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1. Introduction  

In the real world, we often encounter situations where there are two or more decision 
makers in an organization with a hierarchical structure, and they make decisions in turn or 
at the same time so as to optimize their objective functions. Decision making problems in 
decentralized organizations are often modeled as Stackelberg games (Simaan & Cruz Jr., 
1973), and they are formulated as two-level mathematical programming problems (Shimizu 
et al, 1997; Sakawa & Nishizaki, 2009). In the context of two-level programming, the decision 
maker at the upper level first specifies a strategy, and then the decision maker at the lower 
level specifies a strategy so as to optimize the objective with full knowledge of the action of 
the decision maker at the upper level. In conventional multi-level mathematical 
programming models employing the solution concept of Stackelberg equilibrium, it is 
assumed that there is no communication among decision makers, or they do not make any 
binding agreement even if there exists such communication. Computational methods for 
obtaining Stackelberg solutions to two-level linear programming problems are classified 
roughly into three categories: the vertex enumeration approach (Bialas & Karwan, 1984), the 
Kuhn-Tucker approach (Bard & Falk, 1982; Bard & Moore, 1990; Bialas & Karwan, 1984; 
Hansen et al, 1992), and the penalty function approach (White & Anandalingam, 1993). The 
subsequent works on two-level programming problems under noncooperative behavior of 
the decision makers have been appearing (Nishizaki & Sakawa, 1999; Nishizaki & Sakawa, 
2000; Gumus & Floudas, 2001; Nishizaki et al., 2003; Colson et al., 2005; Faisca et al., 2007) 
including some applications to aluminium production process (Nicholls, 1996), pollution 
control policy determination (Amouzegar & Moshirvaziri, 1999), tax credits determination 
for biofuel producers (Dempe & Bard, 2001), pricing in competitive electricity markets 
(Fampa et al, 2008), supply chain planning (Roghanian et al., 2007) and so forth.  
However, processing time of solution methods for noncooperative two-level linear 

programming problems, for example, Kth Best method by Bialas et al. (1982) and Branch-

and-Bound method by Hansen et al. (1992), may exponentially increases at worst as the size 

of problem increases since they are strict solution methods based on enumeration. In order 

to obtain the (approximate) Stackelberg solution with a practically reasonable time, 

approximate solution methods were presented through genetic algorithms (Niwa et al., 

1999) and particle swarm optimization (PSO) (Niwa et al., 2006).  
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As one of the most promising approximate solution methods, Socha et al. (2002) proposed a 
fast computational method through an evolutionary multi-agent system (EMAS) for 
obtaining (approximate) Pareto optimal solution sets for multiobjective programming 
problems. However, there is no study on the EMAS-based method for solving two-level 
nonlinear programming problems.  
In this chapter, we propose an efficient EMAS-based computational method for obtaining 
(approximate) Stackelberg solutions to two-level nonlinear programming problems. 

2. Two-level programming problems and solution concepts 

In this chapter, we consider two-level programming problems formulated as follows: 
 

1

minimize
x f1(x1, x2) 

where x2 solves 

2

minimize
x f2(x1, x2) 

subject togi (x1, x2) ≤ 0, i = 1, 2, …, m 

(1) 

 

where x1 is an n1 dimensional decision variable column vector for the DM at the upper level 

(DM1), x2 is an n2 dimensional decision variable column vector for the DM at the lower level 

(DM2), f1(x1, x2) is the objective function for DM1, f2(x1, x2) is the objective function for DM2 

and gi(x1, x2), i=1, 2,…, m are constraint functions. In general, fl( ⋅ ), l=1,2 and gi( ⋅ ), i=1,2, …, m 

are nonlinear. In (1), if the DM at the upper level (DM1) adopts a decision x1, the DM at the 

lower level (DM2) is supposed to select a decision to minimize f2( ⋅ ) in the feasible region of 

(1) under the DM1's decision, ( )2 1ˆ ˆx x , called a rational reaction. Then, the optimal solution 

(Stackelberg solution) to (1) is the point (x1*, x2*(x1*)) which minimizes f1( ⋅ ) in the inducible 

region (IR) which is the set of points ( )( )1 2 1
ˆ ˆ ˆ,x x x  for all possible decisions 1x̂ . Figure 1 

illustrates an example of a Stackelberg solution for a two-level linear programming problem. 
 

x

x1

2

0

z

X

( )1 x ,1 x2
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Inducible region (IR)

Stackelberg
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Fig. 1. An example of Stackelberg solution 
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3. EMAS for two-level programming problems 

In this section, we outline the framework of a computational method through EMAS for 

obtaining Stackelberg solutions to two-level programming problems.  

