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1. Introduction 

The emergence of new technologies makes it easy to generate information in visual forms, 

leading everyday to an increasing number of generated digital images. At the same time, the 

rapid advances in imaging technologies and the widespread availability of Internet access 

motivate data browsing into these data bases. For image description and retrieval, manual 

annotation of these images becomes impractical and inefficient. Image retrieval is based on 

observation of an ordering of match scores obtained by searching through a database. The 

key challenges in building a retrieval system are the choice of attributes, their 

representations, query specification methods, match metrics and indexing strategies.  

A large number of retrieval methods using shape descriptors has been described in literature. 

Compared to other features, for example, color or texture, object shape is unique. It enables us 

to recognize an object without further information. However, since shapes are 2D images that 

are projections of 3D objects, the silhouettes may change from one viewpoint to another with 

respect to objects and non-rigid object motion (e.g., walking people or flying bird) and 

segmentation errors caused by lighting variations, partial occultation, scaling, boundary 

distortion and corruption by noise are unavoidable. As we know, while computers can easily 

distinguish slight differences between similar objects, it is very difficult to estimate the 

similarity between two objects as perceived by human beings, even when considering very 

simple objects. This is because human perception is not a mere interpretation of a retinal patch, 

but an active interaction between the retinal patch and a representation of our knowledge 

about objects. Thus the problem is complicated by the fact that a shape does not have a 

mathematical definition that exactly matches what the user feels as a shape. Solutions 

proposed in the literature use various approaches and emphasize different aspects of the 

problem. The choice of a particular representation scheme is usually driven by the need to 

cope with requirements such as robustness against noise, stability with respect to minor 

distortions, and invariance to common geometrical transforms or tolerance to occultation, etc. 

For general shape representation, a recent review is given in [1] [2]. 

In this chapter, a shape descriptor based on chord context is proposed. The basic idea of 

chord context is to observe the lengths of all parallel and equidistant chords in a shape, and 
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to build their histogram in each direction. The sequence of vector features extracted forms 

the feature matrix for a shape descriptor. Because all the viewpoint directions, considered 

with a certain angle interval, are chosen to produce the chord length histogram, this 

representation is unlike conventional shape representation schemes, where a shape 

descriptor has to correspond to key points such as maxima of curvature or inflection points, 

for example, Smooth Curve Decomposition [3], Convex Hull [4], Triangle-area 

representation (TAR) [5] and Curvature Scale Space (CSS) [6][7] etc. The proposed method 

needs no special landmarks or key points. There is also no need for certain axes of a shape. 

The proposed descriptor scheme is able to capture the internal details, specifically holes, in 

addition to capturing the external boundary details. A similarity measure is defined over 

chord context according to its characteristics and it confirms efficiency for shape retrieval 

from a database. This method is shown to be invariant under image transformations, 

rotations, scaling and robust to non-rigid deformations, occultation and boundary 

perturbations by noise thus it is well-adapted to shape description and retrieval. In addition, 

the size of the descriptor attribute is not very great; it has low-computational complexity 

compared to other similar methods.  

2. Chord context 

This section details the proposed method, chord context, for extracting attributes from the 
contour or silhouette of a shape. It then proposes a method of measuring similarities 
between two shapes. 

2.1 Feature extraction 

Chord context analysis corresponds to finding the distribution of all chord lengths in 
different directions in a given shape. For discrete binary image data, we consider each object 
point as one and the background as zero. In the shape recognition field, it is common to 
consider the case where the general function f(x, y) is 

1 if ( , )
( , )

0 ,

f x y D
f x y

otherwise

∈⎧
= ⎨
⎩

 

where D is the domain of the binary shape. 
In each direction, we can find all the chords in the shape. Fig. 1 shows an example of chords 

in direction θ. 

A set of lines T(ρ,θ) is defined by 

cos( / 2) sin( / 2)x yρ θ π θ π= − + − , θ∈[0, π], and ρ∈(-∞, ∞). 

