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Wave Packet Dynamics in a Monolayer Graphene

G. M. Maksimova, V. Ya. Demikhovskii, and E. V. Frolova
Nizhny Novgorod State University

Russian Federation

1. Introduction

In the last years the dynamics of wave packets in 2D electron gas and other systems in solids
including the phenomenon of Zitterbewegung (ZB) or trembling motion has been the subject
of numerous studies. (Shmueli et al.,1995; Schliemann et al.,2005; Schliemann et al.,2006;
Schliemann,2008; Zawadzki,2005; Ferrari & Russo,1990; Zawadzki,2006; Katsnelson,2006;
Cserti & David,2006; Winkler et al.,2007; Trauzettel et al.,2007; Rusin & Zawadzki,2007;
Rusin & Zawadzki,2007; Rusin & Zawadzki,2008) Firstly the oscillatory motion
analogous to the relativistic Zitterbewegung in two-dimensional systems with the
structural and bulk inversion asymmetry was investigated by Schliemann et
al.(Schliemann et al.,2005; Schliemann et al.,2006) In the recent work by authors the detailed
studying of the electron wave packet dynamics in the semiconductor quantum well under
the influence of the Rashba spin-orbit coupling was performed. (Demikhovskii et al.,2008)
It was shown (analytically and numerically) that the initial wave packet splits into two
parts with different spin polarizations propagating with unequal group velocities. It was
demonstrated also that the splitting and overlapping of wave packets leads to the damping
of Zitterbewegung.
As well known, the electron Zitterbewegung in relativistic physics at first time was predicted
by Schrödinger (Schrödinger,1930) (see also (Barut & Bracken,1981)). This phenomenon is
caused by the interference between positive and negative energy states in the wave packet.
The frequency of ZB motion is determined by the gap between these two states and the
amplitude of oscillations in a particle position is of the order of the Compton wave length.
This phenomenon was discussed also in Refs.(Lock,1979; Thaller,2004; Braun et al.,1999).
The results of the first experimental observation of ZB phenomena were published recently in
the paper by Gerritsma et. al.(Gerritsma et al.,2010) For the ZB simulation the experimentalists
used a linear Paul trap where ion motion can be described by one-dimensional Dirac
equation.(Lamata et al.,2007) The authors of Ref. (Gerritsma et al.,2010) study the motion of
Ca+ ion and determined its position as a function of time for different initial conditions. As
was shown in Ref. (Lamata et al.,2007) the solution of the 3 + 1 Dirac equation can also be
simulated using a single trapped ion with four ionic internal states. In this case the ion position
and momentum are associated with respective characteristics of 3D Dirac particle.
In the papers by Rusin and Zawadzki (Rusin & Zawadzki,2007; Rusin & Zawadzki,2008) the
evolution of the wave packet in a monolayer and bilayer graphene as well as in carbon
nanotubes was analyzed. The exact analytical expressions for two components of wave
function and average value of position operator were found for bilayer graphene, which
allowed to obtain analytical results for the ZB of Gaussian wave packet. It was shown that
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the transient character ZB in bilayer graphene is due to the fact that wave subpackets related
to positive and negative electron energies move in opposite directions, so their overlap
diminishes with time. At the same time the dynamics of the wave packets in a monolayer
graphene in Ref. (Rusin & Zawadzki,2007) was not investigated fully.
In this chapter we present the detailed description of wave packet evolution including
the phenomenon of ZB of the packet center in a monolayer graphene (see also Ref.
(Maksimova et al.,2008)). The analytical expressions for the components of wave function at
t > 0 are found in the form of two-dimensional integrals. Using these equations we obtain
the full electron probability density and such dynamical characteristics of the packet center as
the average components of coordinate and velocity. We investigate the influence of the initial
pseudospin polarization on the space-time evolution of the wave packet, in particular, on the
trajectory of its center. As a result, the direction of the packet motion is determined not only
by the orientation of the average momentum, but mainly by the phase difference between the
up- and low- components of the wave functions. Our analytically results are illustrated by
a graphic presentation. The obtained results can be useful for analysis of the functioning of
graphene’s electronic structures and devices.