In general, EMAS-based methods consist of N agents ar, r = 1, 2, …, N, each of which is 

characterized by some attributes, i.e., the current position (xr1, xr2), the upper level objective 

function value f1(xr1, xr2), the lower level objective function value f2(xr1, xr2), the upper level 

energy erU and the lower level energy erL. In the EMAS-based method, the attributes of 

agents are updated through the evolutionary process with some operations like energy 

exchange, reproduction and move.  

First, carry out the search to the direction of improving the lower level objective function by 

moving each agent toward IR. To be more specific, in the upper level decision variable 

space, if there exists at least one agent in the neighborhood of each agent ar, select one of 

agents, ar’, as a communicating opponent, and compare the lower level objective function 

value of ar with that of ar’. Then, the superior agent gains the lower level energy from the 

inferior one. The inferior agent is killed if the lower level energy of it becomes empty. 

Otherwise, it is moved according to some rule whose details are described later in Section 4. 

If there exists no agent in the neighborhood of ar,  move ar to the position where the lower 

level objective function value becomes better by changing xr2. 

Next, carry out the search to the direction of improving the upper level objective function by 

moving each agent near IR toward a Stackelberg solution. For each agent ar, after selecting 

an agent, ar’’, which is the nearest agent around IR as a communicating opponent, compare 

the upper level objective function value of ar with that of ar’’. Then, the superior agent gains 

the upper level energy from the inferior one. The inferior agent is not killed even if its lower 

level energy of it becomes empty. It gains the same amount of the upper level energy as the 

initial value. This supplement is done to maintain the number of agents with nonzero upper 

level energy. After exchanging the upper level energies between the superior and inferior 

agents, if the upper level energy of the inferior agent is sufficiently large, generate a new 

agent in the direction from the inferior one to the superior one.  

By repeating these procedures, agents with large upper level objective function values 

congregate around IR, which means the current position of the agent with the largest upper 

level objective function value can be regarded as the (approximate) Stackelberg solution.  

The procedure is summarized as follows. 
Step 1. Generate N agents ar, r = 1,2, …, N at random. 
Step 2. Let T := 1. 
Step 3. Let r := 1. 
Step 4. For the rth agent ar, carry out the search to the direction of improving the lower 

level objective function value in order to move the current position of the agent 
toward IR.  

Step 5. If the lower level energy of the rth agent ar is greater than a threshold, i.e., the 
current position of the agent is regarded as being in IR, carry out the search to the 
direction of improving the upper level objective function value so that the agent is 
moved toward the Stackelberg solution.   

Step 6. If r = N, go to step 7. Otherwise, let r := r+1 and return to step 4. 
Step 7. If T = Tmax, terminate the procedure and the current best solution is regarded as a 

Stackelberg solution. Otherwise, let T := T+1 and return to step 3. 
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4. EMAS for two-level nonlinear programming problems 

This section devotes to introducing some basic ideas of a new EMAS for two-level nonlinear 

programming problems. In applying the original EMAS directly to the nonlinear case, there 

often occur two problems; one is that it is difficult to obtain feasible initial agents generated 

randomly in step 1, and the other is that the judgment of the existence of an agent around IR 

by the amount of the lower level energy is insufficient in most cases since the shape of IR for 

nonlinear cases is fairly complicated in general than that for the linear case.  

In order to resolve the former problem, we incorporate the idea of homomorphous mapping 

used in (Koziel & Michalewicz, 1999) into the proposed method in order to generate feasible 

initial agents. In addition, in order to widen the search area, we permit the reproduction in 

the infeasible region together with the search of the infeasible region by infeasible agents.  

On the other hand, for tacking the latter problem, we utilize the Kuhn-Tucker condition of 

problem (2), which is the necessary condition for the current position to be in IR, in order to 

obtain the rational reaction x 2( x 1) corresponding to x 1 for the purpose of more accurately 

check whether an agent with the current position ( x 1, x 2) exists around IR or not. 

 

minimize       f2( x 1, x2) 

subject to       gi ( x 1, x2) ≤ 0, i=1, 2, …, m 
(2)

 

The Kuhn-Tucker condition of (2) is expressed as follows. 

