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1. Introduction    

Multi-agent systems have become more and more important in many aspects of computer 

science such as distributed artificial intelligence, distributed computing systems, robotics, 

artificial life, etc. Based on the belief that any complex system is more than the sum of its 

individual elements (Holand, 1999, Morgan, 1923, Morowitz, 2002), multi-agent systems 

introduce the issue of the emergence of behavior through interactions between agents 

(Forrest, 1991). Accordingly, a coordinated behavior needed to archive complex tasks might 

emerge in multi-agent systems from relatively simple defined interactions between agents. 

An agent is a virtual entity that can act, perceive the proximity of its environment and 

communicate with others; it is autonomous and has the ability to achieve its goals. Multi-

agent systems contain a world (environment), entities (agents), relations between the 

entities, a way the world is perceived by the entities, a set of operations that can be 

performed by the entities and changes in the world as a result of these actions.  

The main application areas of multi-agent systems are problem solving, simulation, 

collective robotics, software engineering, and construction of synthetic worlds (Ferber, 

1999). Considering the latter application area and focusing on the autonomy of agents and 

the interactions that link them together (Parunak, Van, Brueckner, Fleischer & Odell, 2002), 

the following important issues can be raised: What is the minimum amount of perception 

information needed by agents in order to perceive the world? How can agents cooperate? 

What are the methods, and what are the lower bounds of communications, required for 

them to coordinate their actions? What architecture should they feature so that they can 

achieve their goals? What approaches can be applied to automatically construct their 

functionality, with the quality of such a design being competitive with human-handcrafted 

design? These issues are of special interest, since the aim is to create multi-agent systems, 

which are scalable, robust, flexible, and able to adapt to changes automatically. These 

features of multi-agent systems are believed to be particularly important in real world 

applications where the approaches to construct synthetic worlds can be viewed as practical 

methods, techniques towards creating complex “situation-aware” multi-computer, multi-

vehicle, or multi-robot systems based on the concepts of agents, communication, 

cooperation and coordination of actions. 

The purpose of our research is an automatic design of the coordinated behavior among 
agents.  Particularly, we are interested in the robustness of the coordinated behavior to some 
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uncertainty derived from a mechanical or electrical noise of real-world applications. In this 
document we intend to highlight the following issues: 
- Applying the genetic programming paradigm for evolving the coordinated behavior 

among agents, which interact with each other according to implicit interaction in an 
ideal noiseless environment, 

- Testing the capability of the above behavior in a noisy environment, and  
- Evolving the behavior again in two different environments; noiseless environment and 

noisy environment, for a comparative investigation of the robustness of the two types of 
evolved behavior. 

We employ the predator prey pursuit problem (Benda, 1986) to verify the hypothesis of 

emergence of surrounding behavior in multi-agent systems from simply defined 

interactions between the agents. The noisy environment is implemented as the perceptual 

noise of predator agents; that is to say, in noisy environment the predator agents get 

uncertain perception information with some noise. 

The remaining of the document is organized as follows. Section 2 introduces an instance of 

the general, well defined yet difficult to solve predator-prey pursuit problem as the task 

which we use in this work. Section 3 elaborates on the strongly typed genetic programming, 

employed as an algorithmic paradigm to evolve the functionality of agents. Section 4 

explains the model of the perceptual noise of the predator agents. In Section 5, the 

comparative empirical results of evolution of surrounding behavior in a noiseless 

environment, execution of the surrounding behavior in a noisy environment and re-

evolution of the surrounding behavior in each of the noiseless and the noisy environment 

are presented. Our conclusions are drawn in Section 6. 

2. Configuration of a multi-agent system 

2.1 Instance of Predator prey pursuit problem 

In order to investigate relationships between a coordinated behavior among agents and 

uncertainty of their perception, we address predator prey pursuit problem (Benda, 1986), 

which is a game that some predator agents chase and catch a prey agent on a two 

dimensional field. The problem is general, well-defined and well-studied in multi-agent 

systems yet difficult to solve because the predator agents cannot capture the prey agent 

without a harmonious teamwork. 

