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1. Introduction 

Graphene sheet is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are 

densely packed in a hexagonal crystal lattice. Graphene is the basic structural element of 

some carbon allotropes including graphite, carbon nanotubes and fullerenes. Carbon 

nanotubes (CNTs) (Iijima, 1991) exhibit exceptional physical properties: small size, low 

density, high stiffness, high strength and excellent electronic and thermal properties 

(Dresselhaus et al., 1996; Wong et al., 1997; Che et al., 2000; Yakobson and Avouris, 2001; 

Thostenson et al., 2001). These exceptional mechanical and physical properties along with 

low weight of CNTs and recent improvements in their synthesis and purification techniques 

make CNTs excellent candidates for use in tailoring properties of composites (Wagner et al., 

1998; Cadek et al., 2002; Dalton et al., 2003).  

Molecular mechanics/dynamics and ab initio methods are suitable for studying the 

mechanical properties and fracture behaviors of grapheme sheet and nanotubes but are 

limited in scale and are computationally expensive. Recently, continuum mechanics based 

models for CNTs have been developed using the harmonic energy potential (Li and Chou, 

2003; Chang and Gao, 2003). These models reduce computational cost significantly, but can 

only be used to investigate elastic properties, such as the Young’s modulus or Poisson’s 

ratio.  To fully predict the stress-strain relationship and failure mechanism of CNTs, these 

methods are not sufficient. The Brenner potential function (Brenner, 1990) is considered 

more accurate and versatile. It can handle changes in atom hybridization and bonds with 

atoms other than carbon. A continuum mechanics approach directly incorporating the 

Brenner potential function has been developed by Huang’s group (Zhang et al., 2002; Jiang 

et al., 2003) to model elastic properties and stress-strain relationships of carbon nanotubes 

based on a modified Cauchy-Born rule. Based on the modified Morse potential function 

(Belytschko et al., 2001), which is simpler than the Brenner potential, the authors have 

developed models for perfect and defective CNTs (Xiao et al., 2005; Xiao et al., 2009). The 

developments have the ability to predict the ultimate stress and other mechanical 

properties, including nanotube’s nonlinear stress-strain relationship. The analytical model 

(Xiao et al., 2005) has been extended to solve mechanical responses of defect-free single- and 

www.intechopen.com



 Physics and Applications of Graphene - Theory 

 

368 

multi-walled CNTs under internal and external pressure loadings (Xiao et al., 2006; Xiao and 

Gillespie, 2006a) as well as aligned nanotube-composites (Xiao and Gillespie, 2006b). The 

analytical model not only provides simple closed-form solutions but also presents a better 

insight of the role of the atomic networks.  
The present work discusses the atomistic based finite bond element model and its 
application to study the effects of Stone-Wales (5-7-7-5) defects on mechanical properties 
and fracture behaviors of graphene sheets and carbon nanotubes.  The element formulation 
includes eight degrees of freedom reducing computational cost compared to the 12 degrees 
of freedom used in other FE type models. The coefficients of the elements are determined 
based on the analytical molecular structural mechanics model developed by the authors. 
The model uses the modified Morse potential to predict the Young’s modulus and stress-
strain relationship of perfect and defective nanotubes and graphene sheets.  Research 
involving the Stone-Wales defect preformed by Tserpes, and Papanikos (2007) using the 
Finite Element (FE) based model does not include the deformation of the original nanotube 
structure around the nucleation site, which may  not be true in general as atoms redistribute 
to minimize energy. The authors (Xiao et al., 2009) proposed a simple way to simulate the 
formation of a Stone-Wales (5-7-7-5) defect using an interaction mechanics method to 
calculate the deformations caused by the formation of a Stone-Wales. 
The variation of ultimate stress, strain at failure, and Young’s modulus values of carbon 
nanotubes and graphene sheets has been examined as a function of the distance between 
two defects aligned in the axial and hoop directions has been studied. The fracture failure 
patterns will be presented and discussed. The mechanical properties as a function of the 
number of defects in the hoop direction are also studied. It is found that the moduli are 
sensitive to the tube lengths when the total tube length is used to compute the overall 
effective axial strain. If one uses a characteristic length based on the size of the local 
perturbation in the deformation fieldcreated by the defect to define the strain, a size 
independent modulus can be obtained for the defective region. The diameter of the affected 
region (2nm) from a single defect is defined as the defective length and is used for all 
different tube lengths examined in the present study. The effects of defect density on 
mechanical properties of tubes of any lengths are also discussed.  Progressive failure in the 
post failure region is investigated and a few computational examples are discussed. The 
predictions compare favorably to the corresponding published results from experiments 
and numerical calculations (i.e tight binding or molecular dynamics) for armchair and 
zigzag carbon nanotubes. 

