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1. Introduction

Recent years have witnessed an increasing interest in the coordination of distributed
multi-agent systems. In this area, one of the most fundamental problems is the consensus
problem, which has broad connections with a wide range of disciplines including statistical
decision theory [1, 2], distributed computing [3, 4], biology [5, 6], and cooperation of
multi-agent systems[7, 8].
Consensus roughly speaking is characterized as a collection of agents with locally sensed
information or limited inter-component communications seeking to reach a common value.
A basic consensus protocol in the context of multi-agent systems usually consists of a
information exchange network, in which each agent updates its state by forming a convex
combination of the states of its neighbors and itself. Some sufficient consensus conditions
for the heading angles of a group of agents modeled by Vicsek et al. [5] are presented in
[9, 10]. Some less restrictive conditions were obtained in [12, 13], where consensus is ensured
if there exists a spanning tree in the union of the information exchange networks. Many
other generalizations have been devoted to different types of agent dynamics and different
topologies of information exchange networks, such as nonlinear consensus protocol [14],
consensus of agents modeled by double integrators [15], consensus algorithm with cohesion,
separation and alignment rules [16, 17], consensus over random networks [18, 19], consensus
of networked agents with time-delays [20, 21].
Most of the previously mentioned references used noise-free state iteration, that is they
assume the information exchange between agents is accurate. This assumption would
obviously be inappropriate in real distributed systems, since there are various kinds of noises
during the sending, transmission and receiving of information. Consensus of distributed
systems with noise disturbance is an important challenge, and now there are only a few
results. The average-consensus control with fixed topology and additive input noises is
investigated in [22], where the long term consensus error is minimized by a least mean
square optimization method. [23] considered the consensus protocol with fixed topology
and independent identically distributed noises, and used stochastic Lyapunov functions to
establish mean square consensus. The extension to the case of time-varying topologies is
carried in [24], where some sufficient conditions are given for mean square average-consensus
and almost sure consensus. [11] further investigated decentralized adaptive synchronization
for a stochastic model with uncertainties. Roughly speaking, the consensus algorithms
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in these researches are essentially distributed stochastic approximation type consensus
protocols, and the consensus gains are essential for the consensus properties.
In this paper, we investigate the consensus problem of multi agent systems with bounded
disturbances. The information exchange topology is time-varying, and the consensus protocol
has a general form

x(t + 1) = P(t)x(t) + w(t + 1), t = 1, 2, · · · ,

where x(t) ∈ Rn is the information state, w(t) ∈ Rn is the noise disturbance, and {P(t)}
is a sequence of stochastic matrices. Here, the noise is bounded, and does not require
the zero-mean property needed by the previous stochastic approximation type consensus
protocols. For the system, it is expected that small disturbance of {w(t)} would give rise
to small discrepancy of the states of agents from each other, namely robust consensus in this
paper.
We first investigate the case that the information exchange between the agents is bidirectional.
From the well-known relationship between the external stability and the internal stability, we
know that the exponential stability of the corresponding homogeneous dynamical equation
will play a crucial role. Based on this observation, we establish the equivalence among the
robust consensus, the positivity of the second smallest eigenvalue of the weighted Laplacian
matrix, and the connectivity of the union graph, where several basic results on stability of
time-varying systems [28], product of nonnegative stochastic matrices[27, 31, 32], algebraic
graph theory [30] and Markov chains [29] are useful.
Since there are a variety of practical applications where information only flows in one
direction, the case of interaction topologies with directed information exchanges is also
studied. In this case, we show that the robust consensus can be achieved under dynamically
changing interaction topology if and only if the union of the collection of interaction graphs
across some time intervals has a spanning tree frequently enough.
The paper is partially based on the results in [25, 26]. Some new insights and simulations are
added to illustrate the theoretical results. Section 2 recalls some basic notions and motivates
the problem to be investigated; the case of undirected information exchange topology is
studied in Section 3 while the directional case is studied in Section 4; Some simulation results
are given in Section 5; and a brief conclusion is made in Section 6.

2. Preliminaries and problem statement

2.1 Preliminaries

The information exchange between agents can always be represented by directed/undirected
graphs. A directed graph G = (V, E) consists of a vertex set V and an edge set E = {(i, j)},
where V = {1, 2, · · · , n} is composed of the indices of all agents, and E ⊆ V × V is a set of
ordered pairs of vertexes. As a comparison, an undirected graph means the pairs of vertexes
in the edge set are unordered. If there is a directed edge from vertex j to i, then j is defined
as a parent vertex and i is a child vertex, which means that i can receive the information from
agent j. The neighbors of agent i are denoted by Ni = {j ⊆ V : (j, i) ∈ E}. A path that connects
i and j in a directed/ undirected graph G is a sequence of distinct vertexes i0, i1, i2, · · · im,
where i0 = i, im = j and (il , il+1) ∈ E, 0 ≤ l ≤ m − 1. A graph is called connected (or strongly
connected for directed graph) if for every pair of distinct vertexes there is a path connecting
them. A digraph is said to have a spanning tree if and only if there exist a vertex i ∈ V, called
root, such that there is a path from i to any other vertex. The union of a collection of graphs
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{G1, G2, · · · , Gh} with the same vertex set V, is a graph G with vertex set V and edge set
equaling the union of the edge sets of those graphs.
The adjacency matrix A = [aij] of a weighted graph G is defined as aij > 0 if (j, i) ∈ E. The
adjacency matrix of a weighted undirected graph is defined analogously except that aji =
aji, ∀i �= j, since the edge is unordered and the same for its two adjacent vertexes. The degree
matrix D = [dij] is a diagonal matrix with dii = ∑