2. Basic equations

Graphene is a single layer of carbon atom densely packed in a honeycomb lattice. The
two-dimensional Hamiltonian describing its band structure has the form (Wallace,1947;
Slonczewski & Weiss,1958; Novoselov et al.,2005; Novoselov et al.,2006; Zhang et al.,2005)

Ĥ = u�σ�̂p, (1)

where u ≈ 108 cm/s, �̂p = ( p̂x , p̂y) is the momentum operator defined with respect to the
centre of the valley centered at the corner of the Brillouin zone with wave vector �K. Pauli
matrices σi operate in the space of the electron amplitude on two sites (A and B) in the unit
cell of a hexagonal crystal. This internal degree of freedom plays a role of a pseudospin. The
Dirac-like Hamilton Ĥ determines the linear dispersion relation

Ep,s = sup. (2)

Here p =
√

p2
x + p2

y, s = 1 for the electron in the conduction band and s = −1 for the valence

band ("hole" branch of quasiparticles). The corresponding eigenfunctions are given by

ϕ�p,s(�r, t) =
1

2
√

2πh̄
exp(i

�p�r

h̄
− i

Ep,st

h̄
)

(

1
seiϕ

)

, (3)

with eiϕ =
px+ipy

p .

The time-evolution of an arbitrary initial state ψ(�r, 0) in Shrödinger representation can be
found with the help of Green’s function Gμν(�r,�r′)

ψμ(�r, t) =
∫

Gμν(�r,�r′, t)ψν(�r′, 0)d�r′, (4)

where μ, ν = 1, 2 are matrix indices, corresponding to the upper and lower components of
ψ(�r, t). These components are related to the probability of finding electron at the sites of the
sublattices A and B correspondingly. The standard expression for Green’s function is
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Gμν(�r,�r′, t) = ∑
s=±1

∫

d�p ϕ�p,s;μ(�r, t)ϕ∗
�p,s;ν(

�r′, 0). (5)

Using Eq.(3) for ϕ�p,s;μ(�r, t) we find

G11(�r,�r′, t) = G22(�r,�r′, t) =
1

(2πh̄)2

∫

exp(i
�p(�r −�r′)

h̄
) cos(

upt

h̄
)d�p, (6)

G21(�r,�r′, t) = G∗
12(�r,�r′, t) =

−i

(2πh̄)2

∫ px + ipy

p
exp(i

�p(�r −�r′)
h̄

) sin(
upt

h̄
)d�p, (7)

Let us represent the initial wave function by Gaussian wave packet having the width d and
nonvanishing average momentum p0y = h̄k0

ψ(�r, 0) =
f (�r)

√

|c1|2 + |c2|2

(

c1
c2

)

, (8a)

f (�r) =
1

d
√

π
exp(− r2

2d2 + ik0y), (8b)

where coefficients c1 and c2 determine the initial pseudospin polarization. We suppose
that the packet width d is much greater than the lattice period and consequently ψ(�r, 0) is
smooth enveloping function. We suppose also that the most of the states in valence band are
unfilled, that corresponds to negative Fermi level located far from Dirac point (see also Ref.
(Rusin & Zawadzki,2008)). Substituting Eqs.(8a, 8b) in Eq.(4) and using the expressions (6)
and (7) we obtain

ψ1(�r, t) =
1

√

|c1|2 + |c2|2
(c1φ1(�r, t) − c2φ2(−x, y, t)), (9)

ψ2(�r, t) =
1

√

|c1|2 + |c2|2
(c2φ1(�r, t) + c1φ2(�r, t)), (10)

where, for notational convenience, φ1,2(�r, t) denote the functions

φ1(�r, t) =
∫

G11(�r,�r′, t) f (�r′, 0)d�r′ =
de−(k0d)2/2

2h̄2
√

π3
×

×
∫

exp(i
�p�r

h̄
− p2d2

2h̄2 +
pyk0d2

h̄
) cos(

upt

h̄
)d�p, (11)

φ2(�r, t) =
∫

G21(�r,�r′, t) f (�r′, 0)d�r′ =
−ide−(k0d)2/2

2h̄2
√

π3
×

×
∫ px + ipy

p
exp(i

�p�r

h̄
− p2d2

2h̄2 +
pyk0d2

h̄
) sin(

upt

h̄
)d�p. (12)

