
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

12

Evolutionary Adaptive Behavior in
Noisy Multi-Agent System

Takamasa Iio, Ivan Tanev, Katsunori Shimohara and Mitsunori Miki
Doshisha University

Japan

1. Introduction

Multi-agent systems have become more and more important in many aspects of computer

science such as distributed artificial intelligence, distributed computing systems, robotics,

artificial life, etc. Based on the belief that any complex system is more than the sum of its

individual elements (Holand, 1999, Morgan, 1923, Morowitz, 2002), multi-agent systems

introduce the issue of the emergence of behavior through interactions between agents

(Forrest, 1991). Accordingly, a coordinated behavior needed to archive complex tasks might

emerge in multi-agent systems from relatively simple defined interactions between agents.

An agent is a virtual entity that can act, perceive the proximity of its environment and

communicate with others; it is autonomous and has the ability to achieve its goals. Multi-

agent systems contain a world (environment), entities (agents), relations between the

entities, a way the world is perceived by the entities, a set of operations that can be

performed by the entities and changes in the world as a result of these actions.

The main application areas of multi-agent systems are problem solving, simulation,

collective robotics, software engineering, and construction of synthetic worlds (Ferber,

1999). Considering the latter application area and focusing on the autonomy of agents and

the interactions that link them together (Parunak, Van, Brueckner, Fleischer & Odell, 2002),

the following important issues can be raised: What is the minimum amount of perception

information needed by agents in order to perceive the world? How can agents cooperate?

What are the methods, and what are the lower bounds of communications, required for

them to coordinate their actions? What architecture should they feature so that they can

achieve their goals? What approaches can be applied to automatically construct their

functionality, with the quality of such a design being competitive with human-handcrafted

design? These issues are of special interest, since the aim is to create multi-agent systems,

which are scalable, robust, flexible, and able to adapt to changes automatically. These

features of multi-agent systems are believed to be particularly important in real world

applications where the approaches to construct synthetic worlds can be viewed as practical

methods, techniques towards creating complex “situation-aware” multi-computer, multi-

vehicle, or multi-robot systems based on the concepts of agents, communication,

cooperation and coordination of actions.

The purpose of our research is an automatic design of the coordinated behavior among
agents. Particularly, we are interested in the robustness of the coordinated behavior to some

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

256

uncertainty derived from a mechanical or electrical noise of real-world applications. In this
document we intend to highlight the following issues:
- Applying the genetic programming paradigm for evolving the coordinated behavior

among agents, which interact with each other according to implicit interaction in an
ideal noiseless environment,

- Testing the capability of the above behavior in a noisy environment, and
- Evolving the behavior again in two different environments; noiseless environment and

noisy environment, for a comparative investigation of the robustness of the two types of
evolved behavior.

We employ the predator prey pursuit problem (Benda, 1986) to verify the hypothesis of

emergence of surrounding behavior in multi-agent systems from simply defined

interactions between the agents. The noisy environment is implemented as the perceptual

noise of predator agents; that is to say, in noisy environment the predator agents get

uncertain perception information with some noise.

The remaining of the document is organized as follows. Section 2 introduces an instance of

the general, well defined yet difficult to solve predator-prey pursuit problem as the task

which we use in this work. Section 3 elaborates on the strongly typed genetic programming,

employed as an algorithmic paradigm to evolve the functionality of agents. Section 4

explains the model of the perceptual noise of the predator agents. In Section 5, the

comparative empirical results of evolution of surrounding behavior in a noiseless

environment, execution of the surrounding behavior in a noisy environment and re-

evolution of the surrounding behavior in each of the noiseless and the noisy environment

are presented. Our conclusions are drawn in Section 6.

2. Configuration of a multi-agent system

2.1 Instance of Predator prey pursuit problem

In order to investigate relationships between a coordinated behavior among agents and

uncertainty of their perception, we address predator prey pursuit problem (Benda, 1986),

which is a game that some predator agents chase and catch a prey agent on a two

dimensional field. The problem is general, well-defined and well-studied in multi-agent

systems yet difficult to solve because the predator agents cannot capture the prey agent

without a harmonious teamwork.