n
j=1 aij. The Laplacian matrix L = [lij] is

defined as L = D − A, which implies that 0 is one of its eigenvalues. Moreover, 0 is a simple
eigenvalue if the graph is strongly connected [31]. For an undirected graph, L is symmetric
positive semi-definite. For a positive semi-definite matrix B, we arrange all its eigenvalues in
a nondecreasing order: 0 ≤ λ0(B) ≤ λ1(B) ≤ · · · ≤ λn−1(B). In some cases, we are interested
in the second smallest eigenvalue λ1(B).
Some notations from nonnegative matrix theory are important for investigating the consensus
property [29, 31]. A matrix is nonnegative (positive) if all its entries are nonnegative (positive).
Moreover, if the sum of each row satisfies ∑

n
j=1 aij = 1, i = 1, · · · , n, the matrix is called

stochastic. A stochastic matrix P is said to be indecomposable and aperiodic (SIA) if lim
k→∞

Pk = 1vτ ,

where 1 is a column vector of all ones and v is some column vector. Define

λ(P) = min
i,j

n

∑
s=1

min(Pis, Pjs). (1)

If λ(P) > 0, then P is called scrambling matrix. For a matrix P = [pij]n×n, its associated directed
graph Γ(P) is a directed graph on n nodes 1, 2, · · · , n such that there is a directed arc in Γ(P)
from j to i if and only if pij �= 0(cf. [31]).

2.2 Problem statement

Let xi(t) ∈ R, i = 1, · · · , n represent the information state of agent i at time t. As described in
[1, 2, 7–10], a discrete-time consensus protocol can be summarized as

xi(t + 1) =
1

∑
j∈Ni(t)

aij(t)
∑

j∈Ni(t)

aij(t)xj(t), (2)

where aij(t) ≥ 0 represents the weighting factor, and Ni(t) = {j : aij(t) > 0} is a set of agents
whose information is available to agent i at time t.
In the real world, the outside interference and measurement error are unavoidable. Each
agent receives in fact noisy information from its neighbors. Assume the resulting information
of agent j received by agent i is the following form:

yij(t) = xj(t) + eij(t),

where eij(t) is the noise. The update law of agent i under the influence of noise can be
described as

xi(t + 1) =
1

∑
j∈Ni(t)

aij(t)
∑

j∈Ni(t)

aij(t)y
ij(t)

=
1

∑
j∈Ni(t)

aij(t)
∑

j∈Ni(t)

aij(t)xj(t) +
1

∑
j∈Ni(t)

aij(t)
∑

j∈Ni(t)

aij(t)e
ij(t).

(3)
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Let Gt = (V, Et) represent the neighbor graph that (j, i) ∈ Et iff j ∈ Ni(t). Let A(t) = [aij(t)]
be the adjacency matrix that aij(t) > 0 iff j ∈ Ni(t). Let D(t) be the associated degree matrix.

Let wi(t) =
1

∑
j∈Ni(t)

aij(t) ∑
j∈Ni(t)

aij(t)e
ij(t). Then the matrix form of system (3) is

x(t + 1) = D−1(t)A(t)x(t) + w(t), t = 1, 2, · · · , (4)

where x(t) = [x1(t), · · · , xn(t)]
τ is the vector formed by the states of all agents, and w(t) =

[w1(t), · · · , wn(t)]τ is the noise vector. Define P(t) = D−1(t)A(t). It’s easy to check that P(t)
is a stochastic matrix, and P(t) = I − D−1(t)L(t) with L(t) being the Laplacian matrix. The
system (4) can be rewritten as

x(t + 1) = P(t)x(t) + w(t), t = 1, 2, · · · . (5)

In this paper, we propose the following assumption on the matrix A(t) = [aij(t)], which is
simple and easily satisfied.
Assumption Λ:
(1) For each t, A(t) has positive diagonal entries, i.e. aii(t) > 0;
(2) There exist two constants α, β > 0 such that α ≤ aij(t) ≤ β for all aij �= 0.
Assumption Λ(1) means that each agent can sense its own information, and Assumption Λ(2)
means that the information exchange between two neighboring agents has some bounds.
The purpose of this paper is to study the consensus property of system (4). Generally, by
consensus we mean that for any two agents i and j, their states satisfy lim

t→∞
‖xi(t)− xj(t)‖ = 0.

In the presence of noise, we should not expect that the agents can reach consensus eventually.
So, we introduce a concept— robust consensus to describe the influence of the noise to the
behavior of the system. Define the distance between a vector x and a subspace X ⊂ Rn as

d(x, X) = inf
y∈X

d(x, y) = inf
y∈X

‖x − y‖, (6)

where ‖ · ‖ is the standard Euclidean norm. In this paper, we take X as the space spanned
by the vector [1, 1, · · · , 1]τ ∈ Rn, i.e., X = span{[1, 1, · · · , 1]τ}, and denote the orthogonal
complement space of X by M. Define a function set and a noise set as follows:

K0 = { f (·)| f : R+ → R+, f (0) = 0, f (δ) decreases to 0 as δ → 0};

B(δ) =
{

{w(t)}| sup
t≥0

d(w(t), X) ≤ δ
}

.

