antenna 
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crosstalk from the raw signals. The antenna crosstalk is not negligible because the antennas 
are mounted one above the other at a distance of 12 cm which causes moderate coupling. 
Moreover, the influence of the microwave devices (e.g. RF switches, RF cables etc.) is 
compensated by calibration. The interpolation is performed in frequency domain by Fourier 
transforming the time domain signal. Zero padding and the Hamming window in the 
frequency domain are applied. After inverse Fourier transforming the time domain signal 
has finer quantization steps and therewith an improved resolution and a smoother signal 
form. The Hamming window suppresses sidelobes in the time domain which would appear 
if a rectangular window was used. Both pre-processing steps are applied and depicted in 
figure 6. 

 

 

Fig. 6. Interpolated raw signal with antenna crosstalk (above) and calibrated signal after 
removing the reference signal (below) 

Both system signals, i.e. in baseband and passband, are real-valued, as it is usual for every 

real physically transmitted signal. However, to avoid high sampling rates, as it would be 

necessary due to Nyquist to sample at least 2 times of the highest appearing frequency, the 

representation of the passband signal is performed in the ECB. This is essential, because 

such high frequency digital oscillators are either not available or too expensive. Moreover, it 

is possible to separate the signal carrier and its information by the complex envelope. The 

ECB is known to be the down converted version of its analytical Signal in the passband. 

Let ( )PB ts be a real valued passband signal, e.g. the Radar signal with attached up/down 

converter, then 

 ( ) ( ) ( )PB PBPB
t t j ts s s+ = + ⋅ &  (1) 

is the analytical signal, with  

 ( ) ( ){ } ( ) ( ){ }( ){ }( )1t t -j sgn ω t ω ts H s f f s−= = ⋅&
 (2) 

being the Hilbert transform of s(t) expressed by the Fourier transform. Here { }f i is the 

Fourier transform and { }H i the Hilbert transform. Obviously, an analytical signal is a signal 

whose imaginary part is the Hilbert transform of its real part. The ECB signal ( )ECB ts can be 

expressed as 

 ( ) ( ) 0
ECB PB

-j2πf tt s t e .s +=  (3) 
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Here, 0f is the carrier frequency. In the spectrum it leads to 

 ( ) ( )ECB 0PB
ω ω ω .S S+= +  (4) 

3. Highly accurate wavefront detection 

To achieve super-resolution of the Radar system, wavefronts have to be detected accurately 
and, in case of multiple reflections, overlapping pulses must be separated by a suitable 
algorithm. A wavefront is a curve within the radargram where each point on the curve 
indicates the distance at which a reflective feature of the object, visible from the sensor 
setup, is located. A reflective feature can either be a smooth, large (in comparison to the 
smallest wavelength) plane or edges and corners, which cause scattering and retroreflection, 
respectively.  Based on the speed of light value these wavefronts are used to determine the 
distance between the reflecting point and the sensor. In this work, these distances are used 
in subsequent algorithms to extract a Radar image and to enable the OR. The highly 
accurate wavefront detection becomes a challenging task when it deals with multi-scattering 
conditions. This is the case when complicated objects have surface variations less than a 
wavelength or have many concave and convex edges like the objects o5 – o12. Distortion is 
caused by richly interfered signals scattered from multiple scattering centres of the object 
surface. This results in constructive and destructive interference which leads to deformation 
of the pulse. In this section two algorithms shall be introduced in detail which have proven 
to be robust and efficient, i.e. a correlation based method and an optimization problem 
solved by a genetic algorithm. 
In both algorithms, again a reference pulse is needed. The double-ridged horn antennas 
used in this work have 20° opening angle to the left and right, respectively. The amplitude 
of the transfer function within this area, and therewith the attenuation, is marginal and 
negligible. Since the cross-range resolution is proportional to the wavelength and inverse 
proportional to the aperture, measurements in the passband are chosen to provide lower 
wavelengths and therewith finer resolution. A set of reference pulses is shown in figure 7 
which were obtained as reflection against a cylinder (diameter 9 cm) and a large metal plate, 
respectively. For the purpose of comparison, they are normalised in amplitude and delay. 
 