In our work, there are four predator agents and a prey agent on a two dimensional torus 

field. Considering a more realistic instance of the problem than the previous works (Haynes 

& Sen, 1996, Haynes, Wainwright, Sen & Schoenefeld, 1997, Luke & Spector, 1996), the field 

is a simulated continuous torus instead of coarse grid. The snapshot of our software is 

shown in Figure 1. All agents have moving and perceptual abilities. Their moving abilities 

are also continuous; they can turn to any angle from their current heading and can run with 

speed equal to 0, 0.25, 0.5, 0.75 and 1.0 of their maximum speed. We introduce a proximity 

perception model in that the predator agents can see the prey agent and only the closest 

predator agent, only when these agents are within the limited range of visibility of their 

simulated sensors. The prey employs random wandering if there is no predator in sight and 

an a priori handcrafted optimal escaping strategy as soon as predator(s) become “visible.” In 

order to make a situation where the predator agents cannot capture the prey unless they 

collaborate with each other, we made the maximum speed of the predator agents lower than 
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that of the prey agent but the range of visibility of the predator agents wider than that of the 

prey to allow the predators to stalk the prey. 

The situation requires a relatively complex behavior that the predator agents surround the 
prey agent on all sides in the world, and the behavior should be emerged from simple, local, 
implicit and proximity-defined interactions between the predator agents. 
 

 

Fig. 1. A snapshot of the instance of predator prey pursuit problem. 

2.2 Architecture of the agents 

We adopted a subsumption architecture (Brooks, 1986) as the architecture of the predator 
agents; it was comprised of functional modules separated in three levels: wandering, greedy 
chase and surrounding (Figure 2(a)). Wandering module makes the predator agents walk  
 

 
Fig. 2. Subsumption architecture of the agents: functional structure (a) and states (b). 
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around randomly when other agents are not within their sight, and greedy chase module 

makes them chase the prey agent while it is within their sight. These modules are 

handcrafted. Surrounding module makes the predator agents run evolved behavior 

program when another predator agent is in their sight. The program is designed 

automatically via simulated evolution. The highest priority module is surrounding, the next 

is greedy chase, and the lowest priority is wandering. The priority allows the following two 

things to be evolved simultaneously; (i) the capability of agents to resolve social dilemmas, 

determined by the way surrounding behavior overrides greedy chase when the prey is in 

sight, and (ii) the capability to resolve the exploration-exploitation dilemma, determined by 

the ability of surrounding behavior to override wandering when the prey is invisible. 

3. Genetic programming to automatically design surrounding behavior 

We employ genetic programming to automatically design surrounding behavior 

represented as a set of stimulus-response rules of the predator agents. Genetic programming 

is a domain-independent problem solving approach in which a population of computer 

programs (individuals' genotypes, in this case surrounding behavior programs) is evolved 

to solve problems (Koza, 1992).  

The simulated evolution in genetic programming is based on the Darwinian principle of 

reproduction and survival of the fittest. The fitness of each individual is based on the quality 

with which the phenotype of the simulated indivdual is performing in a given environment; 

that is to say, predator agents that can capture the prey agent successfully and quickly have 

a higher fitness value, and their surrounding behavior program are more likely to remain in 

the next generation. 

In the remaining of this section, we elaborate strongly-typed genetic programming for 
limiting the search space of genetic programming and the major attributes of genetic 
programming; function and terminal set, genetic representation, genetic operations and 
fitness evaluation. 

3.1 Strongly-typed genetic programming with exception handling 

Genetic programming can automatically evolve a set of stimulus-response rules of arbitrary 

complexity without the need to a priori specify the extent of such complexity; however, that 

might often cause an enormous computational effort needed to discover a huge search space 

while looking for potential solutions to the problem. In that respect the introduction of 

"pruning algorithms" is a significant towards an efficient search for a solution in huge and 

multidimensional search spaces (Morowitz, 2002). We impose a restriction on the syntax of 

evolved genetic programs based on some a priori known semantics. The approach is known 

as strongly typed genetic programming and its advantage over canonical GP in achieving 

better computational effort is well proven (Montana, 1995).  