In our work, there are four predator agents and a prey agent on a two dimensional torus

field. Considering a more realistic instance of the problem than the previous works (Haynes

& Sen, 1996, Haynes, Wainwright, Sen & Schoenefeld, 1997, Luke & Spector, 1996), the field

is a simulated continuous torus instead of coarse grid. The snapshot of our software is

shown in Figure 1. All agents have moving and perceptual abilities. Their moving abilities

are also continuous; they can turn to any angle from their current heading and can run with

speed equal to 0, 0.25, 0.5, 0.75 and 1.0 of their maximum speed. We introduce a proximity

perception model in that the predator agents can see the prey agent and only the closest

predator agent, only when these agents are within the limited range of visibility of their

simulated sensors. The prey employs random wandering if there is no predator in sight and

an a priori handcrafted optimal escaping strategy as soon as predator(s) become “visible.” In

order to make a situation where the predator agents cannot capture the prey unless they

collaborate with each other, we made the maximum speed of the predator agents lower than

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

257

that of the prey agent but the range of visibility of the predator agents wider than that of the

prey to allow the predators to stalk the prey.

The situation requires a relatively complex behavior that the predator agents surround the
prey agent on all sides in the world, and the behavior should be emerged from simple, local,
implicit and proximity-defined interactions between the predator agents.

Fig. 1. A snapshot of the instance of predator prey pursuit problem.

2.2 Architecture of the agents

We adopted a subsumption architecture (Brooks, 1986) as the architecture of the predator
agents; it was comprised of functional modules separated in three levels: wandering, greedy
chase and surrounding (Figure 2(a)). Wandering module makes the predator agents walk

Fig. 2. Subsumption architecture of the agents: functional structure (a) and states (b).

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

258

around randomly when other agents are not within their sight, and greedy chase module

makes them chase the prey agent while it is within their sight. These modules are

handcrafted. Surrounding module makes the predator agents run evolved behavior

program when another predator agent is in their sight. The program is designed

automatically via simulated evolution. The highest priority module is surrounding, the next

is greedy chase, and the lowest priority is wandering. The priority allows the following two

things to be evolved simultaneously; (i) the capability of agents to resolve social dilemmas,

determined by the way surrounding behavior overrides greedy chase when the prey is in

sight, and (ii) the capability to resolve the exploration-exploitation dilemma, determined by

the ability of surrounding behavior to override wandering when the prey is invisible.

3. Genetic programming to automatically design surrounding behavior

We employ genetic programming to automatically design surrounding behavior

represented as a set of stimulus-response rules of the predator agents. Genetic programming

is a domain-independent problem solving approach in which a population of computer

programs (individuals' genotypes, in this case surrounding behavior programs) is evolved

to solve problems (Koza, 1992).

The simulated evolution in genetic programming is based on the Darwinian principle of

reproduction and survival of the fittest. The fitness of each individual is based on the quality

with which the phenotype of the simulated indivdual is performing in a given environment;

that is to say, predator agents that can capture the prey agent successfully and quickly have

a higher fitness value, and their surrounding behavior program are more likely to remain in

the next generation.

In the remaining of this section, we elaborate strongly-typed genetic programming for
limiting the search space of genetic programming and the major attributes of genetic
programming; function and terminal set, genetic representation, genetic operations and
fitness evaluation.

3.1 Strongly-typed genetic programming with exception handling

Genetic programming can automatically evolve a set of stimulus-response rules of arbitrary

complexity without the need to a priori specify the extent of such complexity; however, that

might often cause an enormous computational effort needed to discover a huge search space

while looking for potential solutions to the problem. In that respect the introduction of

"pruning algorithms" is a significant towards an efficient search for a solution in huge and

multidimensional search spaces (Morowitz, 2002). We impose a restriction on the syntax of

evolved genetic programs based on some a priori known semantics. The approach is known

as strongly typed genetic programming and its advantage over canonical GP in achieving

better computational effort is well proven (Montana, 1995).

Considering the sample rule shown in Figure 3, which express a reactive behavior that if
each predator agent gets the stimulus of its own speed being less than 20 mm/s, it turns to
the bearing of the peer agent (i.e. the closest predator agent that is visible) plus 10 degrees, it
is noticeable that both the return values of functions and their operands are associated with
data types such as Boolean (the return value of Boolean expression (Speed < 20)), speed (e.g.
variable Speed and constant 20), and angle of visibility (bearing) (e.g. variable Peer a and
constant 10). An eventual arbitrary creation or modification of a genetic program