 

Fig. 7. A set of reference pulses taken at different distances against a plate and cylinder with 
normalised amplitude and delay 
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Once a wavefront has been detected in a signal under test, the distance has to be extracted 

accurately. A distinctive part of the reference pulse has to be marked as the location or 

moment respectively, when the reflection takes place at the objects surface. Assume ( )tref to 

be the reference pulse then usually ( ){ }max tref is set to be the point, or moment 

respectively, in which the reflection actually takes place. This point has the maximum 

instantaneous energy detected by the sensor which corresponds with the reflection. 

However, an adaption to the Radar data can be necessary with a change of the sign of the 

reference pulse. This depends on the sign of the maximum amplitude of the radar data 

which was within these investigations negative. For further processing it makes sense to 

shift the reference pulse such that ( ){ }max tref is in the origin of the time-axis. This leads to 

the reference pulse used in this work and is shown in figure 8. 
 

 

Fig. 8.  calibrated and normalised reference pulse used in this work 

3.1 Correlation based wavefront detection – the matched filter principle 
The basic idea of this algorithm, first introduced in (Hantscher et al., 2007) is to locate echoes 
iteratively by evaluating the normalized cross-correlation function of the signal under test 
with an offline determined reference pulse. The maximum of this cross-correlation function 
indicates the shift with which the reference pulse has highest similarity within the signal 
under test. Once a wavefront is extracted, the algorithm recursively subtracts scattered 
pulses to resolve multiple echoes. This step is iterated on the resulting signal until a 
termination condition is fulfilled. The termination condition is determined heuristically, e.g.  
when a certain difference in the signal power before and after subtraction is reached, or 
simply when a fixed number of wavefronts are of interest or, as it was the case within this 
work, when the normalized correlation coefficient which equals 0 for orthogonal signals and 
1 for identical ones, is less a threshold, e.g. 0.5 . The correlation coefficient for the 1st 
wavefront (i=1) is  

 ( )
( ) ( )

( )( ) ( )( )

K

k k d
k 1

echo, d
K K

2 2

k k
k 1 k 1

i

i

i

t t -t

t

t t

s ref

ccf

s ref

=

= =

⋅
=

⋅

∑

∑ ∑
 (7) 

with time samples k ,t the mean-value free reference signal ( )ktref and mean-value free 

signal under test ( )ki .ts ( )echo,1 dtccf is proportional to the cross correlation function and 
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represents the correlation coefficient for each time delay dt normalized by the RMS values 

of ( )ki ts and ( )k .tref The normalization avoids the problem of higher signal energies 

resulting in higher correlation values. The parameter 

 ( )( )
d

echo, echo, di it
t arg max tccfΔ =  (8) 

contains the time difference between the first detected reflection and the calibrated reference 

pulse, i.e. the moment at which the reference signal matches best the signal under test. 

Actually, because of the calibration of the reference pulse in figure 8 echo,itΔ equals the 

round trip time, or in combination with the velocity of light, the distance from the sensors to 

the reflecting centre. In order to investigate the signal under test for further reflections, the 

earlier detected wavefront has to be removed coherently since it covers other reflections. A 

scaling factor 

 
( )
( )

echo,

k echo,

i

i

t

t - t
f

s
s

ref

Δ
=

Δ
 (9) 

is estimated by taking the ratio of the amplitudes of the detected wavefront and the 
reference pulse at the point of maximum correlation. This scaling factor gives an estimation 
with which amplitude the reference signal has to be removed from the signal under test. 
This substraction operation provides the new signal under test 

 ( ) ( ) ( )k k k echo,i+1 i i ,t t t -Δtfss s ref= − ⋅  (10) 

which then will be analysed for further wavefronts. Similarly, further wavefronts are 

extracted iteratively by repeating equation (7) and the adjacent ones. This strategy can be 

considered as the matched filter principle with the reference pulse as the impulse response 

of the pulse shaping filter of the transmitter as well as the one of the receiver. This 

parameter estimation scheme maximizes the signal-to-noise power ratio. 