Considering the sample rule shown in Figure 3, which express a reactive behavior that if 
each predator agent gets the stimulus of its own speed being less than 20 mm/s, it turns to 
the bearing of the peer agent (i.e. the closest predator agent that is visible) plus 10 degrees, it 
is noticeable that both the return values of functions and their operands are associated with 
data types such as Boolean (the return value of Boolean expression (Speed < 20)), speed (e.g. 
variable Speed and constant 20), and angle of visibility (bearing) (e.g. variable Peer a and 
constant 10). An eventual arbitrary creation or modification of a genetic program 
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semantically would make little sense: indeed, it is unfeasible to maintain Boolean 
expressions comparing operands of different data types, because they have different 
physical units.  
Moreover, since we introduce sensor range limits, there is a clear possibility of maintaining 
phenotypically inactive, genotypically neutral code in genetic programs; for example, if a 
Boolean expression, that compares a perception variable of a certain data type with a 
constant value beyond that data type’s limits (e.g. Peer d > 1000, if that sensors’ range is 
only 400) evaluates always as a constant True or False. Analogically, the semantics of action 
Turn( ) imply a parameter of data type angle. And allowing only addition and subtraction as 
arithmetic operations implies that each operand involved in the expression that defines the 
parameter (the resulting turning angle) should have the same data type angle. Addressing 
these concerns, the grammar of strongly-typed genetic programming establishes generic 
data types of visible angle, distance, speed, and Boolean with corresponding allowed ranges 
of values for their respective instances (variables and ephemeral constants). In addition, it 
stipulates the data type of the results of arithmetic and logical expressions, and the allowed 
data type of operands (perception variables and ephemeral constants) involved in these 
expressions. 
We would like to emphasize that proposed approach is not based on domain-specific 
knowledge, and therefore the proposed strongly-typed genetic programming cannot be 
considered a “stronger” approach compromising the domain-neutrality of the very GP 
paradigm itself. The limitations imposed on the syntax of genetic programs are solely based 
(i) on the natural presumption that the predator agents are fully aware of their physically 
reasonable limits of their perception- and moving abilities; and (ii) on the common rule in 
strongly-typed 3G algorithmic languages that all the operands in addition, subtraction and 
comparison operations should have the same data types. These limitations do not 
incorporate a priori obtained knowledge, specific for the domain nor the external world 
where the agents are situated. 
 

 

Fig. 3. Sample stimulus-response rule. 

3.1.1 Function set and terminal set 

Genetic programs can be represented as parsing trees whose nodes are functions, variables 
or constants. The nodes that have sub-trees are non-terminals; they represent functions to 
which the sub-trees represent the arguments. Variables and constants are terminals; they 
take no arguments and they always are leaves in the parsing trees.  
The set of those terminals includes the perceptions (stimuli) and actions (responses) the 
predator agents are able to perform as summarized in Table 1.  
The function set comprises the arithmetic and logical operators, and the IF-THEN function 
which establish the relationship between current perceptions and corresponding actions. 
The terminal set comprises the sensory abilities, state variable, ephemeral constants and 
moving abilities. The sensory abilities and state variable are variable numbers; these 
numbers can be renewed by the perceptions of each predator agents, while the ephemeral 
constants and moving abilities are constant numbers. The detail of those sets is described in 
Table 1. 
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Category Designation Explanation 

Function set 
IF-THEN 
IF-THEN-NA, 
LE, GE, WI, EQ, NE, + , − 

IF-THEN 
IF-THEN with exception handling 
 ≤ , ≥ , Within, = , Not = , + , - 

   

Terminal set   

Sensory abilities Prey_d, Peer_d 
Distance to the prey and to the 
closest 
agent, mm. 