2. An atomistic based finite bond element model 

A single-walled carbon nanotube can be viewed as a hollow cylinder rolled from a graphene 
sheet, composed of carbon hexagons. The diameter of the nanotube can be calculated as 

2 2
1 2 1 23( ) /d n n n n π= + + , where a = 0.142 nm is the C-C bond length, and the pair of 

integers (n1, n2) are indices to represent its helicity such as armchair (n1 = n2) and zigzag (n2 
= 0) nanotubes. 
There are several different potential functions available (Brenner, 1990; Abell, 1985; Tersoff, 
1988) for describing C-C bond interaction other than simple harmonic functions. Among 
them, the modified Morse potential function (Belytschko et al., 2001) is simple and is used in 
the present study. The modified Morse potential function was correlated to the Brenner 
potential function for strains below 10%. In this paper, a new term Etorsion is added to 
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consider the bond energy due to angle variation of bond twisting Δφ which has been found 
to be negligible for defect-free tubes (Li and Chou, 2003) and was neglected in earlier studies 
(Chang and Gao, 2003; Xiao et al., 2005; Xiao et al., 2006; Xiao and Gillespie, 2006a; Xiao and 
Gillespie, 2006b). However, this term may play a more important role in defective tubes. The 
energy potential function is given as follow: 

 
torsionanglestretch EEEE ++=  (1) 

where Estretch is the bond energy due to bond stretch Δr, and Eangle is the bond energy due to 

bond angle variation Δθ, and  

 2)(
2

1 φφ Δ= kEtorsion
 (2) 

The parameters associated with the terms Estretch and Eangle can be seen in Ref (Belytschko et 

al., 2001). The force constant associated with the term (2) is taken as (Li and Chou, 2003; 

Cornell et al., 1995; Jorgensen and Severance, 1990) kφ = 0.278   2/ radnmnN − .  
The stretch force, the angle-variation moment and the torsional moment can be obtained 
from differentiations of Eq. (1) as functions of bond stretch, bond angle variation and torsion 
angle variation, respectively: 

 ( ) rr

e eeDrF Δ−Δ−−=Δ βββ 12)(   (3a) 

 [ ]4)(31)( θθθ θ Δ+Δ=Δ sextickkM
 (3b) 

 φφ φφ Δ=Δ kM )(  (3c) 

A constant bond torsional stiffness is implied by Eq. (3c). The stretch stiffness and the angle-

variation stiffness can be further obtained from differentiations of Eqs. (3a-3b) as functions 

of bond stretch and bond angle variation, respectively: 

 ( ) rr
er eeDrk ΔβΔββΔ −−−= 212)(

2   (4) 

 [ ]4)(151)( θΔθΔ θθ sextickkk +=  (5) 

Analytical solutions for predicting nonlinear mechanical behaviors of defect-free SWCNTs 

have been investigated by using an effective “stick-spiral” model based on a unit cell 

approach (Xiao et al., 2005). The effective “stick-spiral” model uses a stick with Eq. (3a) to 

model the force-stretch relationship of the C-C bond and a spiral spring with Eq. (3b) to 

model the angle bending moment resulting from an angular variation of bond angle. The 

stick is assumed to have an infinite bending stiffness and finite torsional stiffness. One can 

include the torsional term by using the stick with Eq. (3c).  

For a defective nanotube with loss of local symmetry, the unit cell approach becomes 
inappropriate, and a generalized molecular mechanics (MM) model (Sears and Batra, 2004) 
or a finite element (FE) type model (Li and Chou, 2003) are needed to include the entire 
molecular structure system of the defective nanotube in order to consider the effect of 
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defects on its mechanical response. In this paper, we propose a new FE type model for 
nanotubes based on the effective “stick-spiral” model. Bond elements are developed for 
simulating deformation modes of the chemical bonds.  
Typically the FE type model (Li and Chou, 2003) uses a beam element (Kanchi 1993) with 

sectional stretch stiffness for the force-stretch relationship of the C-C bond, sectional flexural 

rigidity for the angle bending moment (Eq. 3b), and sectional torsional stiffness for the 

torsional moment (Eq. 3c). Each element has 12 degrees of freedom. The major differences 

between the FE type model and the effective “stick-spiral” model are the assumptions made 

with respect to the bending stiffness (flexible vs rigid). The bond element used in the present 

paper has infinite bending stiffness (the stick) with finite bending stiffness of the two end 

joints (the spirals) indicated by the square box shown in Fig. 1. Each of the three molecular 

deformation modes (stretching, angle variation, and angle torsion) are represented by 

tension, bending and torsion of a bond element with 8 degrees of freedom 

][ jzjyjxjiziyixie uuuuuuu φφ= . The element can be stretched (pure tension) and 

torqued (pure torsion) along its axial direction and bent by relative transverse displacement 

without angle changes at the two ends. The bond angle variation of the bond element can be 

associated with the relative transverse displacement (e) between the two ends as dθ = e/a 

(Fig. 1c). The present approach, designated the finite bond element model, is expected to 

give the same solution as the “stick-spiral” model (Xiao et al., 2005; Chang and Gao, 2003) 

for defect-free CNTs. The stick-spiral model with infinite bending stiffness represents the 

true physical deformation modes and is able to predict both in-plane stiffness (Young’ 

modulus) and Poisson’s ratio of CNTs accurately. 

For the bond element defined in Fig. 1 in a three-dimensional space, the elemental 

equilibrium equation can be established for every bond element. The final system of 

equations with appropriate boundary conditions imposed can be solved by the 

displacement-control Newton-Raphson method. A MATLAB program has been written 

based on finite bond element method for SWCNTs subjected to tensile loadings. 

3. Validation on defect-free SWCNTs 

The calculations based on our FE-based finite bond element model will be validated by 

comparing with the results obtained from the analytical model (Xiao et al., 2005) for defect-

free CNTs. The initial equilibrium state of the atomistic system of a CNT is created based on 

the ab initio calculations (Ye et al., 2001) where the approximate expressions of angle α and β 

of armchair nanotubes are taken as 3/2πα ≈  and β = π - arcos [0.5cos(π/2n1)], respectively. 