Definition 2.1. System (4) is said to be robust consensus with noise, if there exist a function
f (·) ∈ K0 and a constant T > 0 such that for any δ > 0, x(0) ∈ Rn, and any sequence
{w(t)} ∈ B(δ),

d(x(t), X) ≤ f (δ), t ≥ T. (7)

Remark 2.1. If the noise vector w(t) = c(t) · 1 with c(t) ∈ R being very large, then it may have
strong influence on the states of the agents but have no influence on the consensus property,
since the noise disturbance can be eliminated when considering the difference of the states
between agents. This is the reason that we use d(w(t), X) rather than ‖w(t)‖ to describe the
noise effect here.
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3. Undirected information exchange topology

In this section, we assume the information exchange topology is undirected, that is the
weighted adjacency matrix A(t) is symmetric. In this case, the Laplacian matrix L(t) =
D(t)− A(t) is positive semi-definite.
The following theorem is our main result.

Theorem 1. Consider System (4) under Assumption Λ. If the weighted adjacency matrix A(t) is
symmetric, then the following three propositions are equivalent:
(i) The system (4) is robust consensus.
(ii) For the Laplacian matrix L(t), there exists a constant q > 0 such that

inf
t≥0

λ1

(
k=t+q

∑
k=t+1

L(k)
)

�= 0. (8)

(iii) There exists a constant q > 0 such that for any t ≥ 0, the union of the neighbor graphs
{Gt+1, Gt+2, · · · , Gt+q} is connected.

For readability, we divide the proof into the following three subsections.

3.1 The proof of (i) ⇒ (ii)

By introducing a suitable projection operator, we can translate the distance between a vector
and the subspace X into the norm of the projected vector, so the problem of robust consensus
can be transformed into a certain robust stability in the subspace. We decompose the space
Rn into two orthogonal subspaces X and M = X⊥. As X and M are closed subspaces, we
know that for any x ∈ Rn, there exists a unique pair of vectors x0 ∈ M, x1 ∈ X such that
x = x0 + x1. Furthermore, according to the property of projection, we have ‖x0‖ = ‖x− x1‖ =
inf
y∈X

‖x− y‖ = d(x, X). Denote by PM the projector onto M. Then PMx = x if and only if x ∈ M,

PMx = 0 if and only if x ∈ X, and

‖PMx‖ = d(x, X). (9)

Take a standard orthogonal base e1, e2, · · · , en in the space Rn, where en = [ 1√
n

, · · · , 1√
n
]τ.

Then X = span{en} and M = span{e1, e2, · · · , en−1}.We can get a detailed form of the
projector PM as follows:

PM = Q

⎛

⎜

⎜

⎜

⎜

⎝

1 0 · · · 0 0
0 1 · · · 0 0
. . . . . . . . . . . . . . . . .
0 0 · · · 1 0
0 0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎠

Qτ = I − 1

n
1 · 1τ,

where Q = [e1, e2, · · · , en]. The projector PM has the following property.

Lemma 1. If P1, P2 are stochastic matrices, and PM is the projector onto M, then we have

PMP1PMP2 = PMP1P2. (10)
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Proof. By using the expression of the projector PM and the properties of the stochastic matrix,
we have

PMP1PMP2 = PMP1(I − 1

n
1 · 1τ)P2 = PM(P1 −

1

n
1 · 1τ)P2 = PMP1P2.

Moreover, if {Pi, i = 1, · · · } are stochastic matrices, by the above lemma and the fact that the
product of stochastic matrices is still stochastic, we can deduce that

n

∏
i=1

PMPi = PM

n

∏
i=1

Pi. (11)

Now, letting the projector PM act on both sides of the system (5), we have

PMx(t + 1) = PMP(t)x(t) + PMw(t). (12)

Set η(t) = PMx(t), ν(t) = PMw(t), then η(t), ν(t) ∈ M, and

PMPtηt = PMPtPMx(t) = PMPt
(

I − 1
n 1 · 1τ

)

x(t)

= PMPtx(t)− PMPt
1
n 1 · 1τx(t) = PMPtx(t)− 1

n PM1 · 1τx(t)
= PMPtx(t).

(13)

So system (5) is equivalent to

η(t + 1) = PMP(t)η(t) + ν(t), (14)

where η(t), ν(t) ∈ M. Set ν = {ν(t)}∞
t=1, UM(δ) = {ν : ‖ν(t)‖ ≤ δ, ν(t) ∈ M, ∀t ≥ 1}. Here,

system (14) is said to be robust stable on the subspace M, if for any η(1) ∈ M and any ε > 0,
there exist constants δ = δ(ε, η(1)) > 0, T = T(ε, η(1)) > 0 such that sup

ν∈UM(δ)

sup
t≥T

‖η(t)‖ ≤ ε.

Thus, robust consensus of system (5) has been transformed into the robust stability of system
(14) on the subspace M.
We define Φ(k, i) as the state transition matrix of (14), that is

Φ(k + 1, i) = PMP(k)Φ(k, i), Φ(i, i) = I, ∀k ≥ i ≥ 0. (15)

Then, we have

η(t + 1) = Φ(t + 1, 0)η(0) +
t

∑
i=1

Φ(t + 1, i + 1)ν(i). (16)

To motivate further study, we introduce the following exponential stability lemma.