The chords are defined by the parts of these lines within the domain of the binary shape. So a 
shape can be represented by a discrete set of chords sampled from its silhouette. Considering 

different angles θ, the number and length of chords obtained in different directions may not be 
the same, except in the case of a circle. One way to capture this information is to use the 
distribution of chord lengths in the same direction in a spatial histogram.  

Concretely, let us assume that the set of chords in directions θi are represented by 

{ },  [1, ]i n iC c n N= ∈ , where Ni is the number of the chords in direction θi. Let L(ci,n) be the 

length of chord ci,n. So we can compute a histogram hi in direction θi by 
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 { },  , max# ( ) ( )    [1,  ]l
i i n ih L c bin l l L= ∈ ∈  (1) 

where Li,max is the longest chord in direction θi. 
 

 

Fig. 1. Representation of chords in direction θ  with the interval Δρ. The bold lines are the 
chords of the shape. 

In order to capture the details of a shape, the interval Δρ of ρ, i.e. the distance between two 

parallel chords, should not be great. In practice, Δρ=Lmax/(50~100), where Lmax is the length of 

the longest axis of the shape. The histogram hi of Fig. 1 in direction θi is shown in Fig. 2. 
 

 

Fig. 2. Histogram of chord lengths in direction θi for the shape shown in Fig. 1 

An excessive number of too short chords is counted when line T is close to a tangent along 
the edge of the shape (see Fig. 3). This is because a scraggy edge is produced by the minor 
disturbances resulting from digitization noise or normalization of the image to a certain size. 
In fact, these uncertain short chords are harmful to our shape descriptor, so we remove these 
too short chords directly: this could be seen as a low-pass filtering of the shape contour. 

Empirical tests show that, if we normalize a shape in an image with 128×128 pixels, i.e. the 
largest size of the shape is 128 pixels, and the shorter size transforms in proportion, then we 
can consider the set of chords whose length is shorter than 4 to be too short chords. So they 
should be discarded. In Fig. 2, the first 3 bins, plotted in gray, should be removed. 
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Fig. 3. Illustration of producing very short chords 

With θ increasing from 0 to 179 degrees, all the chords in different directions in the 
silhouette can be recorded. If we divide the orientation range [0, 179] into D’, then we can 

obtain D’ histograms hi, i∈[0, D’-1]. They can form a matrix M arranged by a set of 
histograms with column vector hi according to the order of angles: 

[ ]M −= 0 1 D' 1h ,h , hA  

The matrix M of Fig. 1 is shown in Fig. 4.  
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Fig. 4. The matrix M of the shape in Fig. 1 with all orientations.  

The matrix element is the number of equal-length chords whose direction and length are 
given by the value of abscissa and y-axis, respectively. The abscissa is the orientation angle 

θ, and the y-axis is the length of the chords. The value in each row of the matrix M is the 
number of the chords with same length in different directions; and each column is the chord 
length histogram in the same direction. 
Due to its very great size, it is unreasonable to use this matrix directly as a shape attribute. 

For example, in an image with 128×128 pixels, the longest possible chord in the shape is 

128 2 181× ≈ . So, if D’=90, the size of the matrix will be 181×90=16290. Clearly, it is not 

appropriate as a direct feature of a shape.  
In order to reduce the size of the matrix M and, at the same time, make the extracted feature 
invariant to scale transforms, we normalize this matrix M as follows: 
First, find the maximum of non-zero bin L’ for all the histograms in the matrix M. In Fig. 4 
for example, L’max=112. Then remove all the bins that are greater than L’max, and form a 

matrix M’ with dimension L’max ×D’: 
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[ ]' ' ' 'M −= 0 1 D' 1h ,h , hA  

And then, for the next normalization, we expand the matrix M’ to matrix M’’, using a wrap-
around effect, so that to eliminate border effects: 