( ) ( )2 1 2 1 2
1

   0∗ ∗ ∗

=

∇ + λ ∇ = λ ≥∑ 0
m

* 
i i

i

f , g , ,x x x x ,  

( ) ( )1 2 1 2 0    0  1  2  ∗ ∗ ∗≤ λ = = …i i ig , , g , ,i , , ,mx x x x  

It should be noted here that the best position ( )1 2
# #,x x obtained through the search by EMAS 

does not always exist in IR even if it satisfies the Kuhn-Tucker condition. In order to find a 

rational reaction for the upper level decision 1
#x  of the best solution, the following problem 

with respect to the lower level objective function is solved. 
 

minimize  1 2
#f ( , )x x  

subject to  1 2
#

ig ( , )x x  ≤ 0, i=1, 2, …, m 
(3)

 

Since (3) is a single-objective nonlinear programming problem, we can solve the problem by 

using an approximate solution method based on PSO (Matsui et al, 2007) to check whether 

the (approximate) optimal solution (x*2) is equal to 2
#x  or not. If (x*2) = 2

#x , we can regard 

1, 2( )# #x x  as the (approximate) Stackelberg solution since it exists in IR. Otherwise, repeatedly 

check whether the current position of an agent satisfying Kuhn-Tucker condition exists in IR 

or not in the same manner mentioned above in order of the quality of the upper level 

objective function value. If an agent whose current position exists in IR, the position is 

regarded as the (approximate) Stackelberg solution. 
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5. Detailed procedure of the proposed EMAS 

In this section, we describe the details of the computational procedures in the proposed 
EMAS for obtaining (approximate) Stackelberg solutions to noncooperative two-level 
programming problems.  
In the proposed EMAS-based method, we use N agents ar, r=1, 2 …, N, each of which is 
characterized by some attributes, i.e., the current position (xr1, xr2), the upper level objective 
function value f1(xr1, xr2), the lower level objective function value f2(xr1, xr2), the energy er and 
the agent state variable kr. If Kuhn-Tucker condition is satisfied for the rth agent ar whose 
current position is in the feasible region, let kr=1. If not, let kr=0. For agents in the infeasible 
region, let kr<0.  
The procedure of the proposed EMAS-based method is summarized as follows. 
Step 1. Generate N agents ar, r=1, 2, …, N by using the homomorphous mapping (Koziel & 

Michalewicz, 1999).  
Step 2. Let T := 1.  
Step 3. Let r := 1.  
Step 4. If kr=0, go to step 5. If kr=1, go to step 6. If kr<0, go to step 8.  
Step 5. Carry out the search to the direction of improving the lower level objective function 

value. To be more specific, for the rth agent ar, choose an agent ar’ randomly. Then, 
compare f2(xr1, xr2) with f2(xr1, xr’2). If f2(xr1, xr2) < f2(xr1, xr’2), let xp2 := xr2 and xp’2 := 
xr’2. Otherwise, let xp2 := xr’2 and xp’2 := xr2.  
Then, update xp’2 by the following scheme: 

 ( )2 2 2 2 2= +p’ p’ p p’: R –x x x x  (4) 

where R is a uniform random number in [0,1]. Repeat the comparison between 
f2(xp1, xp2) and f2(xp’1, xp’2) and the update of xp’2 n times. Let the final xp2 be xr2. If the 
current position of ar satisfies Kuhn-Tucker condition, let kr:=1 and go to step 6. 
Otherwise, go to step 9. 

Step 6. If kr=1, carry out the search to the direction of improving the upper level objective 
function value. To be more specific, choose an agent ar’’ which satisfies Kuhn-
Tucker condition at random as a comparing opponent and compare the upper level 
objective function value of ar with that of ar’’. Then, the superior agent gains the 
energy from the inferior one. Let the superior agent denote ar’’ and the inferior one 
denote ar. If the inferior agent is killed by the disappearance of energy, go to step 7. 
Otherwise, go to step 9. 

Step 7. Carry out the reproduction of the killed agent. Then, reproduce ar with the current 
position which is determined as: 

 ( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2    2   = +r r r r r’’ r’’ r r, : , R , – , .x x x x x x x x  (5) 

where R is a uniform random number in [0,1]. If the current position of the 
reproduced ar is infeasible, let kr:=-1 and go to step 8. Otherwise, let kr:=0 and go to 
step 9. 