Lemma 2. Consider system (14) with P(t) being stochastic matrix. If the system is robust stable on
the subspace M, then there exist constants N > 0 and λ ∈ (0, 1) such that

‖ Φ(k + h, k) ‖≤ Nλh, ∀k ≥ 0, ∀h ≥ 1. (17)

The proof is in Appendix 7.
The following lemma will establish the relationship between the exponential stability and the
second smallest eigenvalue of ∑ L(t).
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Lemma 3. Consider system (14) with P(t) = D−1(t)A(t). Assume the weighted adjacency matrix
A(t) satisfies Assumption Λ and is symmetric. If there exist constants N > 0 and λ ∈ (0, 1) such
that ‖Φ(k + h, k)‖ ≤ Nλh for any k ≥ 0, h ≥ 0. Then, there must exist a constant q > 0 such that

inf
k≥0

λ1(
k+q−1

∑
k

L(t)) �= 0,

where L(t) = D(t)− A(t) is the Laplacian matrix.

In order to maintain the integrity of the context, the proof of this Lemma is also presented in
Appendix 7.
Finally, by combining Lemma 2 with Lemma 3, we can finish the proof of (i) ⇒ (ii).

3.2 The proof of (ii) ⇒ (iii)

The following theorem provides the relationship between the connectivity of the graph and
the eigenvalues of the weighted Laplacian matrix.

Theorem 2. Let G be a graph and L be its weighted Laplacian matrix. Then, the eigenvalue 0 of L is
simple if G is connected. Moreover, if the algebraic multiplicity of the eigenvalue 0 of L is c, then the
graph G has exactly c connected components.

Proof. The first part can be obtained from Lemma 13.9.1 of ref. [30]; The second part follows
from the fact that the union of two disjoint graph has as its spectrum the union of the spectra
of the original graphs.

Since
k=t+q

∑
k=t+1

L(k) is a weighted Laplacian matrix of the union graph of {Gt+1, Gt+2, · · · , Gt+q},

by Theorem 2, we know that λ1(
k=t+q

∑
k=t+1

L(k)) �= 0 is equivalent to the connectivity of the union

graph. Thus the Proposition (ii) ⇒ (iii) of Theorem 1 is true.

3.3 The proof of (iii) ⇒ (i)

The union of graphs is closely related to the product of stochastic matrices. The following
theorem provides a relationship between the connectivity of the union graph of {Gt1

, · · · , Gtm
}

and the matrix products P(t1)P(t2) · · · P(tm).

Lemma 4. [9] Let {P(t)} be stochastic matrix with positive diagonal entries, and Gt be the associated
graph. If {Gt1

, · · · , Gtm
} is jointly connected, then the product of matrix P(t1)P(t2) · · · P(tm) is SIA.

Let P be a matrix set. By a word (in the P) of length m we mean the product of m P ′s (cf.
[27]). From the proof of Lemma 4 in ref. [27], we can see that the following result is also true.

Lemma 5. Let {Pi}∞
i=1 be a stochastic matrix sequence denoted by P . If any word in the P ’s is SIA,

then there exists a constant T∗
> 0 such that all words in the P ’s of length ≥ T∗ are scrambling

matrices, where T∗ only depends on the dimension of the matrix.

For a stochastic matrix P = {Pij}, define

τ(P) =
1

2
max

i,j

n

∑
s=1

|Pis − Pjs|. (18)
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From ref. [29], we know that τ(P) = 1 − λ(P), and for any stochastic matrices P(1) and P(2),
we have

τ(P(1)P(2)) ≤ τ(P(1))τ(P(2)). (19)

Furthermore, the function τ(·) also has the following property.

Lemma 6. [29] Let y = [y1, · · · , yn]
τ ∈ Rn be an arbitrary vector and P = [Pij]n×n be a stochastic

matrix. If z = Py, z = [z1, · · · , zn]τ, then we have

max
s,s′

|zs − zs′ | ≤ τ(P)max
j,j′

|yj − yj′ |.

We also need the following simple lemma, whose proof is in Appendix 7.

Lemma 7. Let z ∈ Rn, ∆z = max
i,j

|zi − zj|, PM be the projector onto M. Then

√
2

2
∆z ≤ ‖PMz‖ = d(z, X) ≤

√
n∆z.

The proof of (iii) ⇒ (i) :
For system (5), we define the state transition matrix as follows

Φ∗(k + 1, i) = P(k)Φ∗(k, i), Φ∗(i, i) = I, ∀k ≥ i ≥ 0,

then we have

x(t + 1) = Φ∗(t + 1, 0)x(0) +
t

∑
i=1

Φ∗(t + 1, i + 1)w(i). (20)

By applying Lemma 6, we have

∆x(t + 1) ≤ τ(Φ∗(t + 1, 0))∆x(0) +
t

∑
i=1

τ(Φ∗(t + 1, i + 1))∆w(i).

From Lemma 4, we know that Φ∗(t+ q + 1, t+ 1) is SIA for any t. Furthermore, by combining
with Lemma 5, for any t ≥ 0, we have

Φ∗(t + L, t) =
k=t+L−1

∏
k=t

P(k) is a scrambling matrix,

where L = qT∗ is a constant. From (2) of Assumption Λ, we know that there exists a constant
ᾱ > 0 such that all the non-zero entries of P(t) are larger than or equal to ᾱ. Then we have

λ(Φ∗(t + L, t)) ≥ ᾱL.

Hence

τ(Φ∗(t + L, t)) = 1 − λ(Φ∗(t + L, t)) ≤ 1 − ᾱL = σ, ∀t ≥ 0.