[ ]''M − − −= D' 2 D' 1 0 1 D' 1 0 1h' ,h' ,h' ,h' , h' ,h' ,h'A  

Finally, the matrix M’’ is subsampled down to a new matrix F with the dimension L×D, after 

a 4×4 bicubic interpolation algorithm. For convenience, D is even. The bicubic interpolation 
algorithm means that the interpolated surface is continuous everywhere and also 
continuous in the first derivative in all directions. Thus, the rate of change in the value is 

continuous. Each value of matrix F contains a synthesis of its 4×4 neighbouring point values. 
The feature matrix F can be represented by:  

[ ]F −= 0 1 D 1f , f , fA  

where if , i∈[0,D-1], is a L dimensions column vector given by ,0 ,1 , 1[ , , ]Ti i i Lf f f −=if A .  

The feature matrix F is the attribute of a shape. We call this feature matrix F of a shape the 
"chord context" descriptor. 
For L=30 and D=36, the chord context of Fig. 1 is shown in Fig. 5. 
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Fig. 5. Chord context of Fig. 1 with 30 rows and 36 columns. 

The experiment in section 3 shows that chord context as the feature of a shape can retain the 
visual invariance to some extent.   

2.2 Similarity measure  

In determining the correspondence between shapes, we aim to meet the distance between 
two feature matrices. Such matching combines two criteria: one is the calculation of the 
minimum value of the distances between histograms of two feature matrices, e.i. the 
Character Matrix Distance (CMD), and the other is a comparison of the Perpendicular Chord 
Length Eccentricity (PCLE). 
In the first criterion, we calculate all the distances between the query feature matrix and the 

model feature matrix while shifting its histograms one by one. Similar shapes have similar 
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histograms in a same direction, and the rearranged order of these histograms is also similar. 

To calculate the distance between two attributes of shapes, we first calculate the distance 

between each corresponding histogram, according to their arrangement orders, and, then 

calculate the sum of all these distance values. Regarding rotation invariance, we shift the 

model feature matrix by one histogram, i.e. change the direction used to obtain the 

histograms, and repeat the same step to calculate the sum of all the values of these distances 

between the two feature matrices. 

We assume that the query feature matrix is FQ and the model feature matrix is FM. FQ and FM 
are given by 

[ ]qF −= 0 1 D 1fq , fq , fqA  and [ ]mF −= 0 1 D 1fm ,fm , fmA  

According to subsection 2.1, fαi, where α is q or m, i∈[0, D-1], is an L dimensions column 

vector ,0 ,1 , 1[ , , ]Ti i i Lf f fα α α −=ifα A . 

So the set of similarity distance is given by 

 
1

,
0

( ) ( ),   mod( , )
q m

D

F F
i

DistF n DistH j i n D
−

=
= = +∑ i jfq , fm  (2) 

where n∈[0, D-1] is the number of shifts applied to each histogram in the model feature 

matrix. The formula shows that the set of similarity distances is the sum of the distances 

DistH between the two corresponding normalized histograms in two feature matrices.  

To quantify the similarity between two histograms, there are many methods being reported: 

Minkowski-form, Kullback-Leibler Divergence, Jeffrey Divergence, Quadratic-form, Earth 

Mover’s Distance, χ2 statistics, Hausdorff distance, etc. Because of the properties of the chord 

context histogram:  

• they have the same number of bins. 

• the value in each bin has great variances; some of values are even zeros, cf. Fig. 2. 
We compare χ2 statistics distance 

 
( )

2

2
1

, ,

, ,0

1
( )

2 ( )

L
i k j k

i k j kk

fq fm
DistH

L fq fmχ

−

=

−
=

+∑i jfq , fm  (3) 

 and our proposed distance formula defined here by 

 

[ ], ,

1
, ,

, ,0

0, 0  0, 1, 1

( ) 1
,

max( , )

i k i k

L
i k j k

i k j kk

fq and fm k L

fq fmDistH
otherwise

L fq fm

−

=

⎧ = = ∀ ∈ −
⎪⎪ −= ⎨
⎪
⎪⎩
∑i jfq , fm  (4) 

on the database of Kimia silhouettes with 216 shapes [8] (see section 3.4). For convenience, 
we consider the minimum value of the distance set as the similarity distance and call it the 
Character Matrix Distance (CMD).  