Step 8. Carry out the search in the infeasible region. If -t1 ≤ kr < 0, go to substep 8-1. If -t2 ≤ 
kr < -t1, go to substep 8-2. If kr = -t2, go to substep 8-3. Here, let 0<t1<t2.  
Substep 8-1: Let an agent with the current position (xr, 1, xr, 2, …, xr*, i, …, xr, n2) 
denote ar’. Here, r* is randomly chosen from among {1, 2, …, N} and i is randomly 
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chosen from among {1, 2, …, n1+n2}. Compare f1(xr1, xr2) with f2(xr’1, xr’2). Let the 
superior agent and the inferior one denote as and as’, respectively. Then, update 
(xs’1, xs’2) by the following scheme:  

 ( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2   2   = +s’ s’ s’ s’ s s s’ s’, , R , – ,x x x x x x x x  (6) 

where R is a uniform random number in [0,1]. Repeat the comparison between 
f1(xs1, xs2) and f1(xs’1, xs’2) and the update of (xs’1, xs’2) n' times. Let the final (xs1, xs2) be 
(xr1, xr2). If (xr1, xr2) is feasible, let kr:=0. Otherwise, let kr:=kr-1. Go to step 9. 
Substep 8-2: Choose an agent ar' randomly. Compare (xr1, xr2) with (xr’1, xr’2) using 
the following function 

( ) ( ) ( )1 2 1 2 1 2
1

  0
=

= >∑
m

i i
i

h , g , ,g ,x x x x x x  

which is the degree of violation of the constraints. Let the superior position denote 
(xu1, xu2) and the inferior one denote (xu’1, xu’2). Then, update (xu’1, xu’2) by the 
following scheme:  

( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2    2   = +u’ u’ u’ u’ u u u’ u’, , R , – ,x x x x x x x x  

where R is a uniform random number in [0,1]. Repeat the comparison between 
h(xu1, xu2) and h(xu'1, xu'2) and the update of (xu'1, xu'2) n'' times. Let the final (xu1, xu2) 
be (xr1, xr2). If (xr1, xr2) is feasible, let kr:=0. Otherwise, let kr:=kr-1. Go to step 9. 
Substep 8-3: Choose an agent ar’ whose current position is feasible randomly, and 
move ar to the feasible region by the bisection method between ar’ and ar. Go to step 9. 

Step 9. If r = N, go to step 10. Otherwise, let r := r+1 and return to step 4. 
Step 10. If T = Tmax, go to step 11. Otherwise, let T := T+1 and return to step 3. 
Step 11. Check whether the current position of the best agent exists in IR or not by solving 

(3) through the revised PSO method (Matsui et al., 2007), which is one of most 
promising solution methods for nonlinear programming problems. If the current 
position of the best agent exists in IR, we can regard it as the (approximate) 
Stackelberg solution. Otherwise, repeatedly check whether the current position of 
an agent satisfying Kuhn-Tucker condition exists in IR or not in the same manner 
mentioned above in order of the quality of the upper level objective function value. 
If an agent whose current position satisfies Kuhn-Tucker condition and exists in IR, 
the position is regarded as the (approximate) Stackelberg solution, and the solution 
procedure is terminated.  

6. Numerical examples 

In order to investigate the efficiency of the proposed method, we conduct some numerical 
experiments.  
First, we consider a two-level nonlinear programming problem with 4 decision variables 
and 8 constraints (P1) and one with 6 decision variables and 10 constraints (P2), and 
compare the computational time of generating the initial population including 1000 agents 
by the homomorphous mapping (Koziel & Michalewicz, 1999) with that by the random 
method. The results are shown as in table 1. 
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Computational time (sec.) 
 

P1 P2 

Homomorphous mapping 1.500 3.109 

Random method 177.650 2691.710 

Table 1. Comparison of computational times of generating the initial population including 
1000 agents 

The results in table 1 show the effectiveness of the use of the homomorphous mapping in 

generating the initial population.   

Second, in order to investigate the efficiency of substeps 8-2 and 8-3, we compare the result 

of EMAS without 8-2, 8-3 with that of EMAS with 8-2, 8-3 by setting both the number of 

agents and the maximal generation number to 1000s. Results are shown as in table 2. 

 

 
Upper level 

objective function 
Lower level 

Objective function 

EMAS without 8-2 and 8-3 -14.999991 0.999997 

EMAS with 8-2 and 8-3 -24.0 0.0 

Optimal value -24.0 0.0 

Table 2. The efficiency of substeps 8-2 and 8-3 

The results in table 2 show that both substeps 8-2 and 8-3 are worth being introduced in the 

proposed method. 

Next, in order to investigate the efficiency of substep 8-1 for improving the upper level 

objective function value, we apply EMAS without 8-1 and one with 8-1.  

