
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

5

Stackelberg Solutions to Noncooperative
Two-Level Nonlinear Programming Problems

through Evolutionary Multi-Agent Systems

Masatoshi Sakawa, Hideki Katagiri and Takeshi Matsui
Faculty of Engineering, Hiroshima University

Japan

1. Introduction

In the real world, we often encounter situations where there are two or more decision
makers in an organization with a hierarchical structure, and they make decisions in turn or
at the same time so as to optimize their objective functions. Decision making problems in
decentralized organizations are often modeled as Stackelberg games (Simaan & Cruz Jr.,
1973), and they are formulated as two-level mathematical programming problems (Shimizu
et al, 1997; Sakawa & Nishizaki, 2009). In the context of two-level programming, the decision
maker at the upper level first specifies a strategy, and then the decision maker at the lower
level specifies a strategy so as to optimize the objective with full knowledge of the action of
the decision maker at the upper level. In conventional multi-level mathematical
programming models employing the solution concept of Stackelberg equilibrium, it is
assumed that there is no communication among decision makers, or they do not make any
binding agreement even if there exists such communication. Computational methods for
obtaining Stackelberg solutions to two-level linear programming problems are classified
roughly into three categories: the vertex enumeration approach (Bialas & Karwan, 1984), the
Kuhn-Tucker approach (Bard & Falk, 1982; Bard & Moore, 1990; Bialas & Karwan, 1984;
Hansen et al, 1992), and the penalty function approach (White & Anandalingam, 1993). The
subsequent works on two-level programming problems under noncooperative behavior of
the decision makers have been appearing (Nishizaki & Sakawa, 1999; Nishizaki & Sakawa,
2000; Gumus & Floudas, 2001; Nishizaki et al., 2003; Colson et al., 2005; Faisca et al., 2007)
including some applications to aluminium production process (Nicholls, 1996), pollution
control policy determination (Amouzegar & Moshirvaziri, 1999), tax credits determination
for biofuel producers (Dempe & Bard, 2001), pricing in competitive electricity markets
(Fampa et al, 2008), supply chain planning (Roghanian et al., 2007) and so forth.
However, processing time of solution methods for noncooperative two-level linear

programming problems, for example, Kth Best method by Bialas et al. (1982) and Branch-

and-Bound method by Hansen et al. (1992), may exponentially increases at worst as the size

of problem increases since they are strict solution methods based on enumeration. In order

to obtain the (approximate) Stackelberg solution with a practically reasonable time,

approximate solution methods were presented through genetic algorithms (Niwa et al.,

1999) and particle swarm optimization (PSO) (Niwa et al., 2006).

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

92

As one of the most promising approximate solution methods, Socha et al. (2002) proposed a
fast computational method through an evolutionary multi-agent system (EMAS) for
obtaining (approximate) Pareto optimal solution sets for multiobjective programming
problems. However, there is no study on the EMAS-based method for solving two-level
nonlinear programming problems.
In this chapter, we propose an efficient EMAS-based computational method for obtaining
(approximate) Stackelberg solutions to two-level nonlinear programming problems.

2. Two-level programming problems and solution concepts

In this chapter, we consider two-level programming problems formulated as follows:

1

minimize
x f1(x1, x2)

where x2 solves

2

minimize
x f2(x1, x2)

subject togi (x1, x2) ≤ 0, i = 1, 2, …, m

(1)

where x1 is an n1 dimensional decision variable column vector for the DM at the upper level

(DM1), x2 is an n2 dimensional decision variable column vector for the DM at the lower level

(DM2), f1(x1, x2) is the objective function for DM1, f2(x1, x2) is the objective function for DM2

and gi(x1, x2), i=1, 2,…, m are constraint functions. In general, fl(⋅), l=1,2 and gi(⋅), i=1,2, …, m

are nonlinear. In (1), if the DM at the upper level (DM1) adopts a decision x1, the DM at the

lower level (DM2) is supposed to select a decision to minimize f2(⋅) in the feasible region of

(1) under the DM1's decision, ()2 1ˆ ˆx x , called a rational reaction. Then, the optimal solution