 
1

, ,
0

min ( )
q m q m

D

F F F F
n

CMD DistF n
−

=
=  (5) 
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The comparison result of precision vs. recall is shown in Fig. 6. Precision is the ratio of the 

number of relevant shapes retrieved to the total number of retrieved shapes, while recall is 

the ratio of the number of relevant shapes retrieved to the total number of relevant shapes in 

the database. 
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Fig. 6. The precision-recall diagrams for indexing into the database of Kimia silhouettes with 
216 shapes.  

It is clear from Fig. 6, that our proposed distance formula is better than χ2 statistics on this 

similarity measure.  

In the second criterion, we propose a new concept, the Perpendicular Chord Length Eccentricity 

(PCLE) as following: 

 
( )

( )

  [0, 1]
2( )

    [ , 1]
2

i i

i i

D
i

PCLE i
D

i D

+

−

⎧ − ∈ −⎪⎪= ⎨
⎪ − ∈ −
⎪⎩

D / 2

D / 2

f f

f f

 (6) 

Where • is the norm; ,  [0, 1]i D∈ −if  (D is even) are vectors of the feature matrix. So (6) is 

the Euclidean distance between any two histograms of perpendicular directions of chord 

lengths. Since the norm is symmetric, we have 

 ( ) ( ),     [0,  1]
2 2

D D
PCLE i PCLE i i+ = ∈ −  (7) 

Clearly, PCLE represents the perpendicular directions chord feature in a shape. To compare 

the query’s PCLE Pq and the model’s PCLE Pm, we define the distance between Pq and Pm as 

follows: 

 
1

,
0

( ) ( )
_ ( ) ,   mod( , )
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q m
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Fig. 7. Illustration of retrieval results from the ‘Quadruped’ category in Kimia silhouettes set 
of 99 shapes. The 11 quadruped shape queries in the dataset are shown in the first column. 
The 10 nearest retrieved shapes for each query are shown in order (from small similarity 
distance to large similarity distance) in the 3rd column by their similarity metric CMD and 
SD.  The next five matches are shown in the 4th column for completeness. 
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As in (2), n is the number of shifts applied to each histogram in the PCLE. 
Intuitively, we assume that, in general, if shape S1 is more similar to shape S2 than shape S3, 

then the smallest value of 
1 2

,_
S SP PD PCLE is less than the smallest value of

1 3
,_

S SP PD PCLE .  

So we can use D_PCLE to adjust the similarity distance of the Character Matrix Distance 
(CMD) to improve retrieval precision and recall. The combined similarity metric of shape 
Query and shape Model is computed using a weighted sum: 

 
1

, , ,
0

(1 )min( _ ( ))
q m q m

D

Q M F F P P
n

SD CMD D PCLE nα α
−

=
= + −  (9) 

where α∈[0, 1].  

Let us explain this hypothesis by the following experiments, where we have used α=0.85. 
First let us look at the experiment running on the Kimia silhouettes set of 99 shapes [8]. Fig. 
7 shows the two retrieval results from querying the ‘Quadruped’ category. One shows the 
retrieval results only with the similarity distance of Character Matrix Distance (CMD) and the 
other with the combined similarity metric weighted sum SD. As there are 11 shapes in the 
‘Quadruped’ category, each shape is matched against all the other shapes in the database. 
As there are 11 shapes in each category, up to 10 nearest neighbors can be retrieved from the 
same category. We count in the nth (n from 1 to 15) nearest neighbors the number of times 
that the test image is correctly classified. The best possible result is 110 matches (except the 
query itself) in all 10 nearest matches. With the similarity metric CMD, we found 63 matches  
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Fig. 8. The precision-recall diagrams for indexing into the database of Kimia silhouettes with 
(a) 99 shapes and (b) 216 shapes. 
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in the first ten retrieved shapes, recall is 63/110=57.3%, and there were 70 matches in the 
first fifteen retrieved shapes. Whereas with the similarity metric SD, we found 80 matches in 
the first ten retrieved shapes, recall is 80/110=72.7%, and there were 85 matches in the first 
fifteen retrieved shapes. The result shows that the recall rate in the first ten retrieved shapes 
was improved by 15.4 percentage points for the ‘Quadruped’ cluster when we used the 
similarity metric SD instead of CMD. It also shows a good performance rate when compared 
with [9], [10] and [11] which have the same retrieval results of 51 matches in the first ten 
retrieved shapes.  