 Prey_a, Peer_a 
Bearing of the prey and of the closest 
agent, degrees 

 PreyVisible, PeerVisible 
True if prey/agent is “visible,” false 
otherwise 

State variable Speed Speed of the agent, mm/s 
Ephemeral constants Integer  

Moving abilities Turn(a) 
Turns relatively to a degrees 
 (a > 0: clockwise) 

 Stop, Go_1.0 
Sets speed to 0, or to maximum,  
respectively 

 Go_0.25, Go_0.5, Go_0.75 
Sets speed to 25%, 50%, 75% 
of maximum 

Table 1. Function set and terminal set of strongly-typed genetic programming. 

3.1.2 Representation of genotype 

Inspired by its flexibility, and the recently emerged widespread adoption of document 

object model (DOM) and extensible mark-up language (XML), we represent evolved 

genotypes of simulated the predator agents as DOM-parse trees featuring equivalent flat 

XML-text in a way as first implemented in [DOM/XML]. Our additional motivation stems 

from the fact that despite the recently reported use of DOM/XML for representing 

computer architectures, source code, and agents’ communication languages, we are not 

aware of any attempts to employ XML technology for representing evolvable structures 

such as genetic programs in a generic, standard, and portable way. Our approach implies 

that the genetic operations are performed on DOM-parse trees using off-the shelf, platform- 

and language neutral DOM-parsers. The corresponding XML-text representation (rather 

than S-expression) is used as a flat file format, feasible for migration of genetic programs 

among the computational nodes in an eventual distributed implementation of the genetic 

programming. A fragment of XML representing of the above sample stimulus-response rule 

(refer to Figure 3) is shown in Figure 4. The benefits of using DOM/XML-based 

representations of genetic programs, as documented in (Tanev, 2003) can be briefly 

summarized as follows: 

i. XML tags offer a generic support for maintaining data types in genetic programming 
(strongly typed genetic programming); 

ii. W3C-standard XML schemas offer a generic way to represent the grammar of genetic 
programming; 

iii. Fast prototyping of genetic programming by using the standard built-in API of DOM-
parsers for maintaining and manipulating genetic programs;  
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iv. OS neutrality of parsers;  
v. Algorithmic language neutrality of DOM-parsers; 
vi. Inherent Web-compliance of an eventual parallel distributed implementation of genetic 

programming. 
 

 

Fig. 4. Fragment of XML representation of sample stimulus-response rule. 

3.1.3 Genetic operations 

Binary tournament selection is employed; a robust, commonly used selection mechanism, 

which has proved to be efficient and simple to code. Crossover operation is defined in a 

strongly typed way in that only the nodes (and corresponding sub-trees) of the same data 

type (i.e. labelled with the same tag) from parents can be swapped. Sub-tree mutation is also 

allowed in a strongly typed way in that syntactically correct sub-tree replaces a random 

node in a genetic program. The routine refers to the type of node it is going to currently alter 

and applies a randomly chosen rule from the set of applicable rules as defined in the 

grammar of strongly-typed genetic programming. The transposition mutation also operates 

on a single genetic program by swapping two random nodes having the same data type. 

3.1.4 Breeding strategy 

We adopted a homogeneous breeding strategy in which the performance of a single genetic 

program cloned to all the predator agents is evaluated. Anticipating that the symmetrical 

nature of a world populated with identical predator agents is unlikely to promote any 

specialization in their behavior, we consider the features of such a homogeneous multi-

agent society as (i) adequate to the world and (ii) consistent with our previously declared 

intention to create a robust and scalable multi-agent system. 

3.1.5 Fitness functions 

The fitness F measured for the trial starting with a particular initial situation is evaluated as 

the length of the radius vector of the derived agents’ behavior in the virtual energy-distance-

time space as: 