(Stackelberg solution) to (1) is the point (x1*, x2*(x1*)) which minimizes f1(⋅) in the inducible

region (IR) which is the set of points ()()1 2 1
ˆ ˆ ˆ,x x x for all possible decisions 1x̂ . Figure 1

illustrates an example of a Stackelberg solution for a two-level linear programming problem.

x

x1

2

0

z

X

()1 x ,1 x2

z ()2 x ,1 x2
Inducible region (IR)

Stackelberg

solution

Fig. 1. An example of Stackelberg solution

www.intechopen.com

Stackelberg Solutions to Noncooperative Two-Level Nonlinear Programming Problems
through Evolutionary Multi-Agent Systems

93

3. EMAS for two-level programming problems

In this section, we outline the framework of a computational method through EMAS for

obtaining Stackelberg solutions to two-level programming problems.

In general, EMAS-based methods consist of N agents ar, r = 1, 2, …, N, each of which is

characterized by some attributes, i.e., the current position (xr1, xr2), the upper level objective

function value f1(xr1, xr2), the lower level objective function value f2(xr1, xr2), the upper level

energy erU and the lower level energy erL. In the EMAS-based method, the attributes of

agents are updated through the evolutionary process with some operations like energy

exchange, reproduction and move.

First, carry out the search to the direction of improving the lower level objective function by

moving each agent toward IR. To be more specific, in the upper level decision variable

space, if there exists at least one agent in the neighborhood of each agent ar, select one of

agents, ar’, as a communicating opponent, and compare the lower level objective function

value of ar with that of ar’. Then, the superior agent gains the lower level energy from the

inferior one. The inferior agent is killed if the lower level energy of it becomes empty.

Otherwise, it is moved according to some rule whose details are described later in Section 4.

If there exists no agent in the neighborhood of ar, move ar to the position where the lower

level objective function value becomes better by changing xr2.

Next, carry out the search to the direction of improving the upper level objective function by

moving each agent near IR toward a Stackelberg solution. For each agent ar, after selecting

an agent, ar’’, which is the nearest agent around IR as a communicating opponent, compare

the upper level objective function value of ar with that of ar’’. Then, the superior agent gains

the upper level energy from the inferior one. The inferior agent is not killed even if its lower

level energy of it becomes empty. It gains the same amount of the upper level energy as the

initial value. This supplement is done to maintain the number of agents with nonzero upper

level energy. After exchanging the upper level energies between the superior and inferior

agents, if the upper level energy of the inferior agent is sufficiently large, generate a new

agent in the direction from the inferior one to the superior one.

By repeating these procedures, agents with large upper level objective function values

congregate around IR, which means the current position of the agent with the largest upper

level objective function value can be regarded as the (approximate) Stackelberg solution.

The procedure is summarized as follows.
Step 1. Generate N agents ar, r = 1,2, …, N at random.
Step 2. Let T := 1.
Step 3. Let r := 1.
Step 4. For the rth agent ar, carry out the search to the direction of improving the lower

level objective function value in order to move the current position of the agent
toward IR.

Step 5. If the lower level energy of the rth agent ar is greater than a threshold, i.e., the
current position of the agent is regarded as being in IR, carry out the search to the
direction of improving the upper level objective function value so that the agent is
moved toward the Stackelberg solution.

Step 6. If r = N, go to step 7. Otherwise, let r := r+1 and return to step 4.
Step 7. If T = Tmax, terminate the procedure and the current best solution is regarded as a

Stackelberg solution. Otherwise, let T := T+1 and return to step 3.

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

94

4. EMAS for two-level nonlinear programming problems

This section devotes to introducing some basic ideas of a new EMAS for two-level nonlinear

programming problems. In applying the original EMAS directly to the nonlinear case, there

often occur two problems; one is that it is difficult to obtain feasible initial agents generated

randomly in step 1, and the other is that the judgment of the existence of an agent around IR

by the amount of the lower level energy is insufficient in most cases since the shape of IR for

nonlinear cases is fairly complicated in general than that for the linear case.