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

259

semantically would make little sense: indeed, it is unfeasible to maintain Boolean
expressions comparing operands of different data types, because they have different
physical units.
Moreover, since we introduce sensor range limits, there is a clear possibility of maintaining
phenotypically inactive, genotypically neutral code in genetic programs; for example, if a
Boolean expression, that compares a perception variable of a certain data type with a
constant value beyond that data type’s limits (e.g. Peer d > 1000, if that sensors’ range is
only 400) evaluates always as a constant True or False. Analogically, the semantics of action
Turn() imply a parameter of data type angle. And allowing only addition and subtraction as
arithmetic operations implies that each operand involved in the expression that defines the
parameter (the resulting turning angle) should have the same data type angle. Addressing
these concerns, the grammar of strongly-typed genetic programming establishes generic
data types of visible angle, distance, speed, and Boolean with corresponding allowed ranges
of values for their respective instances (variables and ephemeral constants). In addition, it
stipulates the data type of the results of arithmetic and logical expressions, and the allowed
data type of operands (perception variables and ephemeral constants) involved in these
expressions.
We would like to emphasize that proposed approach is not based on domain-specific
knowledge, and therefore the proposed strongly-typed genetic programming cannot be
considered a “stronger” approach compromising the domain-neutrality of the very GP
paradigm itself. The limitations imposed on the syntax of genetic programs are solely based
(i) on the natural presumption that the predator agents are fully aware of their physically
reasonable limits of their perception- and moving abilities; and (ii) on the common rule in
strongly-typed 3G algorithmic languages that all the operands in addition, subtraction and
comparison operations should have the same data types. These limitations do not
incorporate a priori obtained knowledge, specific for the domain nor the external world
where the agents are situated.

Fig. 3. Sample stimulus-response rule.

3.1.1 Function set and terminal set

Genetic programs can be represented as parsing trees whose nodes are functions, variables
or constants. The nodes that have sub-trees are non-terminals; they represent functions to
which the sub-trees represent the arguments. Variables and constants are terminals; they
take no arguments and they always are leaves in the parsing trees.
The set of those terminals includes the perceptions (stimuli) and actions (responses) the
predator agents are able to perform as summarized in Table 1.
The function set comprises the arithmetic and logical operators, and the IF-THEN function
which establish the relationship between current perceptions and corresponding actions.
The terminal set comprises the sensory abilities, state variable, ephemeral constants and
moving abilities. The sensory abilities and state variable are variable numbers; these
numbers can be renewed by the perceptions of each predator agents, while the ephemeral
constants and moving abilities are constant numbers. The detail of those sets is described in
Table 1.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

260

Category Designation Explanation

Function set
IF-THEN
IF-THEN-NA,
LE, GE, WI, EQ, NE, + , −

IF-THEN
IF-THEN with exception handling
 ≤ , ≥ , Within, = , Not = , + , -

Terminal set

Sensory abilities Prey_d, Peer_d
Distance to the prey and to the
closest
agent, mm.

 Prey_a, Peer_a
Bearing of the prey and of the closest
agent, degrees

 PreyVisible, PeerVisible
True if prey/agent is “visible,” false
otherwise

State variable Speed Speed of the agent, mm/s
Ephemeral constants Integer

Moving abilities Turn(a)
Turns relatively to a degrees
 (a > 0: clockwise)

 Stop, Go_1.0
Sets speed to 0, or to maximum,
respectively

 Go_0.25, Go_0.5, Go_0.75
Sets speed to 25%, 50%, 75%
of maximum

Table 1. Function set and terminal set of strongly-typed genetic programming.

3.1.2 Representation of genotype

Inspired by its flexibility, and the recently emerged widespread adoption of document

object model (DOM) and extensible mark-up language (XML), we represent evolved

genotypes of simulated the predator agents as DOM-parse trees featuring equivalent flat

XML-text in a way as first implemented in [DOM/XML]. Our additional motivation stems

from the fact that despite the recently reported use of DOM/XML for representing

computer architectures, source code, and agents’ communication languages, we are not

aware of any attempts to employ XML technology for representing evolvable structures

such as genetic programs in a generic, standard, and portable way. Our approach implies

that the genetic operations are performed on DOM-parse trees using off-the shelf, platform-

and language neutral DOM-parsers. The corresponding XML-text representation (rather

than S-expression) is used as a flat file format, feasible for migration of genetic programs

among the computational nodes in an eventual distributed implementation of the genetic

programming. A fragment of XML representing of the above sample stimulus-response rule

(refer to Figure 3) is shown in Figure 4. The benefits of using DOM/XML-based

representations of genetic programs, as documented in (Tanev, 2003) can be briefly

summarized as follows:

i. XML tags offer a generic support for maintaining data types in genetic programming
(strongly typed genetic programming);

ii. W3C-standard XML schemas offer a generic way to represent the grammar of genetic
programming;

iii. Fast prototyping of genetic programming by using the standard built-in API of DOM-
parsers for maintaining and manipulating genetic programs;

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

261

iv. OS neutrality of parsers;
v. Algorithmic language neutrality of DOM-parsers;
vi. Inherent Web-compliance of an eventual parallel distributed implementation of genetic

programming.

