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1. Introduction

Carbon provides a fundamental material for all life and physical science. Carbon-based
systems reveal a variety of structures with a great deal of physical properties. These physical
properties result from the dimensionality of the structures among systems with carbon atoms.
For a long time, in material science, both experimentalists and theorists have sought for the
existence of a true two-dimensional (2D) material with the thickness of a single atom, or a
membrane of atomic thickness. This 2D material was theoretically first studied on a monolayer
of graphite by Wallace (1). Experimentally in the year 2004, a group led by A. K. Geim at the
University of Manchester, U. K., realized such a 2D material under the name of graphene (2; 3).
Graphene is composed of carbon atoms placed at the vertices of a two dimensional
honeycomb lattice. It is regarded as a large molecule of carbon atoms which become strongly
bound together on the sites of the honeycomb lattice. For each carbon atom on the lattice,
three of the four outer electrons get strongly bond with its neighboring atoms by σ orbitals.
The 2pz orbital of the fourth electron produces a π bond with a neighboring carbon atom. The
σ bonds form the covalent structure with a honeycomb geometry. The bond strength furnishes
the flexibility and robustness for the lattice geometry. On the other hand, the π bonds generate
the intrinsic electronic structure of graphene. Each π bond yields the half-filled electrons of
p orbital to tunnel from a carbon atom to the neighboring one. Thus graphene should be
regarded as a many body system on which electrons can get correlated from site to site,
resulting in a rich collective behavior. The correlated behavior can be represented by quantum
effects which can influence on graphene’s electronic properties (2).
The electronic structure can be described by 2D massless relativistic fermions(4–7) in
graphene. The massless fermions enable us to study topological effects on electronic
properties of graphene. Topological effects are represented by the global properties of
geometrical objects rather than their local ones. By varying the geometry, we can produce
topologically different configurations such as a sphere or a torus on which the effective
Dirac operators of massless fermions are well defined. Described by the Dirac fermions,
graphene can have extraordinary properties of stability obtained in terms of geometry and
topology of the underlined lattice. Apart from the robust structure of geometry, the topological
properties can emerge due to long range quantum coherence in graphene. It follows that we
can move electrons coherently through the whole graphene molecule, resulting in its detection
of geometry or topology. This allows us to study a great deal of physical properties revealed
by interplay between geometry and topology, and quantum effects(8; 9).
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As quantum effects, there exist unconventional quantum Hall effects (QHE) which form a
series of filling factors ν = ±2,±6,±10, · · · as the four-fold degeneracy combined by spin and
sublattice valley ones (6; 7). The energy dispersion shows a linear spectrum by the massless
Dirac fermions with a Fermi velocity vF ≈ 106m/s. The 4-fold degeneracy of the Landau
level (LL) is lifted into 4 sublevels in the presence of an external high magnetic field. In
the case of the tilted high magnetic field to the graphene plane, the spin degeneracy can be
lifted at the firsr LL, resulting in the filling factor ν = 4 QHE of monolayer graphene (10).
Furthermore for bilayer graphene, the LL spectrum is composed of eightfold degenerate states
at the zero energy and fourfold ones at finite energies under the high magnetic field. This can
allows us to observe the quantum Hall plateaus at a seris of ν = ±4,±8,±12, · · · (11–13).
The charge carriers are chiral massive fermions which produce a parabolic energy band. The
chiral fermions offer the unconventional integer QHE of the zero-LL anomaly which exhibits
metallic behavior under the condition of low carrier densities and high magnetic fields in
contrast to the conventional insulating phenomena (6; 7; 9–14).
Topological configurations can produce a crucial effect on the quantum states of a system.
In particular, they can provide the possible quantum ground states which a system can
have. This remarkable result is described in terms of the index theorem initiated by Atiyah
and Singer (15). It gives the relationship between the analytic properties of the operator
and the topological characteristic of the manifold upon which the operator is defined. The
Dirac operator can be related to topological effects which is elegantly illuminated by the
Atiyah-Singer index theorem in graphene (8). It leads to a topological invariant under
deformations on a Dirac operator and plays an essential role in formulating supersymmetric
quantum mechanics (SUSY QM) on the graphene sheet (9; 16).
In a theoretical sense, there has been at least the quantum mechanics (QM) of particles
described by both fermionic and bosonic degrees of freedom. The SUSY QM may be hidden
in the quantum mechanics of a particle acting on a group manifold which can be represented
by a high degree of symmetry (17). As an example, a spin precessing in a magnetic field can
have the hidden SUSY. In particular, under the uniform magnetic field the LL for an electron
can be expressed by the spectrum of the SUSY oscillator which is composed of fermionic and
bosonic ones. It is remarkable that this SUSY QM can possibly emerge in graphene with low
carrier concentration and high mobility. The supersymmetry is built up over the Dolbeault
complex due to the topological deformation on the lattice in a graphene system (9; 17; 18).
We exploit the G-index theorem and a high degree of symmetry to understand unusual
quantum Hall effects of the n = 0 Landau level in graphene. The Dirac fermion results in SU(4)
symmetry as a high degree of symmetry in the noninteracting Hamiltonian of the monolayer
graphene. The high symmetries in graphene sheets can not couple to an external magnetic
field. In the absence of the magnetic field the index theorem can provide a relation between
the zero-energy state of the graphene sheet and the topological deformation of the compact
lattice. Under the topological deformation the zero-energy states emerge naturally without the
Zeeman splitting at the Fermi points in the graphene sheet. In the case of nonzero energy, the
up-spin and down-spin states have the exact high symmetries of spin, forming the pseudospin
singlet pairing. We describe the peculiar and unconventional quantum Hall effects of the n = 0
Landau level in monolayer graphene on the basis of the index theorem and the high degree of
symmetry (9; 18).
This chapter is written as follows. We explain basic properties of graphene in section II. In
section III, we discuss a path integral of coherent states in brief. In section IV, supersymmetry
is introduced in graphene. In the following section, we investigate the Atiyah-Singer index
theorem and topological properties. The G index theorem and deformation is covered. In
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section VI, SUSY QM and higher spin symmetry are described. Next we illuminate the low
energy spectrum and unconventional quantum Hall effects in monolayer graphene. And
finally we come to summary and conclusion.