Using the cylindrical coordinates in Eqs.(11), (12) and integrating over the angular variable,
we have
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φ1(�r, t) =
e−

a2
2

d
√

π

∞
∫

0

e−
q2

2 cos(qt)J0(q
√

r2 − a2 − 2iay)qdq, (13)

φ2(�r, τ) =
e−

a2
2

d
√

π

x + a + iy
√

r2 − a2 − 2iay

∞
∫

0

e−
q2

2 sin(qt)J1(q
√

r2 − a2 − 2iay)qdq, (14)

where J0(z), J1(z) are Bessel functions. For the sake of convenience we introduce in Eqs.(13),
(14) and everywhere below the dimensionless variables, measuring the distance in the units
of initial width of wave packet d and time in d/u units. Besides, instead of the wave vector k0
we consider the parameter a = k0d.

3. Zitterbewegung of Gaussian wave packet with different pseudospin polarization

Now we describe the time dynamics of Gaussian wave packets, in particular, the ZB
phenomenon and the influence of the initial pseudospin polarization on the characteristics
of trembling motion.
i). Following Ref. (Rusin & Zawadzki,2007) let us firstly consider the model problem when the
lower component of initial wave function is equal to zero, i.e. the parameters c1 = 1, c2 = 0 in
Eq.(8a). That means that at the initial moment of time the electron probability is located at the
sites of the sublattice A. It is not difficult to show that this packet is formed by the states with
positive and negative energies. The relative weight of these states is equal to one. The wave
function for t > 0 can be found using Eqs.(9), (10):

ψ(�r, t) =

(

φ1(�r, t)
φ2(�r, t)

)

, (15)

where the functions φ1(�r, t), φ2(�r, t) are defined by Eqs.(13),(14).
In Fig.1 we represent the full electron density at the moment t = 7 for initial wave packet,
Eq.(8b) with width d = 2 nm and k0 = 0.6 nm−1. As one can see, at t > 0 this packet
splits in two parts moving along y axis with opposite velocities so that the electron probability
density is symmetrical with respect to y: ρ(x, y, t) = ρ(x,−y, t). Note that at the case k0 = 0
the electron probability density has a cylindrical symmetry at all time. Indeed it is easy to
see that the initial wave function is the eigenstate of total “angular momentum” operator
Îz = l̂z + h̄/2 σz (l̂z = −ih̄∂/∂α) ÎzΨ(�r, 0) = h̄/2 Ψ(�r, 0). Since Iz is a conserved quantity
the wave function Ψ(�r, t) = (Ψ1(�r, t), Ψ2(�r, t))T obeys this equation too. It follows that only
lower component depends on α: Ψ2(�r, t) ∼ eiα f2(̺, t) (see Eqs.(13)-15) for k0 = 0). Thus the
probability density remains an axially symmetric at t > 0. For enough large time the width of
both parts of the packet with k0 �= 0 increases with time due to effect of dispersion. One can
check that in this situation the contributions of two components of wave functions ψ1(�r, t) and
ψ2(�r, t) in full electron density are equal. In other words the electron probability distributes
with the time on the sides of sublattice A and B. Note at the same time ρ(x, y, t) �= ρ(−x, y, t)
and the packet center oscillates along x direction (Zitterbewegung).
To analyze this motion we find the average value of position operator. To do it, we use the
momentum representation. The upper (C1(�p, t)) and lower (C2(�p, t)) components of wave
function (15) in this representation can be easily obtained from Eqs.(11), (12). After that the
usual definition
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Fig. 1. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet determined by Eqs.(8a), (8b) with c1 = 1 and c2 = 0 for a = k0d = 1.2 at the time t = 7
(in the units of d/u).

Fig. 2. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along z axis for two values of a.