For any t ≥ 0 and h ≥ 0, there exists an integer k0 ≥ 0 such that k0L < h ≤ (k0 + 1)L. By (19),
we have

τ(Φ∗(t + h, t)) ≤ τ(Φ∗(t + h, t + k0L)) · τ(Φ∗(t + k0L, t + (k0 − 1)L) · · · Φ∗(t + L, t))

≤ σk0 ≤ σ
h
L
−1 = σ−1(σ

1
L )h.

304 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

www.intechopen.com



Define N = σ−1, λ = σ
1
L . Then 0 < λ < 1 and

τ(Φ∗(t + h, t)) ≤ Nλh, ∀t ≥ 0, h ≥ 0, (21)

where N and λ are independent of t and h. From (21), we have

lim
t→∞

τ(Φ∗(t + 1, 0)) ≤ lim
t→∞

Nλt+1 = 0. (22)

Moreover, for any t ≥ 0, we have

t

∑
i=1

Φ∗(t + 1, i + 1) ≤
t

∑
i=1

Nλt−i
<

N

1 − λ
.

Thus

sup
t≥0

t

∑
i=1

Φ∗(t + 1, i + 1) ≤ N

1 − λ
. (23)

By (22), for any δ > 0, there exists T > 0 such that

τ(Φ∗(t, 0)) ≤ δ

∆x0
, ∀t ≥ T. (24)

For any {w(t)} satisfying sup
t≥0

d(w(t), X) ≤ δ, by Lemma 7, we have sup
t≥0

∆w(t) ≤
√

2δ, which,

in conjunction with (23) and (24), yields

∆x(t) ≤ δ +

√
2N

1 − λ
δ = (1 +

√
2N

1 − λ
)δ, ∀t ≥ T.

By taking f (s) =
√

n(1 +

√
2N

1 − λ
)s, obviously we have f (·) ∈ K0, and

d(x(t), X) ≤ f (δ), ∀t ≥ T.

Thus, we complete the proof of (iii) ⇒ (i) of Theorem 1.

Remark 1. From Lemma 2, we know that the exponential stability of the projected system (14) is
essential for the robust consensus. However, to the best of our knowledge, almost all the existing results
only analyzed the asymptotic stability of the projected system, which might not be powerful enough for
dealing with the influence of noise.

4. Directed information exchange topology

In this section, we will generalize the above results to the case of directed information
exchange. The information exchange with directed topology can be found in many biological,
social, and engineering systems, such as the “leader-follower” model where the leader can
influence the followers while the followers can not influence the leader.
The main result of this section are summarized in the following theorem.

Theorem 3. Consider the system (4) under Assumption A. Then it is robust consensus if and
only if there exists a constant q > 0 such that for any t ≥ 0 the union of neighbor digraphs
{Gt+1, Gt+2, · · · , Gt+q} has a spanning tree.
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To prove the main result, we need the following lemmas which is about the algebraic
multiplicity of the eigenvalue 1 of stochastic matrix.

Lemma 8. Let P be a stochastic matrix with PM being its projector onto M. If ρ(PMP) < 1, then 1 is
a simple eigenvalue of P, where ρ(A) is the spectral radius of a matrix A.

Proof From the theorem of finite dimensional Markov chain (see [32]), we know that there
exists a matrix K such that

lim
n→∞

1

n

n

∑
i=1

Pi = K.

Thus

lim
n→∞

PM
1

n

n

∑
i=1

Pi = PMK.

On account of ρ(PMP) < 1, there exists a matrix norm ‖ · ‖l such that

‖PMP‖l
.
= µ < 1.

By (11),

‖PM
1

n

n

∑
i=1

Pi‖l = ‖ 1

n

n

∑
i=1

(PMP)i‖l ≤
1

n

n

∑
i=1

‖PMP‖i
l ≤

1

n

n

∑
i=1

µi.

Thus

lim
n→∞

‖ 1

n

n

∑
i=1

(PMP)i‖l = 0,

PMK = lim
n→∞

1

n

n

∑
i=1

(PMP)i = 0.

Since the rank of PM is n − 1, the rank of K is not greater than 1.
1 is an eigenvalue of P and ρ(P) ≤ 1. Now, we prove 1 is simple. If not, from the Jordan
canonical form, we have a nonsingular matrix T such that

P = T

⎛

⎜

⎜

⎜

⎜

⎝

λ1 0 0 · · · 0
∗ λ2 0 · · · 0
0 ∗ λ3 · · · 0
. . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 ∗ λn

⎞

⎟

⎟

⎟

⎟

⎠

T−1,

where |λi| ≤ 1 and λ1 = λ2 = · · · = λk = 1 with k ≥ 2. Thus

lim
n→∞

1

n

n

∑
i=1

Pi = T

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 · · · 0
∗ 1 0 · · · 0
∗ ∗ ∗ · · · 0
. . . . . . . . . . . . . . . . . . .
∗ · · · ∗ ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

T−1,

which implies that the rank of K is larger than 1. This is a contradiction, so 1 is a simple
eigenvalue of P.

Lemma 9. [13] For a stochastic matrix P, the eigenvalue 1 is simple if and only if its associated digraph
Γ(P) has a spanning tree.
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Lemma 10. [13] Let {P(t)} be a sequence of stochastic matrix with positive diagonal entries, and
with associated digraphs denoted by Gt. If for any sequence {i1, i2, · · · , im}, the union of the directed
graphs {Gi1

, · · · , Gim
} has a spanning tree, then the matrix product P(im) · · · P(i2)P(i1) is SIA.