 2 2
A A cF dE D T K C= + + + ×  (1) 
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where dEA is the average energy consumption during the trial, DA is the average distance to 
the prey by the end of the trial, and T is the elapsed time of the trial. C is the complexity of 
the agents’ genetic representation in tree nodes, and KC (equal to 0.1) is the scaling 
coefficient of the penalty imposed for complex genetic representations of the agents. 
Actually, T is an especially prime term in Eq.1,  and  therefore  we  may  regard  the  fitness  
function as  the  function  of  the  time needed  for  the  predators  to capture  the  prey.  The  
trial  is  limited  to  300s  of  “real” time  or  to  the  time  the  prey  is  captured;  and  with  a 
sampling  rate  of  500ms  it  is  simulated  with  up  to  600 time  steps.  Smaller fitness 
values correspond to better performing predator agents.  
The selection pressure, which favours more parsimonious agents’ representations, is 
introduced as a measure to reduce the bloat in GP. The bloat (or the uncontrolled growth of 
genotypic representations during an evolutionary run) drastically reduces the 
computational performance of the implementation. The quantities dEA and DA are averaged 
over all predator agents. The energy consumption estimation dE for each predator agent 
takes into account both the basal metabolic rate and the energy consumption for motion as 
follows: 

 BMR MdE E T E D= × + ×  (2) 

where EBMR is the basal metabolic rate, equal to 0.05 units per second, and EM is the energy 
consumption for moving activities equal to 0.01 units per mm traversed during the trial. The 
trial is limited to 300 s of “real” time or to the time the prey is captured; and with a sampling 
rate of 500 ms it is simulated with up to 600 time steps. Smaller fitness values correspond to 
better performing predator agents. Notice that the agents are explicitly rewarded for 
capturing the prey (for minimizing the elapsed time of the trial) rather than for 
demonstrating surrounding behavior, which might eventually be needed to capture the 
prey. Surrounding, being discovered through simulated evolution, should emerge from the 
simply defined perception and moving abilities of the agents. 
In order to obtain more general solutions to the problem the fitness of each genetic program 
is evaluated as an average of the fitness measured over 10 different initial situations. 
However, based on empirically proven data that in the initial stages of evolution agents are 
hardly able to successfully resolve more than a few (out of 10) initial situations, in order to 
enhance the computational performance of strongly-typed genetic programming, we 
applied an evaluation of the fitness function (Miller & Goldberg, 1995). The number of initial 
situations used to evaluate genetic programs in a population gradually increases with the 
evolution of the population. Starting from 4 for the first generation of each run, the number 
of situations is revised (until it reaches the value of 10 initial situations) on completion of 
each generation and it is set to exceed 2 the number of situations successfully solved by the 
best-of-generation genetic program. Given that with additional initial situation(s) they have 
to resolve, the agents would perform either better or, more likely worse, the fitness of the 
best-of-current generation could be occasionally somewhat worse than fitness of the best 
genetic program of the previous generation. Therefore, it is reasonable to anticipate non-
monotonous fitness convergence characteristics of strongly-typed genetic programming. 

4. Perceptual noise model 

Since the purpose of our work is to investigate the relationship between the robustness of 
evolved surrounding behavior and the uncertainty of the predator agents, we introduce a 
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perceptual noise model to their sensory abilities; distance to the prey and to the closest agent 
(i.e. Prey_d and Peer_d) and bearing of the prey and of the closest agent (i.e. Prey_a and 
Peer_a). In our model the perceptual noise term is added to the variable of sensory abilities 
of the predator agents as follows: 

 ( )_ _ _noisePeer d Peer d Random Peer d n= ± ×  (3) 

 ( )_ _ _noisePeer a Peer a Random Peer d n= ± ×  (4) 

where Peer_dnoise and Peer_anoise represent perceived distance and angle to the closest 
predator agent in its sight, and Peer_d and Peer_a mean exact distance and angle between 
these agents. In distance and angle to the prey, Peer_dnoise, Peer_d, Peer_anoise and Peer_a are 
replaced to Pray_dnoise, Pray_d, Pray_a and Prey_anoise respectively.  
The second term n of each expression represents perceptual noise levels; the addition of the 
term makes the perception of predator agents uncertain. The noise increases in proportional 
to the distance between agents (i.e. Peer_d and Prey_d). In the other words, the further the 
peer predator agent and the prey agent are from a certain predator agent, more ambiguous 
the distance and the bearing from itself to the peer predator agent are; of course they are 
invisible if they move outside of its sight. This model that the location of a far-away object is 
perceived uncertainly is simple and natural. The perceptual noise reflects simple and usual 
supposition that it is hard to identify the exact location of a far-away object. The perceptual 
model of the predator agents is visualized in Figure 5.  
 