Fig. 4. Fragment of XML representation of sample stimulus-response rule.

3.1.3 Genetic operations

Binary tournament selection is employed; a robust, commonly used selection mechanism,

which has proved to be efficient and simple to code. Crossover operation is defined in a

strongly typed way in that only the nodes (and corresponding sub-trees) of the same data

type (i.e. labelled with the same tag) from parents can be swapped. Sub-tree mutation is also

allowed in a strongly typed way in that syntactically correct sub-tree replaces a random

node in a genetic program. The routine refers to the type of node it is going to currently alter

and applies a randomly chosen rule from the set of applicable rules as defined in the

grammar of strongly-typed genetic programming. The transposition mutation also operates

on a single genetic program by swapping two random nodes having the same data type.

3.1.4 Breeding strategy

We adopted a homogeneous breeding strategy in which the performance of a single genetic

program cloned to all the predator agents is evaluated. Anticipating that the symmetrical

nature of a world populated with identical predator agents is unlikely to promote any

specialization in their behavior, we consider the features of such a homogeneous multi-

agent society as (i) adequate to the world and (ii) consistent with our previously declared

intention to create a robust and scalable multi-agent system.

3.1.5 Fitness functions

The fitness F measured for the trial starting with a particular initial situation is evaluated as

the length of the radius vector of the derived agents’ behavior in the virtual energy-distance-

time space as:

 2 2
A A cF dE D T K C= + + + × (1)

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

262

where dEA is the average energy consumption during the trial, DA is the average distance to
the prey by the end of the trial, and T is the elapsed time of the trial. C is the complexity of
the agents’ genetic representation in tree nodes, and KC (equal to 0.1) is the scaling
coefficient of the penalty imposed for complex genetic representations of the agents.
Actually, T is an especially prime term in Eq.1, and therefore we may regard the fitness
function as the function of the time needed for the predators to capture the prey. The
trial is limited to 300s of “real” time or to the time the prey is captured; and with a
sampling rate of 500ms it is simulated with up to 600 time steps. Smaller fitness
values correspond to better performing predator agents.
The selection pressure, which favours more parsimonious agents’ representations, is
introduced as a measure to reduce the bloat in GP. The bloat (or the uncontrolled growth of
genotypic representations during an evolutionary run) drastically reduces the
computational performance of the implementation. The quantities dEA and DA are averaged
over all predator agents. The energy consumption estimation dE for each predator agent
takes into account both the basal metabolic rate and the energy consumption for motion as
follows:

 BMR MdE E T E D= × + × (2)

where EBMR is the basal metabolic rate, equal to 0.05 units per second, and EM is the energy
consumption for moving activities equal to 0.01 units per mm traversed during the trial. The
trial is limited to 300 s of “real” time or to the time the prey is captured; and with a sampling
rate of 500 ms it is simulated with up to 600 time steps. Smaller fitness values correspond to
better performing predator agents. Notice that the agents are explicitly rewarded for
capturing the prey (for minimizing the elapsed time of the trial) rather than for
demonstrating surrounding behavior, which might eventually be needed to capture the
prey. Surrounding, being discovered through simulated evolution, should emerge from the
simply defined perception and moving abilities of the agents.
In order to obtain more general solutions to the problem the fitness of each genetic program
is evaluated as an average of the fitness measured over 10 different initial situations.
However, based on empirically proven data that in the initial stages of evolution agents are
hardly able to successfully resolve more than a few (out of 10) initial situations, in order to
enhance the computational performance of strongly-typed genetic programming, we
applied an evaluation of the fitness function (Miller & Goldberg, 1995). The number of initial
situations used to evaluate genetic programs in a population gradually increases with the
evolution of the population. Starting from 4 for the first generation of each run, the number
of situations is revised (until it reaches the value of 10 initial situations) on completion of
each generation and it is set to exceed 2 the number of situations successfully solved by the
best-of-generation genetic program. Given that with additional initial situation(s) they have
to resolve, the agents would perform either better or, more likely worse, the fitness of the
best-of-current generation could be occasionally somewhat worse than fitness of the best
genetic program of the previous generation. Therefore, it is reasonable to anticipate non-
monotonous fitness convergence characteristics of strongly-typed genetic programming.