The angle α and β for zigzag nanotubes as 3/2πα ≈  and β = arcos [0.25-0.75cos(π/n1)]. The 

displacement boundary conditions for the simulations are shown in Figure 2. The atoms on 

the bottom edge of the tube are fixed in the axial (z) direction. One atom is fully fixed in all 

three (x-, y- and z) directions to prevent rigid body rotations. The other end of the CNT was 

axially displaced incrementally to introduce load into the tube.  

The interatomic force per atom (f) is calculated for all atoms along the end of the nanotube 

where the displacement is prescribed. For defect-free nanotubes, the force is identical for all 

atoms on the end. The axial strain of the CNT is computed as ε = ΔL/L0, where L0 is the 

initial length of the CNT. The force-strain relationship of nanotubes is predicted using the 

procedures outlined above. Fig. 3 shows the computed force-strain relationships for 
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Fig. 1. Molecular mechanics modes are compared with finite bond element method 

 

 
a (10, 10) nanotube 

 

 
a (16, 0) nanotube 

Fig. 2. Atomistic armchair and zigzag nanotubes (blue bar denotes constrained displacement 
and red bar indicates prescribed displacement) 
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armchair and zigzag nanotubes. Only two different types of nanotubes (i.e. a (12, 12) 
armchair and a (20, 0) zigzag) are presented for illustration purpose.   
The numerical procedure is able to give the post failure behavior (i.e. beyond the inflection 
point where the maximum of the interatomic force occurs) as shown in Fig. 3. Similar 
predictions have been reported in the study (Jiang et al., 2003). However, the accuracy of the 
predicted post failure response (dash lines) is limited to the strains shown in Fig. 3 (vertical 
solid line) since the simple interatomic potential function used is not capable of describing 
the behavior of the nanotube after the bonds are broken where the formation of new bonds, 
rehybridization and structural transformations may occur.  
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Fig. 3. Tensile force-strain curves for armchair and zigzag nanotubes 

From the experimental (Yu et al., 2000) and theoretical (Belytschko et al., 2001) studies on 
the tensile behavior of nanotubes, it was found that the stress exhibits a sudden drop to zero 
when stress reaches the tensile strength and the fracture is brittle. The predicted maximum 
load corresponding to the inflection point is taken as the tensile capacity of the defect free 
nanotube in the present study which is highlighted in Fig. 3.   
It should be noted that the present method does not require a tube thickness to be defined. 
However, in order to compare the results with published data, conventional moduli and 
strengths can be calculated using an assumed wall thickness for CNTs (e.g. t = 0.34 nm is 
used in the literature). The total force carried by the CNTs can be given as F = 2n1f, and then 

the stress can be computed as σ = F/πdt and the Young’s modulus as 
0LL

dtF
E

Δ
π

= , 

respectively. It is not surprising that the predicted tensile behaviors are almost identical to 
those of the analytical molecular mechanics model (Xiao et al., 2005) because the coefficients 
used in the present atomistic based FE model are the same as those used in the analytical 
model. The negligible difference (less than 0.5%) is attributed partially to the effects of the 
torsional mode and numerical round-off error. Consequently, the present study also 
confirmed that the torsional term in the potential energy is negligible when the defect free 
tubes are subjected to tensile loading which justifies the assumptions made in other studies.  
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The size-dependent feature of in-plane stiffness and Poisson’s ratio can also be captured by 
the present model. The Young’s moduli for both armchair and zigzag nanotubes decrease 
with decreasing tube diameter and approach the predicted graphite value (383 J/m2, 
corresponding to a Young’s modulus of 1.13 TPa with thickness of 0.34nm) when the tube 
diameter is increased. The Poisson’s ratios for both armchair and zigzag tubes decrease with 
increasing tube diameter and approach the limit value of 0.20 for graphene sheet, which 
agrees with both molecular dynamics simulations and experimental values. It should be 
noted that the similar FE based model (Li and Chou 2003) predicted a very low value (<0.08) 
for the Poisson’s ratios of graphene sheets and nanotubes. Consequently, the present 
formulation overcomes this limitation in previous work. In the context of the present study, 
accurate modeling of Poisson interactions in the prediction of defect formation is important 
as shown in the next section.   
The predicted nonlinear behaviors of nanotubes are very similar to results calculated from 
molecular dynamics (Belytschko et al., 2001). The predicted strengths and failure strains are 
significantly higher than the experimental values (11 ~ 63 GPa for strength and 10% ~ 13% 
for failure strain) (Yu et al., 2000). This difference can be partially explained by the presence 
of defects that reduce stiffness and strength. The mechanical behavior of defective 
nanotubes is studied in the following section. 