In order to resolve the former problem, we incorporate the idea of homomorphous mapping

used in (Koziel & Michalewicz, 1999) into the proposed method in order to generate feasible

initial agents. In addition, in order to widen the search area, we permit the reproduction in

the infeasible region together with the search of the infeasible region by infeasible agents.

On the other hand, for tacking the latter problem, we utilize the Kuhn-Tucker condition of

problem (2), which is the necessary condition for the current position to be in IR, in order to

obtain the rational reaction x 2(x 1) corresponding to x 1 for the purpose of more accurately

check whether an agent with the current position (x 1, x 2) exists around IR or not.

minimize f2(x 1, x2)

subject to gi (x 1, x2) ≤ 0, i=1, 2, …, m
(2)

The Kuhn-Tucker condition of (2) is expressed as follows.

() ()2 1 2 1 2
1

 0∗ ∗ ∗

=

∇ + λ ∇ = λ ≥∑ 0
m

*
i i

i

f , g , ,x x x x ,

() ()1 2 1 2 0 0 1 2 ∗ ∗ ∗≤ λ = = …i i ig , , g , ,i , , ,mx x x x

It should be noted here that the best position ()1 2
#,x x obtained through the search by EMAS

does not always exist in IR even if it satisfies the Kuhn-Tucker condition. In order to find a

rational reaction for the upper level decision 1
#x of the best solution, the following problem

with respect to the lower level objective function is solved.

minimize 1 2
#f (,)x x

subject to 1 2
#

ig (,)x x ≤ 0, i=1, 2, …, m
(3)

Since (3) is a single-objective nonlinear programming problem, we can solve the problem by

using an approximate solution method based on PSO (Matsui et al, 2007) to check whether

the (approximate) optimal solution (x*2) is equal to 2
#x or not. If (x*2) = 2

#x , we can regard

1, 2()# #x x as the (approximate) Stackelberg solution since it exists in IR. Otherwise, repeatedly

check whether the current position of an agent satisfying Kuhn-Tucker condition exists in IR

or not in the same manner mentioned above in order of the quality of the upper level

objective function value. If an agent whose current position exists in IR, the position is

regarded as the (approximate) Stackelberg solution.

www.intechopen.com

Stackelberg Solutions to Noncooperative Two-Level Nonlinear Programming Problems
through Evolutionary Multi-Agent Systems

95

5. Detailed procedure of the proposed EMAS

In this section, we describe the details of the computational procedures in the proposed
EMAS for obtaining (approximate) Stackelberg solutions to noncooperative two-level
programming problems.
In the proposed EMAS-based method, we use N agents ar, r=1, 2 …, N, each of which is
characterized by some attributes, i.e., the current position (xr1, xr2), the upper level objective
function value f1(xr1, xr2), the lower level objective function value f2(xr1, xr2), the energy er and
the agent state variable kr. If Kuhn-Tucker condition is satisfied for the rth agent ar whose
current position is in the feasible region, let kr=1. If not, let kr=0. For agents in the infeasible
region, let kr<0.
The procedure of the proposed EMAS-based method is summarized as follows.
Step 1. Generate N agents ar, r=1, 2, …, N by using the homomorphous mapping (Koziel &

Michalewicz, 1999).
Step 2. Let T := 1.
Step 3. Let r := 1.
Step 4. If kr=0, go to step 5. If kr=1, go to step 6. If kr<0, go to step 8.
Step 5. Carry out the search to the direction of improving the lower level objective function

value. To be more specific, for the rth agent ar, choose an agent ar’ randomly. Then,
compare f2(xr1, xr2) with f2(xr1, xr’2). If f2(xr1, xr2) < f2(xr1, xr’2), let xp2 := xr2 and xp’2 :=
xr’2. Otherwise, let xp2 := xr’2 and xp’2 := xr2.
Then, update xp’2 by the following scheme:

 ()2 2 2 2 2= +p’ p’ p p’: R –x x x x (4)

where R is a uniform random number in [0,1]. Repeat the comparison between
f2(xp1, xp2) and f2(xp’1, xp’2) and the update of xp’2 n times. Let the final xp2 be xr2. If the
current position of ar satisfies Kuhn-Tucker condition, let kr:=1 and go to step 6.
Otherwise, go to step 9.