Let us look at the statistical results. We compare the retrieval results using Character Matrix 
Distance (CMD) to the retrieval results when using the similarity metric SD by calculating 
precision vs. recall in the Kimia silhouette datasets of 99 and 216 shapes [8]. The results are 
shown in Fig. 8. It is evident that similarity metric SD outperforms CMD. 

3. Experimental evaluations of chord context matching 

In this section, we present the results obtained during a more realistic shape recognition 
process in presence of different possible visual deformations to study the comparative 
performances of the proposed algorithm. We show that the chord context matching is 
effective in the presence of commonly occurring visual transformations like scale changes, 
boundary perturbations, viewpoint variation, non-rigid transform and partial occultation. 
We also compare its results with ten other well-known algorithms. All the experiments are 
conducted on the standard database: MPEG-7 CE-shape-1 database (1400 shapes) [12], 
Columbia University Image Library Coil-100 database (7200 images) [13], and 3 databases of 
Kimia silhouettes [8]. In all the experiments, the feature matrix was normalized to 30 bins 

and 36 directions; the similarity measure uses formula (9) with α=0.85 : these values are 
found to be the most efficient, during various experiments. 

3.1 Scale and rotation transforms  

Scale and rotation transforms are the important intuitive correspondences for a variety of 
shapes. They can be regarded as a necessary condition that every shape descriptor should 
satisfy. In order to study retrieval performance in terms of scale changes and image 
rotations, we use the test-sets Part A, from CE-Shape-1 database that was defined during the 
standardization process of MPEG-7, consisting of 1400 shapes semantically classified into 70 
classes [12]. 
For robustness to scaling during the test, i.e. Part A-1, we created a database in which there 
were 70 basic shapes taken from the 70 different classes and 5 shapes derived from each 
basic shape by scaling digital images with factors 2, 0.3, 0.25, 0.2, and 0.1. Thus in the 
database, there were 420 shapes. Each of the 420 images was used as a query image. A 
number of correct matches were computed in the top 6 retrieved images. Thus, the best 
possible result was 2520 matches. 
For robustness to rotation during the test, i.e. Part A-2, we again created a database including 
420 shapes. The 70 basic shapes were the same as in part A-1 and 5 shapes were derived from 
each basic shape by rotation with angles: 9, 36, 45, 90 and 150 degrees. As in Part A-1, each of 
the 420 images was used as a query image. The best result was 2520 matches.  
The similarity rate in each experiment was calculated by taking the ratio of correct matches 
to the maximum number of possible matches. Table 1 indicates the similarity rate of 
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comparison of the chord context descriptor with the reported results of certain studies. Note 
that the proposed descriptor has the best performance in all the experiments. 
 

Data Set 
Tangent Space

[14] 
Curvature Scale 

Space [15] 
Zernike 

Moments [16]
Wavelet 

[17] 
BAS 
[18] 

Chord 
context 

Part A-1 88.65 89.76 92.54 88.04 90.87 99.37 

Part A-2 100 99.37 99.60 97.46 100 100 

Part A 94.33 94.57 96.07 92.75 95.44 99.69 

Table 1. Comparison of the Retrieval Results of Different Methods in the MPEG-7 CE-Shape-
1 Part A Test 

The results show that chord context is very invariant to scale and rotation transforms. 
Reviewing the extracted attribute algorithm in section 2, we are not surprised by the almost 
perfect results. The attribute matrix is obtained by the statistic of all the chord lengths of a 
shape in all directions. The rotation of the shape affects the attribute matrix only when 
shifting the chord length histograms. In the similarity measure, we have considered this 
point and compared the two attribute matrices by shifting the histograms of either matrix. 
The rotation of plane shapes does not affect the retrieval result. Since we normalize all the 
images to a certain size before extracting their features, the scale transform of a shape does 
not significantly affect the retrieval result. 