4. Progressive failure of defective SWCNTs 

4.1 Stone-wales defect formation 

Various types of defects exist in CNTs, such as vacancies and topological defects (5-7-7-5). 
The Stone–Wales 5-7-7-5 defect involves the 90o rotation of a carbon bond with a new 
configuration as shown in Fig. 4. The effect of the SW defect on the configuration is believed 
to be local and limited to atoms in the neighborhood of the defect. Atoms far away from the 
defect undergo uniform deformation and their geometry configurations are the same as the 
defect-free tubes. For atoms near the defect, an interaction (similar to contact) mechanics 
concept is used to determine their initial equilibrium positions, which is possible by treating 
the defect formation as the result of interaction between two deformable ‘bodies’ as shown 
in Fig. 5. ‘Inserting’ the body b of a zigzag unit into the body a with an armchair hole as 
   

 

90o90o

 

Fig. 4. SW defect generated by rotating the C–C bond 
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defined in Fig. 5 and forcing them to be coincident at four specific locations will cause re-
configuration of the system within a localized region because of the geometrical distortions 
that exist at the four locations. Assuming the same in-plane properties for each body 
(governed by the same potential function), self-equilibrating ‘residual’ or internal forces will 
be generated between disturbed atoms if we assume that there is no net atomic force 
between atoms at equilibrium state of defect-free region (reference state). The resulting 
configuration corresponds to the minimized energy state of a defective graphene sheet and 
CNT. 

The finite bond element method is used for describing atomistic force-displacement 
interaction for both bodies to study how the two regions conform to each other. The two 
deformable bodies Ωe (e = a, b) are shown in Fig. 5. The interaction sites (contact ‘surface’) 
consists of four atoms (1, 2, 3 and 4) that exist in both bodies with prescribed displacements 
along e

uΓ  and tractions applied on e

tΓ (e = a, b). If the initial gap along the interaction 
surface of the two bodies is denoted by g (= (uxi uyi uzi), i = 1,2,3,4) the interaction condition 
can be described in the form of inequalities as: 

 Fc ≤ 0 g ≥ 0                                                     (8a) 

                                                       g Fc = 0 (8b)    

where Fc )( ziyixi FFF  is the interaction force vector of the four interfacial atoms. For each 

body, displacement and force fields are determined by the molecular mechanics and can be 
written in the following condensed matrix form: 

 

⎭
⎬
⎫

⎩
⎨
⎧ −

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

c

ct

b

a

b

a

F

FF

u

u

K

K

0

0    (9) 

in which ua and ub are components of the displacement vector (same size as the gap vector g) 
of the four atoms in the body a and b, respectively. Ft is the applied external force vector. Ka 
is the condensed stiffness matrix of the body a with the displacements ua as the basic 
unknowns and contents of stiffness contributions from all elements of the body a. Kb is the 
condensed stiffness matrix of the body b. By introducing the following transformation: 

 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

g

u

I

II

u

u a

b

a

0
 (10) 

where [I] is the identity matrix. Eq. (9) can be easily transformed to: 

 
cFFKg +=  (11) 

in which  

 [ ] abaaa KKKKKK
1

 
−+−=  (12a) 

 [ ] tbaat FKKKFF
1

 
−+−=  (12b) 

So that the force Fc, which is required to close the gap to achieve coincident atom locations, 
can be calculated from Eq. (11) for the initial ( 0=F ) and/or loaded states as: 
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 FKgFc −−=  (13) 

The gap function is generated by aligning nodes 1 and 1′ of two bodies in Fig. 5. The 
boundary condition applied to the system matrix in Eqs. 11 and 12 is that node 1 is fixed. 
With the force

cF  known one can determine the equilibrium positions of atoms in the 

defective system which corresponds to the minimized system energy. It should be noted 
that the proposed analysis involves a nonlinear procedure since the modified Morse 
potential energy function is used. The formation energy can be calculated as 

10.5 ( )i i i
c ci

F dg F dg dg +≈ +∑∫  or simply calculated as 0.5
cF g without significant loss of 

accuracy.    
The formation energy of a single SW defect occurring at the center of nanotubes is slightly 
different for various tube diameters examined. A typical value of 2.86eV for a (12, 12) tube 
agrees with the range of published values (2.5~3.5eV) (Nardelli et al., 1998; Pan et al., 2000). 
Generally the larger diameter requires the higher formation energy with a plateau value of 
2.97eV for a graphene sheet based on the present model as shown in Fig. 6. The calculation of 
the defect formation energy is more complicated than the approximate method presented in 
this work. However, we have compared our simple approach to predict the defect formation 
energy and found reasonable accuracy with published molecular dynamic simulations. The 
formation of SW defect causes elongation of the local tube structure along the axial direction, 
but also shrinking along the hoop direction. Fig. 7 shows the affected area and configuration 
due to the formation of the SW defect in a graphene sheet and the (12, 12) CNT. The shrinking 
can be seen from the side view of the defective tube as shown in Fig. 7. 
 

1 2

3 4

1' 2'

3' 4'

1 2

3 4

1 2

3 4

1' 2'

3' 4'

1' 2'

3' 4'

 
 

(a) Ideal armchair configuration with a hole                        (b) A zigzag unit 

Fig. 5. Modeling of atom position rearrangements due to SW defect formation 

Based on our simulations, the affected region in a tube/sheet is localized and covers four 
neighboring rings (hexagons) around the defect. The affected area is slightly sensitive to the 
tube diameter when the tube diameter is smaller than 2 nm and becomes insensitive for 
larger diameters. The molecular structure outside the region remains undisturbed. All 
chemical bonds within the affected region are preloaded by the presence of the SW defect. 
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With the application of external tensile force on the tube ends, the defect region becomes the 
weakest point and will serve as a damage nucleation site for progressive failure as given in 
the following section.  
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Fig. 6. Formation energy of SW defect vs nanotube diameter 

 