2. Basic properties of graphene

Graphene is a molecule that is composed of carbon atoms placed on a two dimensional
honeycomb lattice. The basic plaquette of the lattice has a hexagon and the atoms are located at
the sites of the lattice. Electronic properties of graphene can be described by the tight binding
model on which spinless electrons move from site to site along the links of the lattice without
interaction each other. Under the tight-binding approximation graphene can be expressed by a
simple Hamiltonian of coupled fermions on a hexagonal lattice (2; 19). The model Hamiltonian
is a form given by

H = −2vF

3 ∑
<i,j>

c†
i cj, (1)

where < i, j > indicates nearest neighbors on the lattice. c†
i and ci are the creation and

annihilation operators of the fermions located at site i with anticommuation relation {ci, c†
j } =

δij.
In order to calculate the spectrum of Hamiltonian (1), we account for a periodicity of
honeycomb lattice which leads to a Fourier transformation. The periodic structure provides
the energy eigenvalue problem for the Hamiltonian in a unit cell. The unit cell consists of
two neighboring carbon atoms called A and B. They can be expressed by the three vectors

�ui, ∀i = 1, 2, 3. Under the Fourier transformation of c(�p) = ∑i ei�p·�ui ci, the Hamiltonian is
rewritten in terms of

H = −2vF

3

∫ ∫
d2 p

(
c†

A(�p), c†
B(�p)

)(
0 ∑

3
i=1 ei�p.�ui

∑
3
i=1 e−i�p.�ui 0

)(
cA(�p)
cB(�p)

)
, (2)

where cA(�p) and cB(�p) denote the Fourier transformed operators corresponding to the carbon
atoms A and B, respectively.
Now it is easy to take the eigenvalue of the energy for electrons of graphene. The dispersion
energy is given by (8; 9; 19)

E(p) = ±2vF

3

√

1 + 3 cos2

√
3py

2
+ 4 cos

3px

2
cos

3py

2
(3)

where the lattice distance between atoms becomes normalized to the unity. From the
dispersion relation obtained above, graphene can have two independent Fermi points, �p =