4. Perceptual noise model

Since the purpose of our work is to investigate the relationship between the robustness of
evolved surrounding behavior and the uncertainty of the predator agents, we introduce a

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

263

perceptual noise model to their sensory abilities; distance to the prey and to the closest agent
(i.e. Prey_d and Peer_d) and bearing of the prey and of the closest agent (i.e. Prey_a and
Peer_a). In our model the perceptual noise term is added to the variable of sensory abilities
of the predator agents as follows:

 ()_ _ _noisePeer d Peer d Random Peer d n= ± × (3)

 ()_ _ _noisePeer a Peer a Random Peer d n= ± × (4)

where Peer_dnoise and Peer_anoise represent perceived distance and angle to the closest
predator agent in its sight, and Peer_d and Peer_a mean exact distance and angle between
these agents. In distance and angle to the prey, Peer_dnoise, Peer_d, Peer_anoise and Peer_a are
replaced to Pray_dnoise, Pray_d, Pray_a and Prey_anoise respectively.
The second term n of each expression represents perceptual noise levels; the addition of the
term makes the perception of predator agents uncertain. The noise increases in proportional
to the distance between agents (i.e. Peer_d and Prey_d). In the other words, the further the
peer predator agent and the prey agent are from a certain predator agent, more ambiguous
the distance and the bearing from itself to the peer predator agent are; of course they are
invisible if they move outside of its sight. This model that the location of a far-away object is
perceived uncertainly is simple and natural. The perceptual noise reflects simple and usual
supposition that it is hard to identify the exact location of a far-away object. The perceptual
model of the predator agents is visualized in Figure 5.

Angle: Peer_a

Distance: Peer_d

Noise: Random(Peer_d * n)

A

B

Fig. 5. Perceptual noise model in the predator prey pursuit problem.

Figure 5 illustrates a situation in which the predator agent A perceives a location of the peer
predator agent B. If the agent A has a noiseless sensor, it can perceive the exact location
information. However, because of the perceptual noise the predator agent A cannot
precisely determine the exact location of the peer predator agent B. Therefore, the predator
agent A randomly perceives that the peer predator agent B is located somewhere in the gray
zone in Figure 3. For example if the noise level is 2.0%, the second term N of the formula
takes the value under plus or minus 8; therefore, if the distance between these agents is
400mm (Peer_d = 400) and the angle between them is 30 degree (Peer_a = 30), the distance

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

264

that the predator agent perceives results in the value from 392mm through 408mm, and also
the angle results in the value from 22 degree through 38 degree. The perceptual noise model
make the communication of predator agents instable, and therefore, it might result in
inadequate surrounding behavior.

5. Empirical results and discussion

5.1 Evolution of the surrounding behavior of the predator agent

The values of parameters of strongly-typed genetic programming used in our simulation are
summarized as follows: Population size was 600, Selection ration was 10%, Elitism was 1%,
Mutation ratio was 2% and Trial interval was 600 steps. The fitness value of 300, employed
as a termination criterion roughly corresponds to a successful team of predator agents that
capture the prey by the middle of the trial of 600 steps.
The result, shown in Figure 6(a) indicates typical fitness convergence characteristic. Note
that smaller fitness values correspond to better performing predator agents, since the fitness
value is strongly affected by elapsed time of the trial as mentioned above (see Section 3.1.5).
We consider these empirical results as an evidence of the very feasibility of applying a
genetic programming paradigm for automatic design of autonomous agents capable of
accomplishing complex tasks through local, implicit and proximity-defined interactions.

(a) (b)

Fig. 6. Typical fitness convergence characteristic (a) and human-readable representation of
sample best-of-run genetic program (b).

A human-readable representation of a sample best-of-run genetic program is shown in
Figure 6(b). Figure 7 illustrates the execution of Turn(- 22 + Prey a - Peer a + Prey a) which
is the most often executed command of the evolved solution (Figure 6(b), Line 12). The
sensory feedback involved in computing the turning angles implies that agents orient
themselves towards the directions which ensure that the perception variables Prey_a and
Peer_a comply with the equation “- 22 + Prey_a – Peer_a + Prey_a = 0.” Moving in these
directions tends to separate the closest agents away and yields a characteristic chase of the

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

265

prey from the two opposite sides of the world when only two agents are involved. When
more than two agents simultaneously execute the same command (a situation which is not
elaborated in the figure) their team perform a surrounding approach to the prey.
The traces of the entities in the world for one of the 10 initial situations are shown in Figure

8. Agents employ a basic model of implicit interactions—only the distance and the bearing

of the closest agent (and the prey) are perceived. The prey is captured in 118 simulated time

steps (top). Large white and small black circles denote the predator agents in their initial

and final position, respectively. The small white circle indicates the prey, initially situated in

the center of the world. The numbers in rectangles show the timestamp information. The

emergence of the following behavioral traits of predator agents is noticeable (each agent is

governed by the sample best-of-run genetic program):

- Switch from greedy chase into surrounding approach (Agent #2, time step 65);
- Zigzag movement, which results in a lower chasing speed indicating “intention” to trap

the prey (Agent #1, following time step 40), and
- Surrounding approach (agents #0, #2 and #3) at the final stages of the trial.