Graphene sheet Front view 

          
Side view 

Fig. 7. Formation of SW defect in a graphene sheet and a (12, 12) SWCNT 

4.2 Progressive failure analysis 

After the defect formation in a graphene sheet or nanotube, one can apply further load 
(tension) onto the defective sheet and tube as shown in Fig. 7, where the load and boundary 
conditions are applied in the same fashion as described above. The tube length is taken as 6 
nm for all simulations. 
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The bond breaking criterion brings an important issue in simulating fracture of solids. Very 
often, a cut-off distance rcf is used in atomistic simulations. Such distance-based criterion is 
adopted in the present study. In our analytical study (Xiao et al., 2005), the inflection point 
(corresponding to a rcf = 0.168 nm) was used. In the present study the effect of the cut-off 
distances on the fracture and failure of defective graphene sheets and nanotubes will be 
investigated. 
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Fig. 8. Young’s moduli of carbon nanotubes vs tube diameter   

Different cut-off distances have been suggested (Xiao et al., 2005; Lu and Bhattacharya, 2005; 
Huhtala et al., 2004; Xia et al., 2002; Dumitrica et al., 2003). It has been found that there is no 
significant change in the critical bond-breaking force with values ranging from 0.17 nm to 0.19 
nm. Clearly, the cut-off distance used in our analytical study (Xiao et al., 2005) is close to this 
range. A value of rcf   = 0.175 nm is adopted in the present study unless otherwise stated. As 
shown in the study (Belytschko, et al., 2003),  the force field shape of the modified Morse 
potential function is essentially the same as that of the Brenner potential function before the 
inflection point (i.e. the maximum of the interatomic force) and totally different after the 
inflection point. Belytschko, et al. (2003) reported that the fracture is essentially independent of 
the separation energy and depends primarily on the inflection point of the interatomic 
potential, i.e. the shape of the potential function after the inflection point is not important to 
fracture behavior. Consequently, any cut-off distances beyond the inflection point will not 
affect the fracture response but will significantly increase the computational cost.  
Fig. 8 shows the calculated Young’s modulus of defective nanotubes (open points) 
compared with defect-free tubes (solid lines). It can be seen that the Young’s moduli are size 
dependent for both defective and defect-free tubes, and the Young’s moduli of defective 
tubes are reduced because of the presence of SW defect, particularly for small diameter 
tubes (10% reduction for diameters ranging from 0.4-0.6 nm). Such reduction becomes 
insignificant for larger diameter (> 2nm) tubes simply because the ratio of the affected 
region (almost constant) over the whole area along the hoop direction decreases as the tube 
diameter increases.  
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Fig. 9. Tensile force-strain curves of carbon nanotubes   

Fig. 9 shows the calculated stress-strain relationships for armchair and zigzag nanotubes 
with and without 5-7-7-5 (SW) defect at the center. Again, only two different types of 
nanotubes ((12, 12) armchair and (20, 0) zigzag with diameter around 1.6 nm) are presented. 
As can be seen from Fig. 9, the predicted tensile strength (85.9 GPa) of defective armchair 
nanotubes is much less than that (126.2 GPa) of defect-free armchair nanotubes (reduced 
32%). Whereas, the effect of the SW defect on the failure strength of zigzag tubes is less 
significant for armchair tubes because of nanotube chirality. The failure strength of defective 
(20, 0) zigzag tube is 83.3 GPa, which is 12% reduced from the pristine value of 94.5 GPa. 
The predicted failure strains in the present study are 9.8% for the defective (12, 12) armchair 
nanotube (23.1% for the defect-free), and 11.0% for the defective (20, 0) zigzag nanotube 
(15.6% for the defect-free). All these predictions agree well with the MD results (Belytschko, 
et al., 2003). It should be noted that the predicted strengths are still significantly higher than 
the experimental values (11 ~ 63 GPa) of Yu et al. (2000) though the predicted failure strains 
are comparable to the measured results (10% ~ 13%) (Yu et al., 2000). This issue can be 
partially explained by the present of multiple SW defects (Lu, B. Bhattacharya, 2005; 
Dumitrica et al., 2003) as well as other types of defects (Xiao and Hou, 2006).  
Tubes are found to exhibit brittle behavior at fracture. Once the tube deformation reaches a 
critical level (corresponding to the bond cutoff distance), atomic bonds break successively 
and lead to a complete fracture with little strain applied. The effect of the cutoff distance on 
the progressive failure has been examined with three different cutoff values (0.168, 0.175 
and 0.185 nm) used. It is found that the ultimate strengths and failure strains are almost 
identical (difference is less than 0.1%) for all three values examined and the failure is brittle 
no matter what value is used for the cutoff distance. However, the computing time with rcf   
= 0.185 nm is much longer than those with other two smaller values. The effect of the 
torsional term on the mechanical behaviors of defective tubes was also assessed. The present 
study shows that the torsional term in the potential energy still plays a minor role when the 
defective tubes are subjected to tensile loading. 
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     (a) a grahpene sheet                       (b) a (10, 10) armchair nanotube 

Fig. 10. Fractured profiles at different strains of a defective graphene sheet and a defective 
nanotube under tension 

Fig. 10 shows the crack evolution (elimination of failed bond elements based on the cutoff 
distance failure criterion) at different strain levels for a graphene sheet and an (10, 10) 
armchair CNT. Similar failure patterns can be seen between the graphene sheet and CNT 
which exhibits diagonal crack paths.  The failure pattern in the CNT wraps around the tube 
in the π/4 direction along its circumference, which is similar to MD simulations (Belytschko, 
et al., 2003; Lu and Bhattacharya, 2005).  