3.2 Boundary perturbations by noise  
The query shape can be perturbed by different noises. It may simply result from 
digitization. As a reminder, to fight perturbations resulting from shape digitization, and in 
order to alleviate the influence of boundary perturbation, we have removed the very short 
chords from attribute matrices. To evaluate the performance of chord context when 
boundary perturbations are present, we use noisy images with different noise powers as 
queries to retrieve the relevant image in a database. We generated a 20 sub-database test-set 
based on MPEG-7 CE-Shape-1. In each sub-database, there were 70 shapes from the 70 
different classes according to their orders in the database. The query shapes were all 70 
shapes in each sub-database subjected to noise with 4 different noise powers. Thus, the best 
possible result in each sub-database was 70 matches for each noise power. Suppose the 
average distance of all the points on the edge of a shape to its centroid is D. We then define 
the signal-to-noise ratio (SNR) as follow: 

D
SNR 20lg (dB)

r
=  

where r is the largest deviation of the points on the edge.  Fig. 9 shows an example of an 
original shape and its contaminated shapes produced by random uniform noise with SNR 
equal to 30dB, 25dB, 20dB and 15dB.  
Table 2 shows the average similarity rates of the 20 sub-databases at 4 SNRs. 
 

SNR(dB) 30 25 20 15 

Average Similarity Rate (%) 99.9 99.8 99.1 82.9 

Table 2. Average Similarity Rates of the 20 Sub-Databases at SNR of 30dB, 25dB, 20dB and 
15dB 
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Fig. 9. Examples of noisy shapes from a model in MPEG-7 CE-Shape-1. From left to right, 
the original and the resulting noised shapes at an SNR of 30dB, 25dB, 20dB and 15dB. 

From the results in Table 2, we notice that using noise to impair boundaries does not 
produce significant differences between similar shapes. As the chord context descriptor 
utilizes the edge as well as the region feature of a shape, it can bear boundary disturbances 
due to noise to certain extent. 

3.3 Partial occultation 

In general, a global descriptor is not robust when a shape is partially occulted. Since the 
chord context descriptor has the statistical information for a shape, this drawback is 
alleviated to some extent. To evaluate robustness to partial occultation we ran experiments 
using the same sub-databases as mentioned in subsection 3.2. We occulted the shapes, 
applying 4 different percentages of occultation from the left, Fig. 10(a), or right, Fig. 10(b), 
respectively to them, in raster-scan order. The occultation percentages were 5%, 10%, 15% 
and 20%. Each occulted shape is retrieved in its sub-database as a query. Thus, the best 
result in each sub-database is 70 matches for one occultation. 
 

  

                                                (a)     (b) 

Fig. 10. Examples of occulted shapes from a model in MPEG-7 CE-Shape-1. (a) From left-
occulted objects; they are occulted by 5%, 10%, 15% and 20%. (b) From right-occulted 
objects; they are occulted by 5%, 10%, 15% and 20%. 

Table 3 shows the average similarity rate of the 20 sub-databases on the 4 partial examples 
of occultation. 
 

Occultation (%) 5 10 15 20 

Left 99.5 91.3 78.6 58.7 

Right 98.9 94.1 80.7 64.6 Average Similarity Rate (%) 

Average 99.2 92.7 79.7 61.7 

Table 3. Average similarity rates of the 20 sub-databases at shape occultation of 5%, 10%, 
15% and 20% 

It is clear from Table 3, that small occultations do not affect chord context significantly. 
However, the problem of significant occultation remains to be explored. The results show 
that chord context is robust to minor occultation. 
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3.4 Similarity-based evaluation 

The performance in similarity-based retrieval is perhaps the most important of all tests 
performed. In order to demonstrate the performance of chord context when deformed parts 
are present, we turn to three shape databases. All three databases were provided by Kimia’s 
group [8] [19].  
The first database is Kimia’s data set 1 which contains 25 images from 6 categories (Fig. 11). 
 