Proof of Theorem 3:

Sufficiency: By using Lemma 10, and following the same analysis in the proof of (iii)⇒ (i) of
Theorem 1, one can get the desired conclusion directly.
Necessity: As we have seen in the above section, the robust consensus of the system (5) can be
transformed to the stability of the system (14) on the subspace M. Define

P(t,r) = P(t + r − 1) · · · P(t + 1)P(t),

from Lemma 2, we know that for any t ≥ 0 there exists a constant integer q such that

‖PMP(t,q)‖ < 1. (25)

Let P(t) denote P(t,q), D(t) denote the associated directed graph of P(t), Gk denote the neighbor

graph associated with P(k), G(t) denote the union of digraphs {Gt, Gt+1, · · · , Gt+q}.

From Lemma 8 and (25), we know 1 is a simple eigenvalue of P(t). Furthermore, the digraph

D(t) has a spanning tree according to Lemma 9. To complete the proof of the sufficiency part

of Theorem 3, we need to show that G(t) has a spanning tree.

Now, let vertex r be the root of the graph D(t) , then for any other vertex j ∈ V, there is

a r → j path in digraph D(t), i.e. there is a sequence of arcs (r, i1), (i1, i2), (i2, i3), · · · ,

(im−2, im−1), (im−1, j) in D(t) connecting r to j. By the relations between D(t) and P(t), we

know that the following elements of P(t) : P
(t)
i1,r, P

(t)
i2,i1

, · · · , P
(t)
im−1,im−2

, P
(t)
j,im−1

are all nonzero. Now,

we consider each nonzero entry P
(t)
is+1,is

, s = 0, 1, · · · , m − 1(i0 denotes r, im denotes j), by using

the property of matrix product, we know that there exists a nonzero item Pis+1,kq−1
(t + q −

1)Pkq−1,kq−2
(t + q − 2) · · · Pk1,is

(t) for some k1, k2, · · · , kq−1. Note that Pi,j(k) �= 0 means there is

an arc (j, i) in digraph Gk, thus the item Pis+1,kq−1
(t + q − 1)Pkq−1,kq−2

(t + q − 2) · · · Pk1,is
(t) �= 0

means there is a path in the union digraph G(t) connecting is with is+1. Hence, for each

nonzero entry P
(t)
is+1,is

, s = 0, 1, · · · , m − 1, there is a path is → is+1 in digraph G(t), and so it is

obvious that there is a path in digraph G(t) connecting r with j. According to the arbitrariness

of vertex j, we know that the digraph G(t) has a spanning tree rooted at r, i.e. the union of
neighbor digraphs {Gt, Gt+1, · · · , Gt+q−1} has a spanning tree. The proof of Theorem 3 is
complete.

5. Simulations

In this section, we consider the consensus behavior of four agents with switching topologies.
Three representative examples are given for illustration. In the simulations, the initial states
of the agents are chosen randomly from [0, 3], the adjacency matrix A(t) associated with the
network topology is 0 − 1 matrix, i.e. aij(t) = 1 iff j ∈ Ni(t) and otherwise aij(t) = 0. We
assume each agent treats itself as a neighbor, and can access its own information accurately at
any time. That is xi(t + 1) = xi(t) if agent i has no other neighbors except itself at time t.
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Example 1. Consider a dynamical network of four agents with undirected information exchange
topologies. The agent applies the consensus protocol (4). The information exchange topologies are
changed as follows: when t = 3k, k = 0, 1, · · · , it has the structure as shown in Figure 1.(a), that is
a12 = a21 = 1; when t = 3k + 1, it is described by Figure 1.(b); when t = 3k + 2, it is Figure 1.(c).

A2 A3

A4A1

(a)

A2 A3

A4A1

(b)

A2 A3

A4A1

(c)

Fig. 1. Three topologies of undirected information exchange.

Figures 2.(a) and (b) show the evolution of protocol (4) with noise chosen randomly from
[−0.5, 0.5]. Figure 2.(a) depicts the information states x(i), i = 1, 2, 3, 4. Figure 2.(b) depicts
the maximal difference of information states indexed by max

ij
|xi − xj|. Figure 2.(c) shows the

relationship between the difference of the states and the intensity of the noise, where the point

represent the mean difference of the states over one running indexed by 1
T

T

∑
t=1

max
ij

|xi(t) −
xj(t)| with T = 50 in the simulations, and the range of the noise add 0.1 at each running.
Figure 2.(c) shows that the higher the noise intensity is, the higher the difference of the states
is. From Figure (2), we can see that the system in Example 1 is robust consensus.
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Fig. 2. Evolution of the protocol (4) with the undirected topologies given by Figure 1.

Example 2. Consider a dynamical network of four agents with directed information exchange
topologies as shown in Figure 3. The agent applies the consensus protocol (4). When t = 3k,
k = 0, 1, · · · , the information exchange topology has the structure as shown in Figure 3.(a), that is
a21 = 1 and others equal zero; when t = 3k + 1, it is described by Figure 3.(b); when t = 3k + 2, it is
Figure 3.(c).

Figure 4 shows the evolution of the protocol (4) with the above directed topologies. Figures
4.(a),(b) and (c) show the same items as those in Figures 2.(a),(b) and (c). In view of Figure 3,
agent 1 does not have other neighbors except itself during the evolution. Thus, in Figure 4.(a),
agent 1 keep its own state all the time, and other agents move near it.
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A2 A3

A4A1

(a)

A2 A3

A4A1

(b)

A2 A3

A4A1

(c)

Fig. 3. Three topologies of directed information exchange.
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Fig. 4. Evolution of the protocol (4) with the directed topologies given by Figure 3.
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Fig. 5. Two topologies of undirected information exchange.