4.3 Effects of multiple stone-wales defects    

The present study also considers CNTs with multiple defects along its axial direction and 
hoop direction, respectively. The effect of the distance between adjacent defects and the 
number of defects on the mechanical behaviors of defective graphene sheets and CNTs will 
be examined. The developed MATLAB program of the finite bond element model has been 
further improved to be able to form several Stone-Wales defects randomly at multiple points 
in the CNT structure. The present method for creating multiple defects on a nanotube is 
similar to creating a single defect.  Once the first defect is created at a given location, any 
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deformations of the tube are taken into account for the next defect.  The defects are therefore 
created at specific locations sequentially, not simultaneously.  The effect of randomly 
distributed multiple defects on mechanical properties of nanotubes has been studied by Lu 
and Bhattacharya [17] using MD. Predictions on mechanical properties of CNTs with 
multiple defects based on continuum mechanics based models have not been well studied. 
The present study provides understanding of the effects of multiple defects on the Young’s 
modulus, ultimate strength, and strain at failure of the defective CNTs.  After defect 
formations in a graphene sheet or nanotube, one can apply further load (tension) onto the 
defective sheet and tube as shown in Fig. 11, where the load and boundary conditions are 
applied in the same fashion as described above. Different tube lengths are examined. 
 

 
(a) Graphene sheet  

 
(b) CNT 

Fig. 11. Fracture pattern of a graphene sheet and tube with two defects along its axial 
direction 

4.3.1 Effects on young’s modulus 

From our simulations, it has been found that graphene sheets and CNTs with multiple 
defects along its axial direction (with separation distance larger than 2nm) show similar 
moduli and strengths as those with single defect, because the determining factor is the 
weakest cross-section. It should be noted that there is no defect interactions when the 
separation distance is greater than 2nm. The present study focuses on the effects of two 
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defects located at the same axial location but separated by a prescribed angle around the 
circumference. We look at a (20, 20) CNT with a diameter of 2.71 nm. Based on our previous 
study (Xiao et al., 2005), the Young’s moduli of nanotubes with a diameter larger than 2nm 
are insensitive to their diameters. Fig. 12 compares the calculated Young’s Moduli of the 
CNT with different angles (in degree) between the two defects for 4 different tube lengths. 
The effect that the difference in angle between defects has on the modulus is negligible for 
angles > 70 degree (around 2 nm separation). Similar studies carried out on (10,10), (17,0), 
and (35,0) tubes of varying lengths yield similar results. It is also noticed that the shorter the 
tube length is, the lower Young’s Modulus, because the ratio of the affected area over the 
total length is larger for a short tube length. This is a consequence of how axial strain of the 
tube is defined.  In our study we have adopted the definition commonly used in 
experimental studies. 
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Fig. 12. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using total tube length) 

To better understand these local effects on modulus one can separate the defective tubes 
into two different regions, i.e. the affected region which is about 2nm long (correlates to the 
failure pattern of a single defect as shown in Xiao, et al., (2009), and unaffected region (total 
length minus 2nm). In the unaffected region the Young’s modulus is the same as the defect-
free tubes reported previously (Xiao et al., 2005). In the affected region, local strains are 

defined as ε = ΔLD /LD0, where LD0 is the initial length of the affected region (i.e. 2nm) and 

ΔLD is the change in length of the affected region. Consequently, two different moduli can be 
defined, i.e. (a) apparent modulus Etotal based on the total length as shown in Fig. 12, and (b) 
defective modulus Elocal based on the local affected length as shown in Fig. 13.  
In Fig. 12, a plateau modulus is reached for separation angles greater than 72 degrees for all 
tube lengths.  The magnitude of this plateau modulus increases as the tube length increases.  
For infinitely long tubes, the plateau modulus approaches the modulus of the defect free 
tube.   For angles less than 72 degrees, modulus decreases from the associated plateau level 
due to defect interactions (i.e. distance between defects is less than 2nm affected zone).   
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Fig. 13. Young's modulus vs. angle between two defects for (20,20) CNTs with different 
lengths (Young's modulus calculated using local length of 2nm) 