Step 6. If kr=1, carry out the search to the direction of improving the upper level objective
function value. To be more specific, choose an agent ar’’ which satisfies Kuhn-
Tucker condition at random as a comparing opponent and compare the upper level
objective function value of ar with that of ar’’. Then, the superior agent gains the
energy from the inferior one. Let the superior agent denote ar’’ and the inferior one
denote ar. If the inferior agent is killed by the disappearance of energy, go to step 7.
Otherwise, go to step 9.

Step 7. Carry out the reproduction of the killed agent. Then, reproduce ar with the current
position which is determined as:

 () () () ()()1 2 1 2 1 2 1 2 2 = +r r r r r’’ r’’ r r, : , R , – , .x x x x x x x x (5)

where R is a uniform random number in [0,1]. If the current position of the
reproduced ar is infeasible, let kr:=-1 and go to step 8. Otherwise, let kr:=0 and go to
step 9.

Step 8. Carry out the search in the infeasible region. If -t1 ≤ kr < 0, go to substep 8-1. If -t2 ≤
kr < -t1, go to substep 8-2. If kr = -t2, go to substep 8-3. Here, let 0<t1<t2.
Substep 8-1: Let an agent with the current position (xr, 1, xr, 2, …, xr*, i, …, xr, n2)
denote ar’. Here, r* is randomly chosen from among {1, 2, …, N} and i is randomly

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

96

chosen from among {1, 2, …, n1+n2}. Compare f1(xr1, xr2) with f2(xr’1, xr’2). Let the
superior agent and the inferior one denote as and as’, respectively. Then, update
(xs’1, xs’2) by the following scheme:

 () () () ()()1 2 1 2 1 2 1 2 2 = +s’ s’ s’ s’ s s s’ s’, , R , – ,x x x x x x x x (6)

where R is a uniform random number in [0,1]. Repeat the comparison between
f1(xs1, xs2) and f1(xs’1, xs’2) and the update of (xs’1, xs’2) n' times. Let the final (xs1, xs2) be
(xr1, xr2). If (xr1, xr2) is feasible, let kr:=0. Otherwise, let kr:=kr-1. Go to step 9.
Substep 8-2: Choose an agent ar' randomly. Compare (xr1, xr2) with (xr’1, xr’2) using
the following function

() () ()1 2 1 2 1 2
1

 0
=

= >∑
m

i i
i

h , g , ,g ,x x x x x x

which is the degree of violation of the constraints. Let the superior position denote
(xu1, xu2) and the inferior one denote (xu’1, xu’2). Then, update (xu’1, xu’2) by the
following scheme:

() () () ()()1 2 1 2 1 2 1 2 2 = +u’ u’ u’ u’ u u u’ u’, , R , – ,x x x x x x x x

where R is a uniform random number in [0,1]. Repeat the comparison between
h(xu1, xu2) and h(xu'1, xu'2) and the update of (xu'1, xu'2) n'' times. Let the final (xu1, xu2)
be (xr1, xr2). If (xr1, xr2) is feasible, let kr:=0. Otherwise, let kr:=kr-1. Go to step 9.
Substep 8-3: Choose an agent ar’ whose current position is feasible randomly, and
move ar to the feasible region by the bisection method between ar’ and ar. Go to step 9.

Step 9. If r = N, go to step 10. Otherwise, let r := r+1 and return to step 4.
Step 10. If T = Tmax, go to step 11. Otherwise, let T := T+1 and return to step 3.
Step 11. Check whether the current position of the best agent exists in IR or not by solving

(3) through the revised PSO method (Matsui et al., 2007), which is one of most
promising solution methods for nonlinear programming problems. If the current
position of the best agent exists in IR, we can regard it as the (approximate)
Stackelberg solution. Otherwise, repeatedly check whether the current position of
an agent satisfying Kuhn-Tucker condition exists in IR or not in the same manner
mentioned above in order of the quality of the upper level objective function value.
If an agent whose current position satisfies Kuhn-Tucker condition and exists in IR,
the position is regarded as the (approximate) Stackelberg solution, and the solution
procedure is terminated.