Example 3. In this example, we will present two experiments to show that the periodical connectivity
of the neighbor graphs is essential for the robust consensus of the agents. In the following experiments,
the four agents apply the consensus protocol (4) with the noise chosen randomly from [−0.3, 0.3], and
the neighbor graphs have the topologies as shown in Figure 5.
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Fig. 6. Evolution with periodically connected information exchange topologies.
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In the first experiment, the dynamics of the information exchange topology is defined as
follows: when t = 2k, k = 0, 1, · · · , the topology has the structure as shown in Figure 5.(a),
that is a12 = a21 = 1 and a34 = a43 = 1; when t = 2k + 1, it has the structure as shown
in Figure 5.(b). Figure 6.(a) shows the information states x(i), and Figure 6.(b) depicts the
maximal difference of the information states. From these figures, we can see that the system
is robust consensus.
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Fig. 7. Evolution with infinitely connected information exchange topologies.

The second experiment is carried out as follows: when t = 2k, k = 0, 1, · · · , the information
exchange topology has the structure as shown in Figure 5.(b), otherwise it has the structure
as shown in Figure 5.(a). Therefore, for any time T, the union graph of the neighbor graphs
{Gt : t ≥ T} is connected (called infinitely connected for short). However, from Figure 7 we
know that the infinite connectivity is not enough for the robust consensus.

6. Conclusions

This paper studies the robust consensus of multi-agent systems with bounded noises. The
information exchange topologies are time-varying. For the case of undirected topologies, the
equivalence among the robust consensus, the positivity of the second smallest eigenvalue
of the Laplacian matrix, and the periodically joint connectivity of the neighbor graphs are
established. For the case of directed topologies, the robust consensus can be achieved if and
only if there exists a spanning tree in the union of the neighbor graph periodically. From the
theoretical analysis and the simulation results, we can see that the periodical connectivity of
the neighbor graphs is essential for the robust consensus of the agents.

7. Appendix

To prove Lemma 2, we need the following theorem.

Theorem 4. [28] Consider the following time-varying system:

yk+1 = Bkyk, k ≥ 0, (26)

where Bk ∈ Rn×n and yk ∈ Rn. Let Ψ(k, i) be the state transition matrix of system (26): Ψ(k+ 1, i) =
BkΨ(k, i), Ψ(i, i) = I, ∀k ≥ i ≥ 0. Then system (26) is exponentially stable in the sense that there
exist constants M0 > 0 and c > 0 such that

‖Ψ(k + h, k)‖ ≤ M0 exp{−ch} ∀k ≥ 0, ∀h ≥ 0,

if and only if
k
∑

i=1
‖Ψ(k, i)‖ ≤ M1, ∀k ≥ 0, where M1 is independent of k.
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Proof of Lemma 2 Set ν = {νt}∞
t=1, U = {ν : ‖νt‖ ≤ δ0, ν(t) ∈ M, ∀t ≥ 1}. According to the

assumption, we know that there exist f (δ0) > 0, T0 > 0 such that for any ν ∈ U and η0 = 0,
‖ηt‖ ≤ f (δ0), t ≥ T0. By (16), for any ν ∈ U, we have

sup
t≥T0−1

‖
t

∑
i=1

Φ(t + 1, i + 1)νi‖ ≤ f (δ0) = ε0. (27)

We want to prove that there exists a constant N1 > 0 such that for any ν ∈ U

sup
t≥T0−1

t

∑
i=1

‖Φ(t + 1, i + 1)νi‖ ≤ N1. (28)

We will prove this by reduction to absurdity. Assume that there exist t0 ≥ T0 − 1 and u ∈ U

such that
t0

∑
i=1

‖Φ(t0 + 1, i + 1)ui‖ ≥ 2nε0, where n is the dimension of space. Let Γi(s, j) be the

(s, j) entry of matrix Φ(t0, i + 1), and let ui(j) be the jth element of ui. Then there must exist
an integer s ∈ [1, n] such that

t0

∑
i=1

|
n

∑
j=1

Γi(s, j)ui(j)| ≥ 2ε0. (29)

Define ûi(j) = |ui(j)|sgn{Γi(s, j)}, 1 ≤ j ≤ n, where sgn(·) is the symbolic function.
Obviously sup

t≥0
‖ût‖ = sup

t≥0
‖u(t)‖ ≤ δ0. By (29), we have

‖
t0

∑
i=1

Φ(t0 + 1, i + 1)ûi‖ ≥ |
t0

∑
i=1

n

∑
j=1

Γi(s, j)ûi(j)| =
t0

∑
i=1

n

∑
j=1

|Γi(s, j)||ui(j)| ≥ 2ε0. (30)

Decompose {ûi, i = 1, · · · , t0} into two orthogonal vectors αi and βi, such that ûi = αi +
βi , αi ∈ M, βi ∈ X. Then ‖ûi‖ = ‖αi‖+ ‖βi‖; thus ‖αi‖ ≤ ‖ûi‖. Noting that P(t) is stochastic,
we have PMP(t)βi = 0, ∀t ≥ 0, ∀i ∈ [1, t0]. Thus by (30), we have

‖
t0

∑
i=1

Φ(t0 + 1, i + 1)αi‖ = ‖
t0

∑
i=1

Φ(t0 + 1, i + 1)(ûi − βi)‖ = ‖
t0

∑
i=1

Φ(t0 + 1, i + 1)ûi‖ ≥ 2ε0. (31)

Now define a new sequence as

u∗ =
{

αi, i ∈ [1, t0]
ui, i > t0

Obviously u∗ ∈ U, and by (31), we have

sup
t≥T0−1

‖
t

∑
i=1

Φ(t + 1, i + 1)u∗
i ‖ ≥ ‖

t0

∑
i=1

Φ(t0 + 1, i + 1)αi‖ ≥ 2ε0.