�̄r(t) =
2

∑
j=1

∫

d�p C∗
j (�p, t)ih̄

dCj(�p, t)

d�p
, (16)

readily yields
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ȳ(t) = 0, (17a)

x̄(t) =
1 − e−a2

2a
− e−a2

∞
∫

0

e−q2
cos(2qt)I1(2aq)dq, (17b)

where I1(z) is a modified Bessel function of the first order. In Eq.(17b) the integral term
represents the Zitterbewegung. Note that average value x̄(t) depends on only one parameter
a (in the dimensionless variables). The obtained functions x̄(t) which describes the typical
transient Zitterbewegung are plotted in Fig.2. After the oscillation disappears the center of the
packet is displaced by amount which equals to the first term Eq.(15). In the case when the
wave packet width is large enough and the inequality a = dk0 ≫ 1 takes place, Eq.(17b)
reduces to

x̄(t) =
1 − e−t2

cos(2at)

2a
. (18)

The details of the calculation of asymptotic formula similar to Eq. (18) are represented in Ref.
(Demikhovskii et al.,2008).
As it follows from Eqs.(17), (18) for given initial polarization of wave packet the ZB
occurs in the direction perpendicular to the initial momentum p0y = h̄k0, just as for
bilayer graphene (Rusin & Zawadzki,2007) and for the semiconductor quantum well in the
presence of the Rashba spin-orbit coupling (Schliemann et al.,2005; Schliemann et al.,2006;
Demikhovskii et al.,2008). One can see from Eq.(18) that the trembling motion has a transient
character as it was described in Refs. (Rusin & Zawadzki,2007; Demikhovskii et al.,2008) and
at t ≫ 1 x(t) → 1/2a. We should notice that Eqs.(17b), (18) coincide with corresponding
formulas of Ref. (Demikhovskii et al.,2008). This is because the Hamiltonian for the system
with Rashba-coupling

HR =
�̂p2

2m
+ α( p̂yσ̂x − p̂x σ̂y), (19)

where α is a Rashba coupling constant, transforms into Hamiltonian for monolayer graphene,
Eq.(1), if we make the replacement in Eq.(19)

x → −y′, y → x′, α → u, m → ∞. (20)

ii). Let us consider now the case when c1 = c2 = 1, that is pseudospin is directed along x axis
at t = 0. Then from Eqs.(9), (10)

ψ(�r, t) =
1√
2

(

φ1(�r, t)− φ2(−x, y, t)
φ1(�r, t) + φ2(�r, t)

)

. (21)

Fig.3 illustrates the corespondent electron probability density at the time moment t = 7
for initial wave packet, Eq.(8b), for the same parameters as in Fig.1. One can see that the
initial wave packet at t > 0, as in previous case, splits into two parts propagating along y
in opposite directions so that the symmetry concerning this axis, i.e. ρ(x, y, t) = ρ(x,−y, t),
retain during the time (as the case i)). The distribution of the probability density along x axis
clearly demonstrates that its maximum is displaced in the positive direction that corresponds
to the motion of the packet centre along x axis. The velocity of such motion v̄x = dx̄

dt consists
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Fig. 3. (Color on line). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = 1 for a = k0d = 1.2 at the time t = 7 (in the units
of d/u).

of both constant as well as oscillatory parts. Really, a straightforward calculation yields the
average value of position operator x

x̄(t) =
1 − e−a2

2a2 t +
e−a2

2a

∞
∫

0

e−q2
sin(2qt)

d

dq
I1(2aq)dq, (22)

and ȳ(t) = 0 like for the case i). In Fig.4 we demonstrate the dependence x̄(t) for various
values of parameter a. When the parameter a increases, the amplitude of ZB and the period of
oscillations decrease. At a ≫ 1 we have from Eq.(22)

x̄(t) =
t

2a2 +
1
2a

e−t2
sin(2at). (23)

We see that the character of motion of wave packet is changed. Now the center of wave
packet moves along x direction with constant velocity, which is determined by the first term
in Eqs.(22), (23) and performs the damping oscillations. It is not difficult to find the constant

component �̄V0 (in the units of u) of wave packet velocity for arbitrary initial wave function
(8a) (see Appendix):

V̄0x =
2

|c1|2 + |c2|2
∫

d�p|F(�p)|2( p2
x

p2 Re(c∗1c2) +
px py

p2 Im(c∗1c2)), (24)