K± = ± 2π
3 (1, 1√

3
). We can expand it and then linearize it near the conical singularities of

the Fermi points. Corresponding to the K+ and K− at the half-filling case, the Hamiltonian is
expressed by the Dirac operators

H± = ±vF ∑
μ=x,y

γμ pμ, (4)

where pμ = −ih̄∂μ is the covariant momentum and the Dirac matrices γμ indicate the Pauli
matrices γμ = σμ. Hence the low energy theory of graphene is described by means of free
fermions.
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The Hamiltonian can be written in the matrix form (8; 9)

H± =

(
0 D±

D± 0

)
. (5)

Here D± is a Dirac operator given by

D± = ±vF(σ
x px + σy py),= ∓2ih̄vF

(
0 ∂z

∂z̄ 0

)
. (6)

Here we have expressed D± in terms of ∂z = 1
2 (∂x − i∂y) and ∂z̄ = 1

2 (∂x + i∂y). On the
complex coordinates we can write

∇2 = 4∂z∂z̄. (7)

So far, we have discussed the collective behavior of graphene electrons that can be governed
by the Dirac equation. In particular, the velocity of the electrons is effectively 300 times smaller
than the speed of light.
Next let us describe a curved graphene. On the curved surface of graphene the low energy
physics can be illuminated by the Dirac equation that is defined on the corresponding curved
manifold. The curvature generates an gauge field of magnetic flux going through the curved
graphene. This yields to a picture about how to interact gauge fields with Dirac fermions. In
order to have the way associated with the gauge fields, let us take into account a good method
to include curvature to graphene. The simplest way is that we cut a π

3 piece of triangle from a
graphene sheet and then glue the opposite ends of the lattice. This process results in a single
pentagon at the apex of the generated cone while all the other plaquette keep a hexagon.
Due to the minimal geometrical distortion, the honeycomb lattice has a positive curvature.
The curvature can be obtained by calculating a circular tangent vector, V, around the apex by∮

V · d�r = π
3 . The generation of a single pentagon gives rise to a dramatic effect on the spinor,

resulting in deformation of the lattice. If the spinor is parallel transported around the apex by
an angle 2π, it is forced at some point to make a jump from a site A to a site A while every
site A takes only B neighborhoods or vice versa. This motion enables us to have the effect
that the magnetic field gives on the wave function of a particle moving on a closed path. A
full circulation provides accumulation of all phase factors to the particle wave function, and
so generates the enclosed magnetic flux. This flux allows us to observe the Aharonov Bohm
effect. Quantum mechanically, it can provide a discontinuity. Thus we have simultaneously
to describe it through the wave function of the particle in the processes of being static or
moving along the closed trajectory. This produces a vector potential term in the Hamiltonian
that leaves the theory to be consistent.
By similar procedures made on the curved graphene that compensates the jump in the
components of the spinor, we should take into account a nonabelian vector potential A in
the effective Hamiltonian. Around the apex we can take the circulation of A along a path. It
is expressed by

∮
γ A · d�r = π

2 τ2, where τ2 denotes the second Pauli matrix which couples the

K+ to the K− components of the spinor. The effective gauge theory can be emerged due to
the geometric deformation on geometric variants of graphene as topological effects. In next
section we describe a path integral of the coherent states for geometrical and topological
properties.
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3. Path integral of coherent states

Let us construct a path integral of the coherent states on a group manifold. Following the
Stone’s approach (17), we discuss the coherent states on a general group G. Let us take D(g),
any g ∈ G, as an irreducible representation of the group. Assume that |0 > is some state in the
space of representation. Then one can define |g > by

|g >= D(g)|0 > . (8)

On the basis of the irreducible representation, Shur’s lemma holds that

1

V(G)

∫
d[g]|g >< g| = 1 (9)

where 1
V(G)

is the volume of the group manifold. In the expression of Eq. (9) d[g] is the Haar

measure on the group.
Let us compute a thermodynamic partition function

Z = Tr(e−βH) (10)

where β is the imaginary time. In the procedure of calculating the partition function, the
trace is constrained to the representation space on which D(g) acts. Dividing the Matsubara
time-interval β into n parts, and using the Shur’s lemma of Eq. (9), we can write down an
iterated integral