Angle: Peer_a

Distance: Peer_d

Noise: Random(Peer_d * n)

A

B

 

Fig. 5. Perceptual noise model in the predator prey pursuit problem. 

Figure 5 illustrates a situation in which the predator agent A perceives a location of the peer 
predator agent B. If the agent A has a noiseless sensor, it can perceive the exact location 
information. However, because of the perceptual noise the predator agent A cannot 
precisely determine the exact location of the peer predator agent B. Therefore, the predator 
agent A randomly perceives that the peer predator agent B is located somewhere in the gray 
zone in Figure 3. For example if the noise level is 2.0%, the second term N of the formula 
takes the value under plus or minus 8; therefore, if the distance between these agents is 
400mm (Peer_d = 400) and the angle between them is 30 degree (Peer_a = 30), the distance 
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that the predator agent perceives results in the value from 392mm through 408mm, and also 
the angle results in the value from 22 degree through 38 degree. The perceptual noise model 
make the communication of predator agents instable, and therefore, it might result in 
inadequate surrounding behavior. 

5. Empirical results and discussion 

5.1 Evolution of the surrounding behavior of the predator agent 

The values of parameters of strongly-typed genetic programming used in our simulation are 
summarized as follows: Population size was 600, Selection ration was 10%, Elitism was 1%, 
Mutation ratio was 2% and Trial interval was 600 steps. The fitness value of 300, employed 
as a termination criterion roughly corresponds to a successful team of predator agents that 
capture the prey by the middle of the trial of 600 steps. 
The result, shown in Figure 6(a) indicates typical fitness convergence characteristic. Note 
that smaller fitness values correspond to better performing predator agents, since the fitness 
value is strongly affected by elapsed time of the trial as mentioned above (see Section 3.1.5). 
We consider these empirical results as an evidence of the very feasibility of applying a 
genetic programming paradigm for automatic design of autonomous agents capable of 
accomplishing complex tasks through local, implicit and proximity-defined interactions. 
 

 

 

 

(a) (b)
 

Fig. 6. Typical fitness convergence characteristic (a) and  human-readable representation of 
sample best-of-run genetic program (b). 

A human-readable representation of a sample best-of-run genetic program is shown in 
Figure 6(b). Figure 7 illustrates the execution of Turn( - 22 + Prey a - Peer a + Prey a) which 
is the most often executed command of the evolved solution (Figure 6(b), Line 12). The 
sensory feedback involved in computing the turning angles implies that agents orient 
themselves towards the directions which ensure that the perception variables Prey_a and 
Peer_a comply with the equation “- 22 + Prey_a – Peer_a + Prey_a = 0.” Moving in these 
directions tends to separate the closest agents away and yields a characteristic chase of the 
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prey from the two opposite sides of the world when only two agents are involved. When 
more than two agents simultaneously execute the same command (a situation which is not 
elaborated in the figure) their team perform a surrounding approach to the prey.  
The traces of the entities in the world for one of the 10 initial situations are shown in Figure 

8. Agents employ a basic model of implicit interactions—only the distance and the bearing 

of the closest agent (and the prey) are perceived. The prey is captured in 118 simulated time 

steps (top). Large white and small black circles denote the predator agents in their initial 

and final position, respectively. The small white circle indicates the prey, initially situated in 

the center of the world. The numbers in rectangles show the timestamp information. The 

emergence of the following behavioral traits of predator agents is noticeable (each agent is 

governed by the sample best-of-run genetic program): 

- Switch from greedy chase into surrounding approach (Agent #2, time step 65); 
- Zigzag movement, which results in a lower chasing speed indicating “intention” to trap 

the prey (Agent #1, following time step 40), and 
- Surrounding approach (agents #0, #2 and #3) at the final stages of the trial. 
 