 

Fig. 11. Kimia’s data set 1: 25 instances from six categories. Each row shows instances of a 
different object category. 

This property has been tested by shape contexts [20], Sharvit et. al [19], Gdalyahu et. al [21] 
and Ling et. al [22]. The retrieval results are summarized as the number of first, second, and 
third closest matches that fall into the correct category. The results are listed in Table 4. It 
shows that the proposed method outperforms the first 3 reported methods. For the fourth 
approach, chord context is slightly better than it in the Top 2 closest matches. 
 

Method Top 1 Top 2 Top 3

Sharvit et. al [19] 23/25 21/25 20/25

Gdalyahu et. al [21] 25/25 21/25 19/25

Belongie et. al [20] 25/25 24/25 22/25

Ling et. al [22] 25/25 24/25 25/25

Chord context 25/25 25/25 23/25 

Table 4. Comparison of the Retrieval Results of Different Methods on the Kimia Data Set 1 
(Fig. 11) 

The second database contains 99 images from nine categories with 11 shapes in each 
category [8]. It has been tested by D.S. Guru [10], Shape contexts [20], Bernier [9] and 
Tabbone [11]. Each shape was used as a query to which all other shapes were compared and 
thus 9801 shape comparisons were made. Ideal results would be that the 10 closest matches 
(except the query itself) belong to the same category. The results are summarized by 
precision-recall diagrams in Fig. 12. The proposed method shows better precision and recall 
rate than the other methods.  
The third database contains 216 images from 18 categories with 12 shapes in each category 
[8]. All the shapes were selected from the MPEG-7 test database [8]. It has been tested by 
shape contexts [20]. As in the case of second database, a comparison of the results of our 
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Fig. 12. Comparison of precision and recall rates of different methods on the Kimia Data Set 
of 99 shapes. 

approach to the shape context method is given in Fig. 13. As we see in Fig. 13, the two 

precision/recall curves cross. This means that the shape contexts [20] method performs 

better for small answer sets, while our proposed method performs better for larger answer 

sets. According to [24], the method achieving highest precision and recall for large answer 

sets is considered to be the best one, so the proposed method is better than shape contexts' 

method. 
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Fig. 13. Comparison of precision and recall rates of different methods on the Kimia Data Set 
of 216 shapes. 

From the above results, it appears that chord context produces outstanding performance in 
the presence of non-rigid deformations. 

3.5 Viewpoint variations 

For a better evaluation in the realistic context of image retrieval with industrial vision where 

the picture of an object from real world is observed from different viewpoints, we have 

performed tests on shapes extracted directly from these pictures. To test the retrieval 

performance of the proposed method in the presence of viewpoint changes, the Columbia 

University Image Library Coil-100 3D object dataset is used. This dataset contains 7200 color 

images of 100 household objects and toys. Each object was placed on a turntable and an 

image was taken for every 5 degrees of rotation, resulting in 72 images per object. We 

converted the color images to grayscale, and then into shapes by using the same gray-value 
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threshold settings for the whole set (e.g., Fig. 14). Since the shapes are projections of 3D 

objects by a simple gray-value threshold, not only may their silhouettes change from one 

viewpoint to another; the lighting and object textures may also differ. 

 
 

 
 

  

Fig. 14. 6 images taken as an example from the COIL-100 3D object dataset. The first row 
shows the original images and the second row shows their corresponding silhouettes as 
produced by gray-value thresholding. In 1st and 2nd columns, the duck’s silhouettes change 
significantly due to a change of viewpoint.  In the 3rd and 4th columns, the red pepper’s 
silhouettes change significantly due to a difference in lighting. In 5th and 6th columns, the 
tin’s silhouettes change significantly due to a change in textures. 
 