V̄0y =
2

|c1|2 + |c2|2
∫

d�p|F(�p)|2( px py

p2 Re(c∗1c2) +
p2

y

p2 Im(c∗1c2)). (25)

In particular for F(�p) = F(−�p) and c1 = c2 = 1 Eqs.(24),(25) give V̄x0 = 1/2, V̄y0 = 0. This
result also follows from Eq.(22) when k0 = 0 or for the narrow-width Gaussian wave packet
(a = k0d → 0). When the width of packet is increased the velocity of motion of its centre is
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Fig. 4. The average coordinate x̄(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along x axis for different values of a.

decreased. The frequency and amplitude of the Zitterbewegung for a ≫ 1 are the same as in the
case i). However, the first term in Eq.(22) corresponding to the motion of wave packet with
constant velocity reduces the effect of ZB at least for a � 1 (Fig.4).
It is not difficult to show that as in the other two-band systems the phenomenon of ZB
in graphene is a result of an interference of states corresponding to positive and negative
eigenenergies of Hamiltonian, Eq.(1). For wide enough packet a = k0d ≫ 1 and at time
t > 1 when the ZB disappears two split parts of initial wave packet (see Fig. 3) move along
y axis with opposite velocities u/2 and −u/2. In this situation the subpackets moving in
the positive and negative directions consist of the states with positive and negative energies
correspondingly.
iii). When the initial pseudospin is along y axis the wave function at t > 0 has the form

ψ(�r, t) =
1√
2

(

φ1(�r, t)− iφ2(−x, y, t)
iφ1(�r, t) + φ2(�r, t)

)

. (26)

In Fig.5 the full electron density for the same moment of time and for the same parameters
as in previous cases is shown. As one can see, the initial wave packet does not split into two
parts at t > 0 unlike in the cases i) and ii). This result is confirmed by the straightforward
calculations. Indeed, one can show that the eigenenergy states corresponding to propagation
in the positive direction along y axis give the dominant contribution in total wave function,
Eq.(26). For wide packets (a ≫ 1) almost all of these states belong to the positive branch of
energy.
The results of calculations of average values of x and y for this polarization lead to

x̄(t) = 0, (27)

ȳ(t) = (1 − 1
2a2 +

e−a2

2a2 ) t +
e−a2

2a

∞
∫

0

e−q2
sin(2qt)I1(2aq)

dq

q
. (28)
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Fig. 5. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eqs.(8a), (8b) with c1 = 1 and c2 = i for a = k0d = 1.2 at time t = 7 (in the units of
d/u).

Fig. 6. The average coordinate ȳ(t) versus time (τ0 = d/u) for the wave packet with initial
pseudospin polarization along y axis for different values of a.

Thus in the considered case the wave packet propagates along y axis and the Zitterbewegung
has the "longitudinal" character. It is interesting to note that 1D wave packet

ψ(y, 0) = F(y)

(

1
i

)

,
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where F(y) is arbitrary function, propagates along y direction without changing of its form

ψ(y, t) = F(y − ut)

(

1
i

)

.

Note that in a numerical work (Thaller,2004) the author has observed similar oscillatory
behavior of the expectation value of the position operator for one - dimensional relativistic
electron in vacuum. In Ref.(Thaller,2004) it was also shown that apart from the rapid
oscillation, the wave packet drifts slowly even when its average momentum is zero.
In Fig.6 we represent the dependence ȳ(t) for different values of parameter a. As one can see,
even at zero value of a the oscillations are absent. In this case, as it follows from Eqs.(25),(28)
the drift velocity is equal to 1/2 (in the units of u). As above, Eq.(28), takes more simple form
at a ≫ 1

ȳ(t) = t +
1

4a3 e−t2
sin(2at). (29)

Comparing Eqs.(18), (23), (29), we see that the amplitude for the "longitudinal" Zitterbewegung
is much smaller than the amplitude of "transverse" Zitterbewegung. This fact can bee seen
as a consequence of special form of the initial wave function, which in the given case
consists of (at a ≫ 1) the states with positive energy mostly. That makes the interference
between the positive and negative components difficult, i.e. decreases the ZB. Moreover, at
any values of the parameter a the integral term in Eq.(28), corresponding to the oscillating
motion, is negligible in comparison with the first term, and one may neglect the effect of the
"longitudinal" ZB.
As was demonstrated above, the direction of the average velocity depends not only on module
of the components ψ1(�r, 0) and ψ2(�r, 0), but also on their phases. Specifically for the initial
Gaussian packet