6. Numerical examples

In order to investigate the efficiency of the proposed method, we conduct some numerical
experiments.
First, we consider a two-level nonlinear programming problem with 4 decision variables
and 8 constraints (P1) and one with 6 decision variables and 10 constraints (P2), and
compare the computational time of generating the initial population including 1000 agents
by the homomorphous mapping (Koziel & Michalewicz, 1999) with that by the random
method. The results are shown as in table 1.

www.intechopen.com

Stackelberg Solutions to Noncooperative Two-Level Nonlinear Programming Problems
through Evolutionary Multi-Agent Systems

97

Computational time (sec.)

P1 P2

Homomorphous mapping 1.500 3.109

Random method 177.650 2691.710

Table 1. Comparison of computational times of generating the initial population including
1000 agents

The results in table 1 show the effectiveness of the use of the homomorphous mapping in

generating the initial population.

Second, in order to investigate the efficiency of substeps 8-2 and 8-3, we compare the result

of EMAS without 8-2, 8-3 with that of EMAS with 8-2, 8-3 by setting both the number of

agents and the maximal generation number to 1000s. Results are shown as in table 2.

Upper level

objective function
Lower level

Objective function

EMAS without 8-2 and 8-3 -14.999991 0.999997

EMAS with 8-2 and 8-3 -24.0 0.0

Optimal value -24.0 0.0

Table 2. The efficiency of substeps 8-2 and 8-3

The results in table 2 show that both substeps 8-2 and 8-3 are worth being introduced in the

proposed method.

Next, in order to investigate the efficiency of substep 8-1 for improving the upper level

objective function value, we apply EMAS without 8-1 and one with 8-1.

Upper level objective function

Problem A (8 decision variables) Problem B (20 decision variables)

EMAS without 8-1 453.620022 -0.202166

EMAS with 8-1 452.087664 -0.286156

Table 3. The efficiency of substeps 8-1

To be more specific, problem A and B are formulated as:

Problem A: Upper level decision variables x1 = (x1, x2, x3, x4), lower level decision variables:

x2 = (x5, x6, x7, x8).

1

minimize
x f1(x1, x2) = x13+(x2–2)2–x3x4–2x52+x64+(x7–x8)2

where x2 solves

2

minimize
x f2(x1, x2) = –2x12+x23+2x32–x44+3x53–2x6+5x7+4x82

subject to 4x12–3x23+5(x3– 4)2–6x4–x5x6–3x74+5x8 ≤ 0
2x1x7–x22–3x3– 4x42+x52–x63–2x82 ≤ –12
5x1+x2–6x3+4x4–6x5–x6–3x7+x8 ≤ 5
–5 ≤ xj ≤ 5, j = 1, …, 8,

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

98

Problem B: Upper level decision variables x1 = (x1, …, x10), lower level decision variables x2

= (x11, …, x20) .

1

minimize
x f1(x1, x2) = –

20 20
4 2

1 1

20
2

1

2
= =

=

−Σ Π

Σ

j j
j j

j
j

cos (x) cos (x)

jx

where x2 solves

2

minimize
x

f2(x1, x2) = (x1–x14)(x17–x6)–(x4–x11)(x18–x7)+(x8–x12)(x5–
x19) –(x13–x3)(x10–x16)+(x20–x9)(x2–x15)

subject to
0.75–

20

1=
Π
j

xj ≤ 0

20

1=
Π
j

xj –7.5 ⋅20 ≤ 0

0 ≤ xj ≤ 10, j = 1, …, 20.

From the results in table 3, the procedure of substep 8-1 is meaningful for enhancing the
efficiency of the proposed method.
Furthermore, in order to investigate the efficiency of the proposed EMAS, we compare the
result obtained by it with that by two-level PSO method (Niwa et al., 2006) in the application
of both methods to a two-level nonlinear programming problem with 10 decision variables
and 3 constraints. In the numerical experiment, the number of agents is 1000, the maximal
generation number is 1000 and the number of trials is 10. Table 4 shows the best value, the
average value, the worst value of the upper level objective function obtained by the
proposed EMAS in 10 trials, the best value obtained by the two-level PSO (Niwa et al., 2006)
and the average computational time.