In the following subsections we present two experiments showing the performance of the 

proposed method on these test sets. First we compare the new approach to the shape 

contexts [23]. We converted the color images into shapes, then selected 3 images per object 

with a 15° viewpoint interval, for example 0°, 15° and 30°. To measure performance, we 

counted the number of times the closest match was a rotated view of the same object. Our 

result was 285/300. The result reported in [23] is 280/300.  

In the second experiment, we generated 7 sub-databases in which we selected 5 to 17 

consecutive viewpoints per object for a total from 500 to 1700 images respectively (cf. Table 

5). We use the middle view images in a sub-dataset as a query to retrieve in them. For each 

query, the number of the best possible matches is 5 to 17 in the 7 sub-databases, respectively. 

The results are shown in Table 5 and Fig. 15. 

 

 
Models in Sub-database 

(view angle) 

Query 
(view 
angle) 

The best 
retrieved 
number 

Retrieved 
results 

Retrieved 
precision 

Sub-database1 0, 5, 10, 15, 20 10 500 490 98.0% 

Sub-database2 0, 5, 10, 15, 20, 25, 30 15 700 679 97.0% 

Sub-database3 0, 5, 10, 15, 20, 25, 30, 35, 40 20 900 827 91.9% 

Sub-database4 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 25 1100 958 87.1% 

Sub-database5 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,55, 60 30 1300 1062 81.7% 

Sub-database6 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,55, 60, 65, 70 35 1500 1149 76.6% 

Sub-database7 0,5, 10, 15, 20, 25, 30, 35, 40, 45, 50,55,60,65, 70,75,80 40 1700 1211 71.2% 

Table 5. The Components of 7 Sub-Databases with Different Viewpoints on Coil-100 3D 
Object Dataset and Their Retrieval Results 

www.intechopen.com



 Object Recognition 

 

80 

0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n Sub-database1

Sub-database2

Sub-database3

Sub-database4

Sub-database5

Sub-database6

Sub-database7

 

Fig. 15. Precision and recall rates in the 7 sub-databases on Coil-100 3D object dataset. 

These results are very encouraging, since they indicate that we can perform satisfactory 
retrieval with mean average precision of more than 91% for view angle differences of under 
20°: see the results of Sub-database1-3. For viewpoint difference of less than 40°, the 
retrieved precision is more than 71%. Note that this is done exclusively on shape images 
(without using any intensity information). Clearly, if other information and a more 
specialized feature set were used, even higher precision scores could be achieved. 

4. Conclusions  

We have presented a new approach which is simple and easy to apply in the context of 
shape recognition. This study has two major contributions: (1) defining a new algorithm 
which can capture the main feature of a shape, from either its contour or its region; (2) 
proposing an assistant similarity measure algorithm Perpendicular Chord Length Eccentricity 
(PCLE) which can help to improve retrieval precision and recall to some extent. 
In various experiments we have demonstrated the invariance of the proposed approach to 
several common image transforms, such as scaling, rotation, boundary perturbations, minor 
partial occultation, non-rigid deformations and 3D rotations of real-world objects.   
The particular strengths of the proposed descriptor for retrieving images are summarized in 
the following points: 

• Flexibility: Chord context can handle various types of 2D queries, even if it has holes or 
separates itself into several parts. It is robust to noise and minor occultation. So we can 
use this simple method to segment objects from images. 

• Accuracy: the proposed method has the advantage of achieving higher retrieval 
accuracy than the other methods in the literature based on MPEG-7 CE-1 database, Coil-
100 database and the Kimia silhouettes datasets retrieval test. 

Currently we have not considered the effect of an affine transform of a shape. The chord 
context method has no special operations that resist affine transforms. We consider this to be 
the main weakness of this approach and, to achieve more accuracy and have more 
applications; further work will be carried out on invariance to affine transforms.  
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