Tr(e−βH) = const.
∫
(d[g]d[g

′
] · · · ) < g|e−βH/n|g′

>< g
′ |e−βH/n · · · |g > . (11)

where const. is the constant value taken on the representation space. When taking into account

short time intervals, one can express g
′ ≃ g + δg, and δg ≃ O(δt), so that

< g|e−δtH|g′
>

≈ 1+ < g|δg > + < g|(−δtH)|g > +O(δt2).
(12)

On taking into consideration up to order O(δt), we can write down the formal path-integral
expression

Tr(e−βH)

= 1
V(G)

∫
d[g]exp(

∮
< g|δg > −

∫ β
0 dt < g|H|g >).

(13)

Here d[g] is regarded as the path-integral measure given by the Haar measure at each time
step.
The path-integral expression can be identified as a path integration over a quotient space of
the group. In particular it is noted that a set of the |g > can be different from only a phase so
that the integrand is not sensitive to the phase factor. Now suppose that H is the subgroup
of G, constructed from exponentiating a maximal commuting set of generator, i.e., a maximal
torus. Then |0 > is expressed by an eigenstate of the generators of H which means a state of
definite weight. The |g > are represented by all phase multiples of one another in any one
coset of G/H. And hence the coherent states can be described in terms of a bundle over G/H
with the maximal torus as the gauge group, and the integration is made over the path in G/H.
Let us express the integrand in the coherent-state path integral without any choice of
representatives. In order to make a natural procedure on the independent choice of the
representatives, we define the projection operators as

P(g) = |g >< g|. (14)
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They can be directly projected onto the physically distinct states since they do not have any
phase ambiguity. In the integrand, the first term

∮
< g|δg > can be taken to be a gauge

invariant form by using Stokes theorem

∮

Γ=∂Ω
< g|dg >=

∫

Ω
d < g|dg > . (15)

Making use of the identity form

d < g|dg >=< dg|dg >= −Tr(dPPdP), (16)

the first term yields ∮

Γ=∂Ω
< g|dg >= −

∫

Ω
Tr(dPPdP). (17)

The second term in the integrand can be rewritten by

< g|H|g >= Tr(P(g)H). (18)

Hence combination of Eqs. (17) and (18) leads us to the path integral given by (17)

Tr(e−βH) =
1

V(G/H)

∫
d[g]exp

(
−

∫

Ω
Tr(dPPdP)−

∫

Γ
Tr(P(g)H)

)
. (19)

It is noted that the elements of G/H can only contribute to the integrand, so that the volume
factor of the gauge group H gets out of the path integral.
There are certain subgroups corresponding to the Lie algebra G of a Lie group G. Let us
describe some basic facts about semisimple Lie algebra in brief. Then it is known that the
generators of the G can have a decomposition into a maximally commuting set H = {Hi}, i.e.,
the Cartan subalgebra, and a set of ladder operators, Eα, one for each root vector α ∈ R. The
ladder operators are needed for complexifing the algebra to Gc which results from the group
parameters to get the complex values. The Hi and the Eα hold that

[Hi, Eα] = αiEα. (20)

Assume that |λ > is an eigenvector of the Hi with eigenvalues λi such as

Hi|λ >= λi|λ > . (21)

Then
Eα|λ >= |λ + α > . (22)

The roots may be classified into two sets by an arbitrary hyperplane on a root space. On one
set the root objects are positive roots indicated by α ∈ R+ as increasing the weights while the
others are negative roots, by α ∈ R+ as decreasing the weights. And thus we can take the
greatest weight as a state which is annihilated by all Eα, α ∈ R+.
This decomposition of the Lie algebra is made on some kinds of special subgroup. The Borel
subgroups B± are constructed by exponentiating the algebras B± which are spanned by the
Eα, Hi; α ∈ R±, Hi ∈ Hc. Any g ∈ G can be decomposed into the gaussian factors

g = ζ−hζ+; ζ− ∈ Z−, ζ+ ∈ Z+, h ∈ Hc
+, (23)
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where the Z± are the groups obtained by exponentiating the Eα, α ∈ R±. As an example, the
gaussian factor ζ− can be written as