It is opposite to (27). Thus (28) holds.
For any vector ξ ∈ Rn with ‖ξ‖ ≤ δ0, do orthogonal decomposition on ξ: ξ = ξ1 + ξ2, ξ1 ∈
M, ξ2 ∈ X. Then ‖ξ‖ = ‖ξ1‖+ ‖ξ2‖, ‖ξ1‖ ≤ δ0, and PMP(t)ξ2 = 0, ∀t ≥ 0. By (28), we have

sup
t≥T0−1

t

∑
i=1

‖Φ(t + 1, i + 1)ξ‖ = sup
t≥T0−1

t

∑
i=1

‖Φ(t + 1, i + 1)ξ1‖ ≤ N1.
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On account of the arbitrariness of ξ, there must exist a constant N2 > 0 such that

sup
t≥T0−1

t

∑
i=1

‖Φ(t + 1, i + 1)‖ ≤ N2. (32)

Because {P(t)}t=T0

t=1 , PM and T0 are bounded, we can choose a constant N3 > 0 such that

sup
t≤T0−1

t

∑
i=1

‖Φ(t + 1, i + 1)‖ ≤ N3. (33)

Taking N̄ = max{N2, N3} which is independent of t, by (32)(33), we have
t

∑
i=1

‖Φ(t, i)‖ ≤

N̄, ∀t ≥ 0. According to Theorem 4, there exist constants N > 0 and λ ∈ (0, 1) such that
‖ Φ(k + h, k) ‖≤ Nλh, ∀k ≥ 0, ∀h ≥ 1.
Proof of Lemma 3 According to the assumptions of this lemma, we can choose an integer
q > 0 such that

‖Φ(k + q, k)‖ = ‖PM

k+q−1

∏
t=k

P(t)‖ ≤ 1

2
. (34)

Let ρk = λ1(
k+q−1

∑
k

L(t)) and x∗k be the corresponding unit eigenvector. Then we have ρk =

k+q−1

∑
k

x∗k
τ L(t)x∗k . Since L(t) · 1 = 0 for all t ≥ 1, x∗k can be chosen from the subspace M.

For any integers tj ∈ [k, k + q − 1], j = 1, · · · , s ≤ q, we have

x∗k
τPMD−1(t1)L(t1) · · · D−1(ts)L(ts)x∗k

≤ ‖x∗k
τPMD−1(t1)L(t1) · · · D−1(ts)L(ts)

1
2 ‖ · ‖L(ts)

1
2 x∗k ‖

≤ β2q(x∗k
τ L(ts)x∗k )

1
2 ≤ β2qρ

1
2

k .

(35)

Let b be the uniform upper bound of ‖ L(t) ‖ and ‖ D−1(t) ‖ in view of Assumption Λ. From
(34),(35) and the Schwarz inequality, it follows that

1

2
≥ ‖Φ(k + q, k)‖ = ‖PM

k+q−1

∏
t=k

P(t)‖ = ‖PM

t=k+q−1

∏
t=k

(I − D−1(t)L(t))‖

≥ x∗k
τPM

t=k+q−1

∏
t=k

(I − D−1(t)L(t))x∗k

= 1 −
q

∑
s=1

∑
k≤t1≤···≤ts≤k+q−1

x∗k
τ PMD−1(t1)L(t1) · · · D−1(ts)L(ts)x∗k

≥ 1 −
q

∑
s=1

(

q

s

)

β2qρ
1
2

k .

So, ρ
1
2

k ≥ 1

2
q

∑
s=1

(q
s)β2q

, ∀k ≥ 0, which means that inf
k≥0

λ1(
k+q−1

∑
k

L(t)) �= 0. Thus Lemma 3 is

true.
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Proof of Lemma 4 On the one hand, from min
i

zi ≤
∑
i

zi

n ≤ max
i

zi, we have, for any zj,

zj − max
i

zi ≤ zj −
∑
i

zi

n
≤ zj − min

i
zi.

So, |zj −
∑
i

zi

n | ≤ max{max
i

zi − zj, zj − min
i

zi} ≤ ∆z. Thus

‖PMz‖ = ‖PM(z − 1τz1

n
)‖ = ‖z − 1τz1

n
‖ ≤

√
n∆z.

On the other hand,

|zi − zj| = |(zi −
∑
s

zs

n )− (zj −
∑
s

zs

n )| ≤ |zi −
∑
s

zs

n |+ |zj −
∑
s

zs

n |

≤
√

2

√

(zi −
∑
s

zs

n )2 + (zj −
∑
s

zs

n )2 ≤
√

2‖z − 1τz1

n
‖ =

√
2‖PMz‖,

(36)

Thus, ∆z ≤
√

2‖PMz‖. From (9) and the above analysis, it follows that

√
2

2
∆z ≤ ‖PMz‖ = d(z, X) ≤

√
n∆z.
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