 
 

Fig. 7. Orientation   of   the   Predator   Agents   before   (left)   and   after   the   execution   of   
command Turn( - 22 + Prey a - Peer a + Prey a) (right), respectively. 

Figure 9 explains the zigzag movement as demonstrated by Agent #1 illustrated in Figures 

8. Agent #1 periodically turns towards the alternatively becoming “visible” closest peers 

Agent #0 (left) and Agent #3 (right), which results in the characteristic zigzag movement. 

Black circles inside and below the Agent #1 indicates the position of the agent at the most 

recent consecutive moments. 

Although such basic model offers the benefits of simplicity and scalability, the following 

issues related to the feasibility of applying the basic model in real-world applications remain 

still open: How much does the perceptual noise affect the evolved surrounding behavior? 

Can the predator agents capture the prey well even in noisy environment? Taking into 

consideration that the real-world applications indeed suffer from some mechanical and 

electrical noises, our model should involve some kind of countermeasures against these 

noises. Does the model acquire the robustness to the noises via the evolutionary approach? 

We focus our attention on the evolution of the surrounding behavior in a noisy multi-agent 

system. 
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Fig. 8. Traces of the entities with predator agents governed by the sample best-of-run genetic 
program. 

 
Fig. 9. Explanation of the zigzag movement, which results in a lower chasing speed of the 
predator Agent#1 as illustrated in Figure 8. 

5.2 Evolution in noisy multi-agent system 
Since the predator agents with perceptual noise cannot perceive the exact location 
information of other agents, they might not be cooperated well each other; that is to say, 
their coordinated surrounding behavior would be poor. The quantitative effect of the 
perceptual noise on the coordinated surrounding behavior is still unknown. Therefore, we 
investigate the relationship between the fitness of the predator agents and the perceptual 
noise levels, and moreover we attempt to verify the supposition that the robustness of the 
predator agents behavior is related to an environment in which the evolutionary process by 
genetic programming runs. 
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5.2.1 The evolved surrounding behavior of the predator agents suffering from the 
perceptual noise 

We evolved a surrounding behavior of predator agents with noiseless perception, and then 
evaluated the evolved surrounding behavior to the predator agents suffering from the 
perceptual noise, in order to investigate how much the surrounding behavior evolved in 
noiseless environment is affected by the perceptual noise. The levels of perceptual noise 
were between 0% and 3.0% in incremental of 0.5%. The fitness of the evolved surrounding 
behavior was different with every evaluation because of the randomness of perceptual 
noise. We conducted the evaluation 50 times. Figure 10 shows the average of the results. 
The obtained results indicate that the fitness was worse almost linearly with the increase of 
perceptual noise levels, and also the success situations, which is the average number of 
(total 10) initial situations in which the predator agents successfully captured the prey, 
decreased with the increase of perceptual noise levels. 
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Fig. 10. Changes in the fitness and the success situations of the surrounding behavior in each 
noisy environment. Note that the surrounding behavior has been already evolved in 
noiseless environment. 

This detrimental effect observed in the behavior of predator agents was most pronounced at 

the final stages of each trial as shown in Figure 11. The predator agents closed in on the prey 

at least to some extent but when they eventually enclose the pray, their erratic moving 

derived from perceptual noise made capturing the pray difficult. 

5.2.2 Incremental evolution of the surrounding behavior in noisy environment 

The surrounding behavior evolved in noiseless environment through genetic programming 

did not worked well in each noisy environment. Taking into account that genetic 

programming is a technique to automatically design agents' behavior without providing 

explicit domain-specific knowledge about how to achieve a task (Angleine, 1994), we might 

develop more robust surrounding behavior to noisy environment; in other words, the 

surrounding behavior involving the solution to uncertainty in noisy environment might be 

acquired through the interaction between genetic programming and noisy environment 