3.2 Wavefront detection by a genetic algorithm 
The correlation based wavefront detection works excellent for single simple shaped objects 

(e.g. o1-o4) or several simple objects which are separated by distances of several wavelengths. 

The small computation effort satisfies real time conditions and the range resolution is in sub 

centimetre range. Under these assumptions interference is negligible and waveforms are not 

distorted very much. However, for complex shaped objects which cause multiple reflections, 

wavefronts can interfere with each other. Especially when the overlap range is within a 

pulsewidth, constructive and/or destructive interference are hardly separable.  

For scenarios with multiple scattering conditions a genetic optimization algorithm (GA) for 

modelling the impulse response has proven to be very efficient. Hence, the pulse separation 

task is formulated as a multidimensional optimization problem and extracts even interfering 

pulses. Because of multimodality and complexity analytical approaches are not appropriate 

in every case. Here, GA has been proven to be a powerful tool by applying a heuristic search 

(Johnson & Rahmat-Sammi, 1997). The GA used in this paper is similar to (Hantscher & 

Diskus, 2009). The main difference is that the sensors in this work have no angle 
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dependence, because they have narrow main lobes resulting in an aperture with negligible 

incident angle. 

The basic idea of the GA is that the signal under test ( )kts  with time samples kt and index 

k is assumed to be described by a superposition of shifted and weighted reference pulses 

( )k .tref The set of reference pulses which vary by different parameters weight gw and delay 

gd  of the gth wavefront, shall approximate ( )kts  best with every meaningful combination of 

both parameters. A meaningful quality criterion can e.g. be the least square value. In 

contrast to the correlation based algorithm, the number of wavefronts G has to be presumed 

and was set to 3 within these investigations. The block diagram of the GA process is shown 

in figure 9. 
 

Initialisation of the 
population

Fitness rate

Termination 
condition 
fulfilled?

yes
Result

Selection

Recombination

Mutation

no

 

Fig. 9. Block diagram of the used GA for wavefront detection 

Firstly, the GA starts for every signal under test with an initialisation of a population of N 

individuals. Each individual resembles a potential solution of the optimisation problem.  

Here, every individual comprise the parameters weight gw and delay gd to provide a 

potential solution  

 ( ) ( )
G

k k
g 1

g gt .tc w ref d
=

= ⋅ −∑  (11) 

The parameters gw and gd are assigned uniformly distributed in the initialisation of the 

population. For example gd should be close  to the area where the object is supposed to be 

and gw should be in relation to used power levels. The number of individuals is chosen to 

be N = 200. Figure 10 shows an assembly of such a population for a better overview.  
 

 

Fig. 10. A population of N individuals with G wavefronts 
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In the next step the quality of the approximation is determined by means of a fitness function, 
i.e. the difference between of the signal under test and each individual in the least square sense 

 ( ) ( )( ) ( ) ( )
K K

kk k k
k 1 k 1 i

22

i

min min

1 1
t .t t t -

K K iF s c s w ref d
= =

→ →

⎡ ⎤⎛ ⎞
= − = − ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  (12) 

After having calculated the fitness of each individual, it is decided whether the termination 
condition of the GA is fulfilled. In (Hantscher & Diskus, 2009) the difference between the 
fitness of the best and the fitness of the worst is less than a threshold, of e.g. 2%. However, 
numerous simulations and measurements show that this strategy can break the GA off too 
early or hung up in an infinite loop. To take a constant number of iterations has proven 
more efficient. If the termination condition is not fulfilled the next step “selection” is 
applied. Before the recombination can be carried out, the required individuals have to be 
chosen here. The worst N/2 individuals are removed from the population and the 
remaining N/2 individuals are selected for the recombination. The remaining individuals 
form randomly N/4 sets of parents and each produce 2 children by a so called one-point 
crossover. This results again in a population of N individuals. The one-point crossover 
works as follows. Every set of parents is split after a random set of parameter into two parts. 
Then, all parameter beyond that cut are swapped within both parents resulting in two new 
individuals called children. This procedure is repeated with every set of parents. Figure 11 
shows the principle of the one-point crossover. 
 