ζ− = exp( ∑
α∈R−

zαEα). (24)

When the representation matrix D(g) is applied to a greatest weight, the factor ζ+ is regarded
as the identity. The zα can be taken as complex coordinates for the coset space Gc/B+. It
follows that the set of physically distinct states can have an one-to-one correspondence to
the Gc/B+. For a complex manifold we can choose complex coordinates on the manifold
with holomorphic functions. And constructed on non-greatest weight states, coherent states
are described by nonholomorphic functions of z̄. In the next section, after introducing
supersymmetry on the complex manifold in brief, we will describe supersymmetric quantum
mechanics in graphene (9; 16).

4. Supersymmetry in graphene

Let us use the methods of Witten to introduce fermionic creation operators ψx† and ψy† which
correspond to the differential forms dx and dy (9; 16)

dx ↔ ψx†|0 >, dy ↔ ψy†|0 > . (25)

In more detail ψx† performs the operation of exterior multiplication by dx while the adjoint,
ψx, does that of interior multiplication by the vector dual to dx, say, ∂x

ı : ∂x → ψx, E : dx → ψx†, ı : ∂y → ψy, E : dy → ψy†. (26)

The fermionic operators satisfy the anticommutation relations

{ψμ, ψν†} = δν
μ, μ, ν = x, y. (27)

On the basis of these definitions let us set up

1

2
(ψx − iψy) = ψz =

1

2
ψz̄,

1

2
(ψx + iψy) = ψz̄ =

1

2
ψz. (28)

while holding the Hermitian conjugate relations.
Now let us describe a supersymmetry over the complex Kähler manifold. On the complex
manifold we take two supercharges

Q1 = ∂ = ψ†z∂z, Q†
1 = δ = −ψz̄∂z̄,

Q2 = ∂̄ = ψ†z̄∂z̄, Q†
2 = δ̄ = −ψz∂z. (29)

Making use of anticommutation relations for fermions, these supercharge operators allows us
to express

∂δ + δ∂ = Q1Q†
1 + Q†

1Q1 = −1

2
∇2,

∂̄δ̄ + δ̄∂̄ = Q2Q†
2 + Q†

2Q2 = −1

2
∇2. (30)

Here it is easy to check that the cross terms such as

∂δ̄ + δ̄∂ = Q1Q†
2 + Q†

2Q1 = 0, (31)
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do not have any contributions.
In terms of the two supercharge operators, the Dirac operators D± in graphene is given by

D± = ∓ih̄vF(Q1 + Q2),≡ Q±. (32)

The Dirac operators can be described by means of the sum of the two supercharges which is
the ordinary exterior derivative, d. And Q± become the supercharge of N = 1 supersymmetric
quantum mechanics. It is not hard to check up that D± = Q± + Q†

± is given by

Q± + Q†
± = ∓2ih̄vF

(
0 ∂z

∂z̄ 0

)
(33)

which are equivalent to Eq. (6). Furthermore the square of Eq. (33) can lead to

(Q± + Q†
±)

2 = −4(h̄vF)
2

(
∂z∂z̄ 0

0 ∂z̄∂z

)
= −h̄2v2

F∇2, (34)

where we have exploited Eq. (7). And hence in the sense of SUSY QM the Hamiltonian of
graphene may be recapped in terms of the following form

H ≡ 2(Q± + Q†
±)

2 = −2h̄2v2
F∇2,≡ − h̄2∇2

2m∗ , (35)

provided that the mass, m∗ were defined by m∗ = 1
4v2

F

in the last expression of the eq. (17).

The Witten index is given by

Index(d) = Tr
(
(−1)Fe−tH

)
(36)

which accounts for the Euler number of the manifold as the exterior calculus of the de-Rham
complex. In order to build up the supersymmety over the Dolbeault complex (22), we need
one of the supercharges, Q2 = ∂̄. On the manifold of real dimension 2n, the index of the
Dolbeault complex is given by

Index(∂̄) = Tr
(
(−1)Fe−t(Q2+Q†

2)
2
)

(37)

This index is more interested in the the SUSY QM over twisted Dolbeault complex which
is associated with deformation of the topology of the lattice on a graphene system . And
in the next section we build the Atiyah-Singer and G index theorem as well as the energy
eigenvalues on the deformation of the compact manifold.