In Fig. 13, it can be seen that Elocal also exhibits a plateau modulus but is insensitive to the 
tube length. Results for all tube lengths collapse to a single curve.  For angles less than 72 
degrees, we see the same drop-off in modulus due to defect interaction. It should be noted 
that one can use different defective lengths other than 2nm to obtain different defective 
moduli Elocal. We chose 2nm as the size of the affected area based on the study on single 
defect formation (Xiao, et al., 2009) as the defective length.  
The relationship between Young’s modulus and defect angle in Figs. 12 and 13 indicates that 
two defects start to interact when their distance (hoop direction) is smaller than 2 nm (about 
72 degree defect angle). In Fig. 14, we study defect interactions by increasing the number of 
defects at a given axial location to look at the effects of defect number on the Young’s 
Modulus. In this case we have considered multiple defects that are spaced at uniform 
angular increments around the circumference (e.g. 4 defects correspond to a separation 
angle of 90 degrees).  Fig. 14 illustrated the difference between our two moduli definitions 
(Etotal  and Elocal) computed from original tube lengths and local defective length (2 nm) for 
the four- and eight-defect cases. The local modulus which is insensitive to overall tube 
length shows that the modulus drops from the defect-free value as the number of defects 
increases (4 and 8 defects reduce the modulus by 3 and 6%, respectively). For the case of 
apparent modulus (Etotal) at a given tube length, an increase in the number of defects in the 
hoop direction reduces the modulus. As the tube length increases, the modulus 
monontonically increases and approaches the defect-free level.  As explained above, this is a 
consequence of defining strain as change in axial length over initial length.  Local 
deformations around the defect are identical but contribute less to the overall deformation 
as length increases. One concludes from Fig. 14 that for a given defect pattern, one may take 
the local modulus (red lines) as the lower bound of the apparent modulus (blue lines) and 
the defect-free modulus (black line) as the upper bound as the tube length varies.  
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Fig. 14. Young's moduli of (20,20) CNTs with different lengths (4 or 8 defects uniformly 
distributed along the hoop direction) 

The computed moduli of tubes with higher number of defects ranging from 1 to 20 along its 
hoop direction are presented in Fig. 15.  Similar trends are observed where modulus 
reductions increase with increasing number of defects that are interacting.  The local 
modulus provides a lower bound and the apparent modulus increases with tube length.  
The results converge to the defect-free result as the number of defects approach zero and the 
tube length increases. At these higher levels of defects, modulus reductions are quite 
significant (e.g. local modulus decreases by 30% for the case of 20 circumferential defects). 
One may now generalize the present results to study nanotubes with defects uniformly 
distributed along both the hoop and axial directions of the tube. Consider each combination 
of defect number and tube length in Fig. 15 as a unit cell taken from a longer tube with a 
periodic defect pattern along the tube length. For instance, the calculated Young’s modulus 
of the 6mn long tube with 8 defects uniformly distributed along its hoop direction, as shown 
in Fig. 15, can be treated as that of any longer tubes with the 8 hoop defects distributed 
every 6nm along its axial direction.  Consequently, one can define defect density as the 
number of defects per unit surface area within the unit cell of interest.  This approach is, 
based on the assumption that defects exist with equal probability along the entire length of 
the tube. By following this approach, modulus as a function of defect density is calculated as 
shown in Fig. 16. Results are now independent of tube length (i.e. local and apparent moduli 
are equivalent for a given defect density). As the defect density approaches zero, the 
modulus approaches the defect-free value as expected.  Interestingly a linear relationship is 
observed with modulus decreasing with increasing defect density. A family of curves are 
presented in Fig. 16 that illustrate the effects of defect interaction for a given defect density.  
As the separation angle decreases (i.e. interaction increases), the negative slope of the 
modulus reduction versus defect density increases.  The modulus results presented in Fig. 
16 are expected to apply to nanotubes of larger diameter than considered in this study 
(>2.71 nm) including graphene sheets.  The effects of defects on nanotube strength are 
considered next. 
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Fig. 15. Young's modulus vs. number of defects for (20,20) CNTs with different lengths 
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Fig. 16. Young's modulus vs. defect density for a (20,20) CNT 

4.3.2 Effects on ultimate strength 

The effects of isolated defects (i.e. no interactions) on strength are first examined for a 4nm 
long (10,10) nanotube.  The ultimate strengths for a defect free tube, a tube with one defect 
and a tube with two defects along the axial direction at different hoop locations are 124 GPa, 
84.8 GPa, and 84.2 GPa respectively.  In contrast to the modulus results discussed above, 
single defects significantly reduce failure strength (approximately 30%). Despite having two 
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defects along the axial direction, failure strength is effectively the same as a single defective 
tube, because the determining factor for ultimate strength is the weakest cross-section. These 
results illustrate that multiple defects that are sufficiently separated such that there are no 
interactions between them have comparable strength.   
To study the effects of multiple interacting defects, let us focus on tubes with defects 
distributed around their hoop direction. Similar to the Young’s modulus study, simulations 
were conducting using (10,10), (20,20), (17,0), and (35,0) nanotubes with different lengths of 
4, and 6 nanometers.  It should be noted that a (10,10) tube has about the same diameter as a 
(17,0) tube, and the same is true for (20,20) and (35,0).  In each simulation, the tube was 
loaded quasi-statically in tension under prescribed displacement until failure.  For failure of 
a bond to occur, the individual strain of the bond had to reach 18.5%.  This value is 
consistent with published data as an inflection point for a C-C bond.  The simulations 
predict that once a single initial bond has broken, the stress would drop abruptly under 
displacement controlled loading. The basic nanotube structure will still be intact and have 
some post-failure properties. In our simulations, the ultimate strength is defined as the 
maximum stress the tube reaches.  Also, the strain at failure is the strain that corresponds to 
this ultimate stress. 
In Fig. 17, we consider the armchair cases with two defects at the same axial location as a 
function of separation angle.  At angles greater than approximately 70 degrees a strength 
plateau is established equal to the ultimate strength of a single defect mentioned above.  
When the angle drops below 70 degrees (0.83 nm distance for a (20, 20) CNT, which is about 
the same size of the defective area), the defects begin to interact and a dramatic reduction in 
strength is predicted.  For the case of 18 degree separation angle, the strength has dropped 
58% of the defect-free ultimate strength. Results from the (10, 10) CNT simulation follow the 
same trend.  In contrast to the modulus results, it should be noted that the computed 
strengths are not sensitive to tube length.   
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Fig. 17. Ultimate strength vs. angle between two defects for (20, 20) CNTs with different 
lengths 
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Fig. 18. Ultimate strength vs. Number of defects for (20,20) CNTs with different lengths 