Fig. 7. Orientation of the Predator Agents before (left) and after the execution of
command Turn(- 22 + Prey a - Peer a + Prey a) (right), respectively.

Figure 9 explains the zigzag movement as demonstrated by Agent #1 illustrated in Figures

8. Agent #1 periodically turns towards the alternatively becoming “visible” closest peers

Agent #0 (left) and Agent #3 (right), which results in the characteristic zigzag movement.

Black circles inside and below the Agent #1 indicates the position of the agent at the most

recent consecutive moments.

Although such basic model offers the benefits of simplicity and scalability, the following

issues related to the feasibility of applying the basic model in real-world applications remain

still open: How much does the perceptual noise affect the evolved surrounding behavior?

Can the predator agents capture the prey well even in noisy environment? Taking into

consideration that the real-world applications indeed suffer from some mechanical and

electrical noises, our model should involve some kind of countermeasures against these

noises. Does the model acquire the robustness to the noises via the evolutionary approach?

We focus our attention on the evolution of the surrounding behavior in a noisy multi-agent

system.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

266

Fig. 8. Traces of the entities with predator agents governed by the sample best-of-run genetic
program.

Fig. 9. Explanation of the zigzag movement, which results in a lower chasing speed of the
predator Agent#1 as illustrated in Figure 8.

5.2 Evolution in noisy multi-agent system
Since the predator agents with perceptual noise cannot perceive the exact location
information of other agents, they might not be cooperated well each other; that is to say,
their coordinated surrounding behavior would be poor. The quantitative effect of the
perceptual noise on the coordinated surrounding behavior is still unknown. Therefore, we
investigate the relationship between the fitness of the predator agents and the perceptual
noise levels, and moreover we attempt to verify the supposition that the robustness of the
predator agents behavior is related to an environment in which the evolutionary process by
genetic programming runs.

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

267

5.2.1 The evolved surrounding behavior of the predator agents suffering from the
perceptual noise

We evolved a surrounding behavior of predator agents with noiseless perception, and then
evaluated the evolved surrounding behavior to the predator agents suffering from the
perceptual noise, in order to investigate how much the surrounding behavior evolved in
noiseless environment is affected by the perceptual noise. The levels of perceptual noise
were between 0% and 3.0% in incremental of 0.5%. The fitness of the evolved surrounding
behavior was different with every evaluation because of the randomness of perceptual
noise. We conducted the evaluation 50 times. Figure 10 shows the average of the results.
The obtained results indicate that the fitness was worse almost linearly with the increase of
perceptual noise levels, and also the success situations, which is the average number of
(total 10) initial situations in which the predator agents successfully captured the prey,
decreased with the increase of perceptual noise levels.

0

1

2

3

4

5

6

7

8

300

400

500

600

700

800

900

0 0.5 1 1.5 2 2.5 3

S
it

u
a

ti
o

n
s

F
it

n
e

ss

Perceptual noise levels (%)

Fitness;

Evolved in the

noise level 0%

Suc.sit;

Evolved in the

noise level 0%

Fig. 10. Changes in the fitness and the success situations of the surrounding behavior in each
noisy environment. Note that the surrounding behavior has been already evolved in
noiseless environment.

This detrimental effect observed in the behavior of predator agents was most pronounced at

the final stages of each trial as shown in Figure 11. The predator agents closed in on the prey

at least to some extent but when they eventually enclose the pray, their erratic moving

derived from perceptual noise made capturing the pray difficult.

5.2.2 Incremental evolution of the surrounding behavior in noisy environment

The surrounding behavior evolved in noiseless environment through genetic programming

did not worked well in each noisy environment. Taking into account that genetic

programming is a technique to automatically design agents' behavior without providing

explicit domain-specific knowledge about how to achieve a task (Angleine, 1994), we might

develop more robust surrounding behavior to noisy environment; in other words, the

surrounding behavior involving the solution to uncertainty in noisy environment might be

acquired through the interaction between genetic programming and noisy environment

without incorporating the explicit knowledge of perceptual noise into the predator agents.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

268

Fig. 11. Typical failure of the evolved surrounding behavior in noisy environment.