 Upper level objective function value Computational time (sec.)

Best -199.515027

Average -196.160929

Worst -192.904405

94.3028

PSO -184.600761 1357.313

Table 4. Comparison of the proposed EMAS with two-level PSO method

Table 4 shows that the proposed EMAS is superior to PSO because the best value obtained
by PSO is worse than the worst value of the proposed EMAS.
Finally, table 5 shows the effect of the number of agents and the number of generations on
computational time. Table 5 shows the computational time of EMAS linearly increases as
the number of agents and the number of generations.

The number of agents

1000 2000 3000

Generation 1000 165.375 330.500 489.343

Generation 2000 344.203 689.984 1034.234

Generation 3000 525.718 1054.718 1587.437

Table 5. Effect of the number of agents and the number of generations on computational time (sec)

www.intechopen.com

Stackelberg Solutions to Noncooperative Two-Level Nonlinear Programming Problems
through Evolutionary Multi-Agent Systems

99

7. Conclusion

In this chapter, we discussed an efficient approximate solution method based on
evolutionary multi-agent systems to obtain Stackelberg solutions to noncooperative two-
level programming problems. In particular, we proposed a new EMAS by incorporating the
concept of homomorphous mapping to generate feasible initial agents, the theory of the
Kuhn-Tucker condition for checking whether an agent exists around IR or not, and the idea
of reproduction in the infeasible region, together with the introduction of the searching
process of the infeasible region by infeasible agents in order to widen the search area.
Furthermore, we showed the efficiency of the proposed EMAS by comparing it with an
existing method, the two-level PSO method, through some numerical experiments. From the
numerical experimental results, it is indicated that the proposed EMAS is superior to the
two-level PSO method, and that the proposed EMAS is promising as an optimization
method for two-level nonlinear programming problems. In the near future, we will extend
the proposed method to noncooperative and cooperative multi-level programming.

8. References

M. A. Amouzegar & K. Moshirvaziri. (1999). Determining optimal pollution control policies:
an application of bilevel programming, European Journal of Operational Research, Vol.
119, No. 1, pp. 100--120

W. F. Bialas & M. H. Karwan. (1982). On two-level optimization, IEEE Transactions on
Automatic Control, Vol. AC-27, No. 1, pp. 211–214

W. F. Bialas & M. H. Karwan. (1984). Two-level linear programming, Management Science,
Vol. 30, No. 8, pp. 1004—1020

J. F. Bard & J. E. Falk. (1982). An explicit solution to the multi-level programming problem,
Computer and Operations Research, Vol. 9, No. 1, pp. 77—100

J. F. Bard & J. T. Moore. (1990). A branch and bound algorithm for the bilevel programming,
SIAM Journal on Scientific and Statistical Computing, Vol. 11, No. 2, pp. 281--292

B. Colson, P. Marcotte, G. Savard. (2005). A trust-region method for nonlinear bilevel
programming: algorithm and computational experience, Computational Optimization
and Applications, Vol. 30, No. 3, pp. 211—227

S. Dempe & J. F. Bard. (2001). Bundle trust-region algorithm for bilinear bilevel
programming, Journal of Optimization Theory and Applications, Vol. 110, No. 2, pp.
265--288

N. P. Faisca, V. Dua, B. Rustem, P. M. Saraiva, E. N. Pistikopoulos. (2007) Parametric global
optimization for bilevel programming, Journal of Global Optimization, Vol. 38, No. 4,
pp. 609—623

M. Fampa, L. A. Barroso, D. Candal, L. Simonetti. (2008). Bilevel optimization applied to
strategic pricing in competitive electricity markets, Computational Optimization and
Applications, Vol. 39, No. 2, pp. 121--142

Z. H. GUMUS & C. A. Floudas. (2001). Global optimization of nonlinear bilevel
programming problems, Journal of Global Optimization, Vol. 20, No. 1, pp. 1--31