without incorporating the explicit knowledge of perceptual noise into the predator agents. 
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Fig. 11. Typical failure of the evolved surrounding behavior in noisy environment. 
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In order to investigate the above assumption, we evolved again the evolved behavior in 
noisy environment with noise rate of 0% and 2%, respectively. The initial population 
includes some of the best-of-run behavior program evolved in noiseless environment, 
because the randomly created initial population can hardly adapt in complicated and 
uncertain noisy environment. 
As Figure 12 shows, the results verify that both the fitness and the success situations of the 
re-evolved surrounding behavior in noisy environment were better than those of the re-
evolved in noiseless environment. The behavior evolved in the noise level 2% features a 
moderate degradation when applied in environments with up to the perceptual noise level 
1.5%, and eventually, both the fitness and capture rate converge at similar value of the noise 
level 2.5%. The shape of graph shows that while the fitness of the surrounding behavior re-
evolved in noiseless environment (i.e. the perceptual noise level 0%) seems linear with 
respect to the perceptual noise level, that of the surrounding behavior program evolved in 
noisy environment (i.e. the perceptual noise level 2%) seems to draw a sigmoid curve. This 
indicates that the fitness tend to keep well until a certain threshold (in the behavior evolved 
in the perceptual noise level 2%, the threshold is 1.5%), hence, the surrounding behavior is 
more robust on a specific noise level range. 
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Fig. 12. Changes in the fitness and the success situations of the re-evolved surrounding 
behavior with the perceptual noise 0% and 2%. 

Through the evolution in noisy environment, we could generate a behavior whose fitness is 
stable until a certain threshold. It seems to be natural conclusion, but what improves the 
robustness of the behavior? We suppose one reason is that the behavior program obtained a 
specialized structure to be robust to the perceptual noise. Figure 13 show a comparison of 
the genetic programs evolved in noiseless environment and in noisy environment. 
Unfortunately, we were unable to discover such a structure in a program because the logic 
of automatically evolved code is hardly understandable by human. However, some 
interesting points can be discussed as follows: The instruction Turn() is present the program 
evolved in noisy environment (Figure 8, left) not that often compared to the program 
evolved in noiseless environment (Figure 8, right); and the variables for perceptual 
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Fig. 13. The comparison of genetic programs evolved in noiseless (left) and noisy (right) 
environments, respectively. 

information (i.e. Peer_a, Peer_d, Prey_a and Prey_d) rarely appear in the left-, conversely to 
the right program shown in Figure 8. In our mode, such variables are perturbed directly by 
the perceptual noise. Consequently, in the case of high noise level, it is considered that a 
program involving many such variables is more difficult. As a result, a program evolved in 
noisy environment might be evolved to limit the reliance on such variables. 

6. Conclusion 

We presented the result of our work on the use of genetic programming for evolving 
surrounding behavior of agents situated in inherently cooperative environment. We use the 
predator-prey pursuit problem to verify our hypothesis that relatively complex surrounding 
behavior may emerge from simple, implicit, locally defined, and therefore - scalable 
interactions between the predator agents. Proposing perceptual noise model of the predator 
agents we investigated the relationship between the evolved surrounding behavior and the 
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perceptual noise. We demonstrated that relatively complex, surrounding behavior emerges 
even from the simple, basic model of implicit, proximity defined interactions among the 
agents. We observed the relatively simple motion of the predator agents in the direction 
away from the closest predator agents yields emergent collective behavioral traits of 
predator agents such as (i) a characteristics zigzag movement, which results in a lower 
chasing speed indicating “intention” to trap the prey, and ultimately, (ii) a surrounding of 
the prey. Although the above surrounding behavior was performed efficiently in noiseless 
environment, the performance of it was worse as the perceptual noise level increased. We 
evolved the behavior again in each of two different environment; noiseless environment and 
noisy environment, and compared the performance of these types of behavior. The behavior 
evolved in noisy environment get better performance than that evolved in noiseless 
environment. 
In the future we are planning to incorporate evolvable rather than handcrafted escaping 
strategy of the prey as used in our current approach. We are also interested in enhancing the 
currently used perception and communication models into a model, which allows for 
predator agents to analyze the effects of their own actions on the reaction of the other agents 
in the world. We are planning to investigate both the survival value of such reflection and 
the robustness of the team of predator agents. 
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