T = 10 (ms) T = 11 (ms)

T = 12 (ms) T = 13 (ms)

T = 14 (ms) T = 15 (ms)

T = 16 (ms) T = 17 (ms)

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

269

In order to investigate the above assumption, we evolved again the evolved behavior in
noisy environment with noise rate of 0% and 2%, respectively. The initial population
includes some of the best-of-run behavior program evolved in noiseless environment,
because the randomly created initial population can hardly adapt in complicated and
uncertain noisy environment.
As Figure 12 shows, the results verify that both the fitness and the success situations of the
re-evolved surrounding behavior in noisy environment were better than those of the re-
evolved in noiseless environment. The behavior evolved in the noise level 2% features a
moderate degradation when applied in environments with up to the perceptual noise level
1.5%, and eventually, both the fitness and capture rate converge at similar value of the noise
level 2.5%. The shape of graph shows that while the fitness of the surrounding behavior re-
evolved in noiseless environment (i.e. the perceptual noise level 0%) seems linear with
respect to the perceptual noise level, that of the surrounding behavior program evolved in
noisy environment (i.e. the perceptual noise level 2%) seems to draw a sigmoid curve. This
indicates that the fitness tend to keep well until a certain threshold (in the behavior evolved
in the perceptual noise level 2%, the threshold is 1.5%), hence, the surrounding behavior is
more robust on a specific noise level range.

0

1

2

3

4

5

6

7

8

300

400

500

600

700

800

900

0 0.5 1 1.5 2 2.5 3

S
it

u
a

ti
o

n
s

F
it

n
e

ss

Perceptual noise levels (%)

Fitness;

Re-evolved in the

noise level 0%

Fitness;

Re-volved in the

noise level 2%

Suc.sit;

Re-evolved in the

noise level 0%

Suc.sit;

Re-evolved in the

noise level 2%

Fig. 12. Changes in the fitness and the success situations of the re-evolved surrounding
behavior with the perceptual noise 0% and 2%.

Through the evolution in noisy environment, we could generate a behavior whose fitness is
stable until a certain threshold. It seems to be natural conclusion, but what improves the
robustness of the behavior? We suppose one reason is that the behavior program obtained a
specialized structure to be robust to the perceptual noise. Figure 13 show a comparison of
the genetic programs evolved in noiseless environment and in noisy environment.
Unfortunately, we were unable to discover such a structure in a program because the logic
of automatically evolved code is hardly understandable by human. However, some
interesting points can be discussed as follows: The instruction Turn() is present the program
evolved in noisy environment (Figure 8, left) not that often compared to the program
evolved in noiseless environment (Figure 8, right); and the variables for perceptual

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

270

Fig. 13. The comparison of genetic programs evolved in noiseless (left) and noisy (right)
environments, respectively.

information (i.e. Peer_a, Peer_d, Prey_a and Prey_d) rarely appear in the left-, conversely to
the right program shown in Figure 8. In our mode, such variables are perturbed directly by
the perceptual noise. Consequently, in the case of high noise level, it is considered that a
program involving many such variables is more difficult. As a result, a program evolved in
noisy environment might be evolved to limit the reliance on such variables.

6. Conclusion

We presented the result of our work on the use of genetic programming for evolving
surrounding behavior of agents situated in inherently cooperative environment. We use the
predator-prey pursuit problem to verify our hypothesis that relatively complex surrounding
behavior may emerge from simple, implicit, locally defined, and therefore - scalable
interactions between the predator agents. Proposing perceptual noise model of the predator
agents we investigated the relationship between the evolved surrounding behavior and the

www.intechopen.com

Evolutionary Adaptive Behavior in Noisy Multi-Agent System

271

perceptual noise. We demonstrated that relatively complex, surrounding behavior emerges
even from the simple, basic model of implicit, proximity defined interactions among the
agents. We observed the relatively simple motion of the predator agents in the direction
away from the closest predator agents yields emergent collective behavioral traits of
predator agents such as (i) a characteristics zigzag movement, which results in a lower
chasing speed indicating “intention” to trap the prey, and ultimately, (ii) a surrounding of
the prey. Although the above surrounding behavior was performed efficiently in noiseless
environment, the performance of it was worse as the perceptual noise level increased. We
evolved the behavior again in each of two different environment; noiseless environment and
noisy environment, and compared the performance of these types of behavior. The behavior
evolved in noisy environment get better performance than that evolved in noiseless
environment.
In the future we are planning to incorporate evolvable rather than handcrafted escaping
strategy of the prey as used in our current approach. We are also interested in enhancing the
currently used perception and communication models into a model, which allows for
predator agents to analyze the effects of their own actions on the reaction of the other agents
in the world. We are planning to investigate both the survival value of such reflection and
the robustness of the team of predator agents.