P. Hansen, B. Jaumard, G. Savard. (1992). New branch-and-bound rules for linear bilevel
programming, SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 5,
pp. 1194--1217

www.intechopen.com

 Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications

100

S. Koziel, Z. Michalewicz. (1999). Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization, Evolutionary Computation, Vo. 7, No. 1, pp. 19-
-44

T. Matsui, K. Kato, M. Sakawa, T. Uno, K. Morihara. (2007). Particle swarm optimization
based heuristics for nonlinear programming problems, Proceedings of International
MultiConference of Engineers and Computer Scientists 2007, pp. 2312—2317

M. G. Nicholls. (1996). The applications of non-linear bi-level programming to be aluminium
industry, Journal of Global Optimization, Vol. 8, No. 3, pp. 245--261

I. Nishizaki & M. Sakawa. (1999). Stackelberg solutions to multiobjective two-level linear
programming problems, Journal of Optimization Theory and Applications, Vol. 103,
No. 1, pp. 161—182

I. Nishizaki & M. Sakawa. (2000). Computational methods through genetic algorithms for
obtaining Stackelberg solutions to two-level mixed zero-one programming
problems, Cybernetics and Systems: An International Journal, Vol. 31, No. 2, pp. 203—
221

I. Nishizaki, M. Sakawa, H. Katagiri. (2003). Stackelberg solutions to multiobjective two-
level linear programming problems with random variable coefficients, Central
European Journal of Operations Research, Vol. 11, No. 3, pp. 281--296

K. Niwa, Ichiro Nishizaki, M. Sakawa. (1999). Computational methods for obtaining
Stackelberg Solutions to two-level non-linear programming problems, In:
Proceedings of Second Asia-Pacific Conference on Industrial Engineering and Management
Systems, pp. 489—492

K. Niwa, K. Kato, I. Nishizaki, M. Sakawa. (2006). Computational methods through particle
swarm optimization for obtaining Stackelberg solutions to two-level nonlinear
programming problems, In: Proceedings of 22nd Fuzzy System Symposium, pp. 229--
230 (in Japanese)

E. Roghanian, S. J. Sadjadi, M. B. Aryanezhad. (2007). A probabilistic bi-level linear
multiobjective programming problem to supply chain planning, Applied
Mathematics and Computation, Vol. 188, No. 1, pp. 786--800

M. Sakawa & I. Nishizaki. (2001). Interactive fuzzy programming for multi-level nonconvex
nonlinear programming problems, In: Dynamical Aspects in Fuzzy Decision Making
(Ed. Y. Yoshida), Physica-Verlag, Heidelberg

M. Sakawa & I. Nishizaki. (2009). Cooperative and Noncooperative Multi-Level Programming,
Springer, New York

K. Shimizu, Y. Ishizuka, J. F. Bard. (1997). Nondifferentiable and Two-Level Mathematical
Programming, Kluwer Academic Publishers, Boston

M. Simaan & J. B. Cruz Jr. (1973). On the Stackelberg strategy in nonzero-sum games,
Journal of Optimization Theory and Applications, Vol. 11, No. 5, pp. 533--555

K. Socha & M. Kisiel-Dorohinicki. (2002). Agent-based evolutionary multiobjective
optimization, Proceedings of Congress on Evolutionary Computation, pp. 109--114

D. J. White & G. Anandalingam. (1993). A penalty function approach for solving bi-level
linear programs, Journal of Global Optimization, Vol. 3, No. 4, pp. 397--419

www.intechopen.com

Multi-Agent Systems - Modeling, Control, Programming,

Simulations and Applications

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-174-9

Hard cover, 522 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Masatoshi Sakawa, Hideki Katagiri and Takeshi Matsui (2011). Stackelberg Solutions to Noncooperative Two-

Level Nonlinear Programming Problems through Evolutionary Multi-Agent Systems, Multi-Agent Systems -

Modeling, Control, Programming, Simulations and Applications, Dr. Faisal Alkhateeb (Ed.), ISBN: 978-953-

307-174-9, InTech, Available from: http://www.intechopen.com/books/multi-agent-systems-modeling-control-

programming-simulations-and-applications/stackelberg-solutions-to-noncooperative-two-level-nonlinear-

programming-problems-through-evolutionar

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