 

Upper level objective function 
 

Problem A (8 decision variables) Problem B (20 decision variables) 

EMAS without 8-1 453.620022 -0.202166 

EMAS with 8-1 452.087664 -0.286156 

Table 3. The efficiency of substeps 8-1 

To be more specific, problem A and B are formulated as: 

Problem A: Upper level decision variables x1 = (x1, x2, x3, x4), lower level decision variables: 

x2 = (x5, x6, x7, x8). 

 

1

minimize
x f1(x1, x2) = x13+(x2–2)2–x3x4–2x52+x64+(x7–x8)2 

where x2 solves 

2

minimize
x f2(x1, x2) = –2x12+x23+2x32–x44+3x53–2x6+5x7+4x82 

subject to 4x12–3x23+5(x3– 4)2–6x4–x5x6–3x74+5x8 ≤ 0 
2x1x7–x22–3x3– 4x42+x52–x63–2x82 ≤ –12 
5x1+x2–6x3+4x4–6x5–x6–3x7+x8 ≤ 5 
–5 ≤ xj ≤ 5, j = 1, …, 8,  
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Problem B: Upper level decision variables x1 = (x1, …, x10), lower level decision variables x2 

= (x11, …, x20) . 

1

minimize
x f1(x1, x2) = –

20 20
4 2

1 1

20
2

1

2
= =

=

−Σ Π

Σ

j j
j j

j
j

cos (x ) cos (x )

jx

 

where x2 solves 

2

minimize
x

f2(x1, x2) = (x1–x14)(x17–x6)–(x4–x11)(x18–x7)+(x8–x12)(x5–
x19) –(x13–x3)(x10–x16)+(x20–x9)(x2–x15) 

subject to 
0.75–

20

1=
Π
j

xj ≤ 0 

20

1=
Π
j

xj –7.5 ⋅20 ≤ 0 

0 ≤ xj ≤ 10, j = 1, …, 20. 
 

From the results in table 3, the procedure of substep 8-1 is meaningful for enhancing the 
efficiency of the proposed method.  
Furthermore, in order to investigate the efficiency of the proposed EMAS, we compare the 
result obtained by it with that by two-level PSO method (Niwa et al., 2006) in the application 
of both methods to a two-level nonlinear programming problem with 10 decision variables 
and 3 constraints. In the numerical experiment, the number of agents is 1000, the maximal 
generation number is 1000 and the number of trials is 10. Table 4 shows the best value, the 
average value, the worst value of the upper level objective function obtained by the 
proposed EMAS in 10 trials, the best value obtained by the two-level PSO (Niwa et al., 2006) 
and the average computational time. 
 

 Upper level objective function value Computational time (sec.) 

Best -199.515027 

Average -196.160929 

Worst -192.904405 

94.3028 

PSO -184.600761 1357.313 

Table 4. Comparison of the proposed EMAS with two-level PSO method 

Table 4 shows that the proposed EMAS is superior to PSO because the best value obtained 
by PSO is worse than the worst value of the proposed EMAS.  
Finally, table 5 shows the effect of the number of agents and the number of generations on 
computational time.  Table 5 shows the computational time of EMAS linearly increases as 
the number of agents and the number of generations. 
 

The number of agents 
 

1000 2000 3000 

Generation 1000 165.375 330.500 489.343 

Generation 2000 344.203 689.984 1034.234 

Generation 3000 525.718 1054.718 1587.437 

Table 5. Effect of the number of agents and the number of generations on computational time (sec) 
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7. Conclusion 

In this chapter, we discussed an efficient approximate solution method based on 
evolutionary multi-agent systems to obtain Stackelberg solutions to noncooperative two-
level programming problems. In particular, we proposed a new EMAS by incorporating the 
concept of homomorphous mapping to generate feasible initial agents, the theory of the 
Kuhn-Tucker condition for checking whether an agent exists around IR or not, and the idea 
of reproduction in the infeasible region, together with the introduction of the searching 
process of the infeasible region by infeasible agents in order to widen the search area. 
Furthermore, we showed the efficiency of the proposed EMAS by comparing it with an 
existing method, the two-level PSO method, through some numerical experiments. From the 
numerical experimental results, it is indicated that the proposed EMAS is superior to the 
two-level PSO method, and that the proposed EMAS is promising as an optimization 
method for two-level nonlinear programming problems. In the near future, we will extend 
the proposed method to noncooperative and cooperative multi-level programming.  
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