5. Index theorem in graphene

Let us describe the index theorem which gives an insight on the spectrum structure of
certain operators such as the Dirac operators. In graphene this theorem enables us to have
physical properties associated with the topology and geometry of the space in which the
Dirac operators are defined. It provides the relationship between the analytic properties of
the operator and the topological characteristics of the manifold.
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5.1 The Atiyah-Singer index theorem in graphene

We illuminate the Atiyah-Singer index theorem by the method employed to the heat kernel
expansion. The theorem furnishes a relation between zero eigenvalues of the Dirac operator
of graphene and the total flux which goes through its surface. If the latter is connected to the
genus of the surface through the Euler characteristic, we can find a close relation between the
zero modes and the topology of the surface on a graphene system.
Let us start with a Dirac operator given by

K =

(
0 D†

D 0

)
. (38)

Here D means an operator that maps a space M+ onto a space M− while D† is a map from
M− to M+. If D is an n×m matrix, D† becomes a m× n matrix. M+ and M− are the space of n
and m dimensional vectors, respectively. Because we are focusing on the zero modes of K such
that the solutions of the equations KΨ = 0, let us define the number of different eigenstates
of D with zero eigenvalue as η+ and the ones of D† as η−. As a bookkeeping of chirality, the
chirality operator γ5 is defined as

γ5 =

(
1 0
0 −1

)
. (39)

Its eigenstates can have eigenvalue ± provided that they act on M±.
In order to calculate the number of zero eigenstates in which we are interested, we take into
account the operator K2 that has the same number of zero modes as K. The K2 can be given
by a diagonal form

K2 =

(
D†D 0

0 DD†

)
. (40)

It is claimed that the operators D†D and DD† get the same non-zero eigenvalues. To prove
this statement, assume that DD†ψ = λψ for eigenvalue λ �= 0. Then it follows that

DD†ψ = λψ −→ D†D(D†ψ) = λ(D†ψ). (41)

This means that the operator D†D gives the same eigenvalue, λ, which corresponds to the
eigenstate D†ψ. But it is not necessary to hold the case for λ = 0 when D†ψ might be zero by
itself.
Let us compute the trace of γ5e−tK2

as followings:

Tr(γ5e−tK2
) = Tr(e−tD† D)− Tr(e−tDD†

) = ∑
λ+

e−tλ+ − ∑
λ−

e−tλ− , (42)

where λ+ and λ− indicate the eigenvalues of the operators D†D and DD†, respectively, and t
is an arbitrary parameter. In the first step of the above procedures, γ5 acts on the exponential
so that it provides a +1 to the eigenvectors of D†D when they are placed in M+, and a −1
to the ones of DD† when they belong to M−. In the last step the trace is evaluated by a sum
over all the eigenvalues of the corresponding operators. Every non-zero eigenvalue of D†D is
a one-to-one correspondence to an eigenvalue of DD†. Therefore all paired terms of non-zero
eigenvalues cancel out each other. There are left over the zero eigenvalues of each operators,
resulting in

Tr(γ5e−tK2
) = η+ − η−. (43)
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In general we cannot determine difference between the number of zero modes. It is seen that
the above result is independent of t owing to the cancelation of the non-zero eigenvalue term.
Actually we should evaluate Index(K). In order to calculate it practically, we take an

alternative method of heat expansion for calculating Tr(γ5e−tK2
). It says that for general Γ̂

and D̂ on a two dimensional compact manifold we can expand

Tr(Γ̂e−tD̂) =
1

4πt ∑
l≥0

t
l
2 bl(Γ̂, D̂), (44)

where Tr indicates the trace of matrices and the integration over coordinates of space. bl denote
expansion coefficients. For Γ̂ = γ5 and D̂ = K2, we have to return to an expression that
is t-independent. For this t-independence, the expansion coefficients should vanish for all l
except for l = 2 under the condition that all the t contributions is canceled out each other.
This allows us to determine the coefficient b2 from the first order term in t in the series of
expansion. For the evaluation, let us take D as D = −ie