7. References

Angeline, P. J. (1994). Genetic programming and emergent intelligence, In: Advances in
Genetic Programming, Kinnear, K. E. Jr. (Ed.), pp. 75-98, MIT Press, 0-262-11188-8,
Cambridge, MA, USA

Benda, M.; Jagannathan, B. & Dodhiawala, R. (1986). On optimal cooperation of knowledge
sources," In: Technical Report BCS-G2010-28, Boeing AI Center, Boeing Computer
Services, Bellevue,WA.

Brooks, R. A. (1986). A robust layered control system for a mobile robot, IEEE Journal of
Robotics and Automation, Vol. 2, No. 1, pp. 14-23, 0882-4967.

Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence,
Addison-Wesley Longman: Harlow, 0201360489,

Forrest, S. (1991). Emergent computation: Self-organising, collective, and cooperative
phenomena in natural and artificial computing networks, In: Emergent Computation,
Forrest, S. (Ed.), pp. 1-11, MIT Press, 0-262-56057-7, Cambridge, MA, USA.

Haynes, T. & Sen, S. (1996). Evolving Behavioral Strategies in Predators and Prey, Adaptation
and leaning in multiagent systems, pp. 113-126, Springer Verlag.

Haynes, T.; Wainwright, R.; Sen, S. & Schoenefeld, D. (1997). Strongly Typed Genetic
Programming in Evolving Cooperation Strategies, Proceedings of the 6th International
Conference on Genetic Algorithms, pp. 271-278, Morgan Kaufmann Publishers, Inc.

Holand, J. H. (1999). Emergence: From Chaos to Order, Perseus Books, 0738201421, Cambridge,
1999.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, 0262111705, Cambridge, MA, USA.

Luke, S. & Spector L. (1996). Evolving Teamwork and Coordination with Genetic
Programming, In Genetic Programming 1996: Proceedings of the First Annual
Conference. Koza, J. et al (Ed.), pp. 141-149. MIT Press, 10884750, Cambridge, MA,
USA.

www.intechopen.com

 Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies

272

Miller, B. L. & Goldberg, D. E. (1995). Genetic Algorithms, Tournament Selection, and the
Effects of Noise, Complex Systems, Vol. 9, pp. 193-212, .

Montana, D. (1995). Strongly typed genetic programming, Evolutionary Computation, Vol. 3,
No. 2 , pp. 199-230, MIT Press, 1063-6560.

Morgan, C. (1923). Emergent Evolution, Henry Holt and Co, 0404604684.
Morowitz, H. J. (2002) The Emergence of Everything: How the World Became Complex, Oxford

University Press, 019513513X , New York, USA.
Parunak, H.; Van, D.; Brueckner, S.; Fleischer, M. & Odell, J. (2002) Co-X: Defining what

agents do together, Proceedings of the AAMAS 2002 Workshop on Teamwork and
Coalition Formation, Shehory, O.; Ioerger, T. R.; Vassileva, J. & Yen, J. (Eds.), pp. 62-
69.

Tanev, I. (2003). DOM/XML-based portable genetic representation of morphology, behavior
and communication abilities of evolvable agents, Proceedings of the 8th International
Symposium on Artificial Life and Robotics, pp. 185-188.

www.intechopen.com

Multi-Agent Systems - Modeling, Interactions, Simulations and

Case Studies

Edited by Dr. Faisal Alkhateeb

ISBN 978-953-307-176-3

Hard cover, 502 pages

Publisher InTech

Published online 01, April, 2011

Published in print edition April, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent

systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic

system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous

and proactive software components. Multi-agent systems have been brought up and used in several

application domains.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Takamasa Iio, Ivan Tanev, Katsunori Shimohara and Mitsunori Miki (2011). Evolutionary Adaptive Behavior in

Noisy Multi-Agent System, Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies, Dr.

Faisal Alkhateeb (Ed.), ISBN: 978-953-307-176-3, InTech, Available from:

http://www.intechopen.com/books/multi-agent-systems-modeling-interactions-simulations-and-case-

studies/evolutionary-adaptive-behavior-in-noisy-multi-agent-system

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