The effect of multiple defects at the same axial location on the ultimate strength is 
considered next. In the armchair configuration, increasing the amount of defects present 
around the circumference decreases the ultimate strength as shown in Fig. 18 from the 
plateau strength corresponding to a single defect. At approximately 4-6 defects, the 
separation angle drops below 70 degrees and significant interactions between multiple 
defects develop. In the case of multiple defects, the strength drops to the same level as the 
results for 2 defects separated by the same angle.  For example, 20 defects have a separation 
angle of 18 degrees and one observes the same strength reduction as shown in Fig. 18 (i.e. 
58% of the defect-free tube). One concludes that the strength of a tube with multiple defects 
is determined by the degree of interaction indicated by the separation distance. 
 

0

20

40

60

80

100

0 2 4 6 8 10

20 defects
10 defects
 8 defects
 4 defects

Strain

S
tr

e
s
s
 (

G
P

a
)

 

Fig. 19. Stress-strain curves of a 6nm (20, 20) CNT with multiple defects equally spaced 
around the circumference at the middle section 
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Fig. 19 gives the computed stress-strain relationships of a 6nm (20, 20) tube with different 
number of defects spaced uniformly around the circumference at the same axial location 
(about the middle section of the tube). Based on the discussion above, the initial modulus 
decreases as the number density of defects increases. In addition, the strength and strain to 
failure decreases as the separation angle between defects decreases.  In this figure, the 20 
defect curve has both the lowest modulus and lowest ultimate strength and strain to failure.  
The failure patterns of the 6nm (20, 20) tube with 4 and 8 defects equally spaced around the 
circumference direction under tension loading are shown in Fig. 20.  It can be seen that the 
failure of the tube with 8 defects (Fig. 20b) is extremely localized with no diagonal crack 
propagation as seen in the tube with less hoop defects (see Fig. 11 and Fig. 20a).  
 

  
(a) With 4 defects 

  
(b) With 8 defects 

Fig. 20. Failure patterns of a 6nm (20, 20) CNT with multiple defects equally spaced around 
the circumference at the middle section 
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5. Conclusions 

By incorporating the modified Morse potential function into a novel atomistic finite bond 
element molecular structural mechanics model, the mechanical responses of graphene sheet 
and single-walled nanotubes under tension conditions are investigated. The finite bond 
element has 8 degrees of freedom (DOF) which is used to simulate the interatomic 
connections in CNTs. Compared to other similar finite element approaches (12DOFs) the 
computational cost of the present method is reduced. The coefficients in the finite bond 
element model are taken from the analytical molecular mechanics model (Xiao et al., 2005). 
The present approach is capable of predicting Young’s moduli, Poisson’s ratios, and stress-
strain relationships of graphene sheets and nanotubes with or without a SW defect. An 
interaction mechanics approach is introduced to model the formation of a 5-7-7-5 SW defect 
in CNTs which reasonably captures the physical phenomena in terms of reconfiguration, 
local deformation and formation energy. Consequently, effects of the SW defect on the 
Young’s moduli, fracture and progressive failure of defective CNTs have been investigated. 
Using the present approach, it is feasible to model multiple defects and their interaction in 
both SWCNT and MWCNT since the present approach is much simpler and 
computationally efficient than the classical molecular dynamics model.  
A methodology to create multiple defects in a CNT at given locations has been implemented 
into our MATLAB code.   Consequently, the effect and interaction of multiple defects on a 
SWCNT were studied. The resulting simulations were able to predict the Young’s modulus, 
ultimate strength, and strain at failure. The influence of single and multiple defects on 
mechanical properties were studied. In the case of Young’s modulus, increasing the number 
of defects along the hoop direction can change its properties dramatically, particularly when 
the defect distance is smaller than 2 nm (defect interaction). It is also found that moduli are 
sensitive to the tube lengths when the total tube length is used to compute the strain. This 
finding has major implications for comparing experimental data from tests on different tube 
lengths. A local defective length (2 nm) is introduced to separate the overall deformation 
into two different regions: defective and defect-free. By doing so, a size independent 
modulus has been obtained for the defective region, which can be treated as the minimum 
modulus for a given defective tube of any length larger than 2nm.  
In addition, results were generalized to consider defect density (number of defects per unit 
surface area). Stiffness reductions were found to be linearly related to defect density 
(number of defects per unit surface area) and to become independent of tube length. It was 
found that further reductions occur when the defects interact with each other (typically 
when the distance between defects is smaller than 2 nm). The effects of single and multiple 
defects on ultimate strength were considered.  Significant strength reductions are predicted 
to occur by the presence of single defects.  Further strength reductions are predicted for 
cases where adjacent defects are interacting. In this case the ultimate strength is governed 
more by the separation distance than the defect density. Finally the overall stress-strain 
response has been predicted as a function of number of defects.  Results including the effects 
of defects more closely match experimental data reported in the literature. It should be 
noted that this present model has a more simple approach than quantum or the classical 
molecular dynamics model and is less computationally expensive.   
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