1w
1d

• • •

• • •

• • •

• • •

2w 2d 3w 3d Gw Gd

1w
1d 2w 2d 3w 3d Gw Gd

1w
1d 2w 2d 3w 3d Gw Gd

1w
1d 2w 2d 3w 3d Gw Gd

 

Fig. 11. Operation of the one-point crossover method 

Finally, the mutation operation is applied onto the new population. The algorithm is 

guarded against getting stuck in a local minimum by changing the parameters gw  and gd  

slightly. To the delay gd a normally distributed random number with a mean of 0 is added 

and the weight gw is multiplied with a normally distributed random number with a mean 

of 1. Both standard deviations should be chosen adaptively. At the beginning of iterations a 

high standard deviation secures the genetic deviation, whereas a low standard deviation at 

the end causes a fine tuning of the solutions. Finally, the GA calculates again the fitness of 

each individual and starts another iteration until the determination condition is fulfilled 

(maximum number of iterations). The result is the individual with lowest  

mean square error with which the signal under test can be reconstructed in an 

approximated type.  
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The number of wavefronts G was set to 3 within these investigations which satisfied 
resolution assumptions. Even for signals with only one wavefront, the remaining two 
wavefronts were located around the actual one because of the fitness conditions. Hence, a 
simple filter which connects two nearby wavefronts was sufficient to complete the GA 
results. 
In the following a couple of results for both wavefront detection algorithms are shown. 
Figure 12 deals with object o5. The radargrams and additionally the detected wavefronts are 
depicted. The threshold for the correlation coefficient was set to 0.4 . 
 

 

Fig. 12. Detected wavefronts by both algorithms for object o5 

To demonstrate the quality of estimating the wavefront the 289th impulse response of figure 
12 was reconstructed by superpositioning the weighted and shifted wavefronts of both 
algorithms.  
 

 

Fig. 13. Reconstruction of a signal under test with both wavefront detection algorithms 

Obviously, and this is what was proven with numerous simulations and measurements 
with numerous objects, the GA performs more efficient under multi scattering conditions 
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than the correlation algorithm. However, if the object is most probably a simple one without 
edges, corners and high variations, then the correlation algorithm should be preferred 
because of time saving. But normally, a Radar image is performed for unknown objects and 
in this cases the GA provides more precise wavefront detections. 
 

 
 

 

Fig. 14. Examples of some radargrams including detected wavefronts with the GA 

4. Super resolution UWB imaging 

A large variety of imaging algorithms was designed, mostly based on migration techniques 
(Hantscher et al., 2006; Zetik et al., 2005), Synthetic Aperture techniques (McIntosh et al., 
2002) which are related close to the migrations, time-reversal algorithms (Liu et al., 2007) 
and other optimization algorithms (Massa et al., 2005). However, these algorithms are 
inappropriate for emergency scenarios because of the immense computational load 
excluding real-time conditions. Even though, these obtained images have inadequate image 
resolution and need further processing to extract an object contour. In contrary, it was 
shown that the inverse boundary scattering transform (IBST) which is given by 

 
( )