ψ(�r, 0) =
f (�r)√

2

(

1
eiϕ

)

, (30)

the probability density becomes asymmetric and the average position operator has two
components

r̄(t) = x̄(t) cos ϕ�ex + ȳ(t) sin ϕ�ey, (31)

where ϕ is an arbitrary phase difference between the up and low components of wave function
and x̄(t), ȳ(t) are determined by Eqs.(22), (28). For illustration we show in Fig.7 the electron
probability density obtained for the initial packet, Eq.(30), with ϕ = π/4.
It is clear that the phase ϕ determines the direction of the average velocity of the packet center.
Using the expression for velocity operator �̂v = u�σ and Eq.(30) we obtain (in the dimensionless
variables) at t = 0:

vx(0) = cos ϕ, vy(0) = sin ϕ. (32)

The components of the velocity for a large enough time, when the trembling motion stops, can
be found from Eqs.(22),(28) and (31) for arbitrary parameter a

vx =
1 − exp(−a2)

2a2 cos ϕ, vy =

(

1 − 1
2a2 +

exp(−a2)

2a2

)

sin ϕ. (33)
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Fig. 7. (Color online). The electron probability density ρ(�r, t) = |ψ1|2 + |ψ2|2 for initial wave
packet, Eq.(8a), (8b) with c1 = 1 and c2 = eiπ/4 for a = k0d = 1.2 at the time t = 7 (in the
units of d/u).

Fig. 8. The trajectories of the center of electron wave packet described by Eq.(30) for two
initial phases ϕ = π/4 and 3π/4. The parameter a = 6.

In particular, as it follows from Eq.(33) for a ≪ 1, the direction of the motion of wave packet
center at large time coincides with the initial one, Eq(32). In other limiting case a ≫ 1 (and
for not too small ϕ) asymptotic direction of the average velocity is along 0Y axis, i.e. along the
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average momentum of wave packet py = h̄k0. Thus, by changing the initial phase ϕ, one can
govern the packet motion and consequently the direction of dc current. To illustrate this, we
plot in Fig.8 the packet center trajectories for two initial phases: ϕ = π/4 and 3π/4. Note that
the packet motion with the constant velocity predicted above (see Eqs.(22), (28)) should lead
to the existence of the direct current in the corresponding direction.
To check our formalism let us consider the plane wave as the starting point. In this case it
is easy to obtain the expression for the average value of electron velocity �̄v(t). Really, in the
Heisenberg picture the kinetic velocity is (in the dimensional variables)

�̂v(t) =
1
ih̄

[�r, Ĥ] = u�σ(t), (34)

where

d�σ

dt
=

1
ih̄

[�σ, Ĥ] =
2u

h̄
[�̂p ×�σ]. (35)

In these equations �p(t) = �p(0). Let the initial momentum poy = h̄k0. Then, using the solutions
of Eqs.(34), (35) we find

v̄x(t) = uσ̄z(0) sin ωt + uσ̄x(0) cos ωt, (36a)

v̄y(t) = uσ̄y(0), (36b)

where ω = 2uk0 and σi(0) = σi - Pauli matrixes (i = 1, 2, 3). So, if in the initial state pseudospin
is along z direction, i.e. σ̄z(0) = 1 (case i)) we obtain from Eq.(34a) that v̄x(t) = u sin ωt which
leads to

x̄(t) = const − u

ω
cos ωt. (37)

Returning to the original variables in Eq.(18) and setting d = ∞ we see that this expression
coincides with Eq.(37). We get similar results also for other initial polarizations.