( ) ( )2
/     

1 /

w w w w w

w w w w

x x x z dz dx

z x z dz dx

⎧ = − ⋅⎪
⎨

= ⋅ −⎪⎩
 (13) 
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and IBST inspired algorithms are a simpler and more computationally efficient UWB 

imaging algorithm which determines the direction of Radar responses based on changes of 

the round-trip times (RTT) and thus performs a direct imaging. Here, x and z are the 

coordinates of the final radar image which contains the shape of the object. The 

variable wz represents the distance of the wavefront to the antenna position .wx Therefore, 

the IBST requires only the knowledge of the round-trip times of the wavefronts at every 

antenna position. Since the introduction of the original IBST in 2004 (Sakamoto & Sato, 2004) 

there has been significant research effort for improvements by extending it to 3-D, bistatic 

configurations and non-planar tracks (Helbig et al., 2008) for imaging the outer surface of a 

target and even for medium penetrating in-wall imaging (Janson et al., 2009).  
However, IBST utilizes the derivative of the received data and hence is sensitive to noise. 
Moreover it is hard to apply for complex objects with multi-scattering behaviour and 
discontinuous wavefronts, as it is the case for objects o5 – o12. 
In (Kidera et al., 2008) an imaging algorithm was proposed that utilizes fuzzy estimation for 
the direction of arrival (DOA). It extracts a direct mapping by combining the measured 
distance of the wavefront with its DOA. Moreover it realizes a stable imaging of even 
complex objects and requires neither preprocessing like clustering or connecting 
discontinuous wavefronts, nor any derivatives. The angular estimation of the DOA relies on 
the convergence of nearby wavefronts to the wavefront under test if the antenna positions of 
those nearby wavefronts move towards the regarding one. A membership function 

 

( ){ }
i i

2

i i

2
θ

- ,

2
( , , ) e ,

X Z

f X Z

θ θ

σθ
−

=  (14) 

is utilized where i i( , )X Zθ is defined as the angle between the intersection point of the 

regarded wavefront circle with the neighbouring wavefront of the ith antenna position and 

the x-axis. This is performed for all possible 0 359θ = ° °… and for i 1 N= … with N 

neighbouring wavefronts which intersect the wavefront circle of the regarded one. The 

angular estimation of the wavefront under test is calculated by 

  ( )
{ }

opt i i i i

2

i
2
x

-

2arg max , ( , , )e ,

X X

s X Z f X Z
θ

σθ θ
−

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (15) 

where ( )i i,s X Z is the signal amplitude of the ith antenna position and xσ and θσ are 

empirically determined constants. The crucial parameters of this algorithm 

are xσ and θσ which can be considered to be the standard deviation of the exponential 

terms having Gaussian curvature. Hence, xσ and θσ determine the width of this Gaussian 

curvature and therewith its focus. However, depending on the chosen value 

of xσ and θσ more or less influence of wavefronts of neighbouring antenna positions can be 

taken into account which results either in images of rather smooth and straight planes or, in 

contrast, highlight edges and corners. Figure 15 shows the case in which the edges are 

highlighted by the algorithm. 
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Fig. 15. Raw images determined by the imaging algorithm and the object contour  
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Fig. 16. Clustered and filtered images ready for the OR processing 
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4.1 Post processing of raw images 

In order to perform the OR the UWB image has to be adapted to the reference alphabet of 

chapter 2.1. Hence, the values of the imaging parameters xσ and θσ are chosen with a low 

value and a post processing in terms of filtering and clustering is applied. At first, a 

clustering is performed to merge image pixels of one edge or corner to one cluster. In case 

the image consists of K image pixels with Cartesian coordinate ( )j ,P x y for the j-th pixels, 

then every pixel for which 

  [ ]m n  1cm m=n= 1;KP P− ≤ ∀  (16) 

holds, are merged to one cluster. A filtering is performed by deleting clusters with less then 
4 pixels to avoid isolated image pixels. For every remaining cluster the centre of mass is 
calculated which is the representative of the corresponding edge or corner. Thus, the pixel at 
the centre of mass of every cluster is set a value of 1. The remaining pixels are set to 0. Both 
post processing steps are applied onto the raw images, the results are shown in figure 16. 