4. Concluding remarks

We have studied the quantum dynamics of charge particles represented by Gaussian
wave packets in two-dimensional single layer of carbon atoms (graphene). We investigated
numerically also the spatial evolution of the initial wave packet and demonstrated the effect of
the packet splitting for the pseudospin polarization perpendicular to the average momentum.
The analytical expressions for the average values of position operators were obtained. These
expressions clearly demonstrate that the evolution of wave function is accompanied by the
Zitterbewegung and strongly depends on the initial pseudospin polarization. In particular,
if the initial pseudospin polarization coincides with initial average momentum, the packet
center moves and exhibits the ZB along the same direction. In this case the second term in
Eq.(28) describing the longitudinal oscillations (the "longitudinal" ZB) is essentially smaller
than the first one connected with the motion with constant velocity. As for other systems with
two-band structure (Demikhovskii et al.,2008; Rusin & Zawadzki,2007; Thaller,2004), the ZB
in monolayer graphene has a transient character.
It was also predicted that apart from the packet center exhibits the trembling motion it can
move with constant velocity (for example, for the pseudospin polarization along x and y axis).
The direction of this velocity depends on not only the orientation of average momentum �p0,

470 Physics and Applications of Graphene - Theory

www.intechopen.com



but also on the module of the components ψ1(�r, 0), ψ2(�r, 0) and the differences of their phases
(see Eqs.(30),(33)).
All above calculations have been done for the �K point of the Brillouin zone in graphene.
Similar results can be found for initial wave packet with wave vector�k in the valley centered
in inequivalent point �K′. The Dirac Hamiltonian around �K′ point can be written as

HK′ = u

(

0 − p̂x − i p̂y

− p̂x + i p̂y 0

)

, (38)

This expression can be obtained from Hamiltronian around �K point given by Eq.(1) by
replacement p̂x → − p̂x. Other representation of Eq.(38) are common in the literature as well.
In this connection see (Bena & Montambaux,2009; Gusynin et al.,2007). Thus values x̄(t) for
the wave packet of different polarizations (and corresponding components of velocity) change
sign while ȳ(t) remain unchanged (see also(Rusin & Zawadzki,2008)).
In conclusion we would like to stress that the packet motion with the constant velocity
(see Eqs.(22), (28)) leads to the appearance of the dc current. For the experimental detection
of this current one needs sensitive current meters. Experimental observation of trembling
motion is currently a more difficult task since it is necessary to use femtosecond techniques.
(Zawadzki,2006; Rusin & Zawadzki,2007) If new methods of formation of wave packets
with different pseudospin polarizations will be elaborated then their trajectories and spatial
separations can be observed probably with the help of devices with quantum point contacts
and gates (see for example (Castro et al.,2009)). The intresting experimental method allows an
observation of ZB of electron in graphene exited by femtosecond laser pulse in the presence
of magnetic field was proposed in Ref. (Rusin & Zawadzki,2009).

5. Appendix

Besides the rapid oscillations (ZB) the electron wave packet in graphene (as for other two-band

systems) can drift with constant velocity �̄V0 although its average momentum is zero. The
existence of constant component in the wave packet center velocity depends on the form and
symmetry of the initial wave function.
Let now find the drift velocity for the arbitrary initial state, Eq.(8a). At t > 0 the total wave
function in the momentum space can be decomposed into positive- (Ψ+(�p, t)) and negative-
energy (Ψ−(�p, t)) components.

Ψ(�p, t) = Ψ+(�p, t) + Ψ−(�p, t) = a+U+(�p)e−iE+t/h̄ + l + a−U−(�p)e−iE−t/h̄, (A.1)

Using the expression (3) for the eigenspinors U±(�p) we find the coefficients a±

a± =
F(�p)

√

2(|c1|2 + |c2|2)
(c1 ±

(px − ipy)

p
c2), (A.2)

where F(�p) is to be determined from the Fourier expansion of coordinate wave function f (�r).
Obviously the time-independent part Vμ0 of the density of velocity in the momentum space is
defined as

Vμ0(�p) = Ψ+
+(�p, t)V̂μΨ+(�p, t) + Ψ+

−(�p, t)V̂μΨ−(�p, t), (A.3)

where V̂μ = uσμ, μ = 1, 2 is velocity operator. The preceding expressions (A.1), (A.2), (A.3)
immediately lead to the constant velocity of the wave packet center given in Eqs.(24), (25).
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