5. Object recognition algorithm 

5.1 Moment based feature 

The image moments are calculated by the invariant moment algorithm (Chen, 1993). Based 

on 5 central moments p,qμ 7 other moments iϕ can be determined which are invariant to 

translation, rotation and scaling. Here, shape parameters of the object are extracted based on 

the objects geometry and its distribution of pixels. The invariant moments are determined 

for every object both of the reference alphabet and the post processed images. 

5.2 Texture based feature 

The texture feature consists of polar Fourier descriptors (FD). The parameterization of the 

boundary line is not any more expressed by a path length p, instead the angle Φ between 

the radius from the center of mass to a point on the boundary and the x-axis is used. 

However, the straight segments between corners and edges have to be sampled equiangular 

for the recognition process with polar Fourier descriptors. Therefore the pixel with the value 

of 1 of each reference image are connected in ascending angular order. These connections 

are afterwards sampled equiangular resulting in a series of 360 values which equal 360 radii. 

The resulting polar signature with a one degree grid is used and a Fourier Transformation is 

applied onto the resulting N = 360 real valued series. The obtained coefficients are known as 

the polar FD of the object boundary. The resulting N wave number coefficients run from 0 to 

N-1, or respectively due to Nyquist from –N/2 to N/2-1. In contrast to classical FD the polar 

FD are translation and rotation invariant if the absolute values of the coefficients are 

regarded. However, the 0-th coefficients of the polar FD represent the mean radius. Hence, 

the polar FD can be made scale invariant by normalizing all coefficients with reference to the 

0-th one. In this work this is not done, because o1 and o2 both are squares just with different 

dimension and shall be treated as 2 different objects. 

5.3 Geometrical features 
Geometrical features are obtained both for the reference alphabet and the images of the 
object under test. The translation and rotation invariant geometrical features are: 
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• Total mass of the image 

• Eccentricity 

• Bounding circle 

• Form factor 
The total mass is the sum of the pixels belonging to the object. In case of binary images it is 
the sum of all pixel-values in the image. The eccentricity is based on 2nd order moments and 
ranges from 0 to 1. It is a measure for the circularity of an object. The bounding circle is 
defined as the circumference of the circle which is just large enough to contain all object 
pixels. The form factor is the relation between the bounding circle and the total mass of the 
image and is a measure for the compactness of the image. 

5.4 Combined object recognition 

Each image under test is compared against every 12 reference images by a MSE classifier 

applied to all six features. Hence, every object under test has six 1 by 12 error-

vectors i i =1 6e ∀
f … with MSE values for each of the 12 compared combinations and for all 

6 features. For reasons of expressing a recognition rate in probabilities all ie
f

 of every object 

are mapped to a probability vector  

 ( ) ( )
i

2

i
2

i 1 12   i 1 6e
0.1std

p j j

e j

e

⎛ ⎞⎜ ⎟
⎝ ⎠−

= ∀ = ∧ =
f … …

f

f
 (17) 

with std(.) as the standard deviation. To achieve a cumulative probability of 1 per object and 

per feature, each ip
f

is normalized to  

 i
norm,i 12

i
=1

( )
( ) 1 12  i 1 6.

( )
m

p j
p j j

p m

= ∀ = ∧ =

∑

ff … …
f

 (18) 

Then, after multiplicative combination of every feature with  

 
6

norm,i
i=1

arg max ( ) 1 12,
j

p j j
⎧ ⎫⎪ ⎪ ∀ =⎨ ⎬
⎪ ⎪⎩ ⎭
∏ f …  (19) 

a joint OR probability can perform a recognition of the jth reference object for the object 
under test. 

6. Results and conclusion 

In this chapter a robust UWB OR algorithm is presented which is based on super-resolution 
UWB imaging. Geometrical features are extracted and used in a joint maximum probability 
algorithm. After combining geometrical features with the moment invariant algorithm and 
the Fourier descriptors, both OR algorithms can recognize all 12 objects correctly. In every 
case the probability for the 1st failure (or the 2nd probable object) was significantly smaller 
than the correct decision. 
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