μ
ν σν(∇μ − ieAμ). Here e

μ
ν indicates the

zweibein of curved surface metric gμν that defines a local flat frame ηαβ = e
μ
α eν

βgμν while σμ is

the Pauli matrix. Aμ denotes a gauge field. It follows that

K2 = −gμν∇μ∇ν +
1

4
[γμ, γν]Fμν −

1

4
R (45)

where R is curvature, and Fμν = ∂μ Aν − ∂ν Aμ means the field strength. ∇μ indicates a
covariant derivative with respect to gauge and reparametrization transformation.
It is easy to see that the non-zero expansion coefficient b2 is written by

b2 = Tr[γ5(
i

4
[γμ, γν]Fμν −

1

4
R)] = 2

∫ ∫
B · dS, (46)

where B is the magnetic field given by Bl =
1
2 ǫlμνFμν. The integration has been over the whole

surface. These two independent ways for calculating Tr(γ5e−tK2
) allows u to arrive at the final

formula of the index theorem (8)

Index(K) = ν+ − ν− =
1

2π

∫ ∫
B · dS. (47)

It states that the total flux which goes out of the surface is related to the number of zero
modes of the K operator. The curvature doesn’t contribute to the index formula because γ5 is
a traceless operator. Particularly no contribution of curvature is to show an intrinsic property
of two dimensional surfaces. The index theorem leads to an integer number on the compact
surfaces. Therefore

∫ ∫
B · dS produces the total magnetic monopole charge in discrete values

inside the surface under the Dirac quantization condition of magnetic monopoles.
Using the index theorem, we observe the topological characteristics of graphene. Let us apply
it to graphene and its geometric variants. In a certain configuration of graphene we have to
account for the effective magnetic field on the graphene surface. Some plaquette deformations
give rise to a specific circulation of the vector potential around a loop trajectory. Stokes’s
theorem helps us to have a relation between the circulation of the gauge potential around
a loop γi and the flux of the corresponding magnetic field

∮

γi

A · d�r =
∫ ∫

Si

B · dS, (48)
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where Si indicates the area. Hence going through the surface of graphene the total flux
can be obtained from the fact that we can know the total number of deformations. It is
necessary for us to have some information about the total number of plaguette deformations.
The information is related to the topological properties of the surface through the Euler
characteristics. Let us consider the Euler theorem in the following subsection.

5.2 Euler theorem

In general the Euler theorem gives rise to a relation between the structural information of a
polyhedral lattice and its topological properties. There are a lot of proofs on this theorem. The
most common methods are proofs on the basis of a reductions from the polyhedral lattice to
the simpler one without changing its topological properties.
Let us consider a lattice placing on a compact surface with a certain genus g. Then we can
compute the number of deformations in a lattice necessary to create such a surface by applying
the Euler characteristic. Let V, E and F be the number of vertices, edges and faces of the lattice,
respectively, and Nend, open ends. Then the Euler characteristic, χ is expressed by (8)

χ = V − E + F = 2(1 − g)− Nend. (49)

The second step of Eq. (49) is satisfied by the Euler theorem. It is easily to check that a single
cut in the surface can have a reduction of the genus by one and increase the number of open
ends by two, say, (g, Nend) → (g − 1, Nend + 2), leaving the Euler characteristic χ preserved.
Let us apply the Euler theorem to the case of graphene molecules. There are three links
on each vertex of graphene. Suppose that topological deformations such as pentagons or
heptagons are present. Let us indicate the total number of pentagons, hexagons and heptagons
by n5, n6 and n7, respectively in the molecule. Then the total number of vertices is written
by V = (5n5 + 6n6 + 7n7)/3 when each k-gon has k vertices and each vertex takes three
polygons. Similarly, the total number of edges is expressed by E = (5n5 + 6n6 + 7n7)/2
provided that each edge has two polygons. The total number of faces is equal to the sum
of different polygons, F = n5 + n6 + n7. Combining these into the Euler characteristic, we see
that

n5 − n7 = 6χ = 12(1 − g)− 6Nend. (50)

This result reflects many facts. When equal numbers of pentagons and heptagons are inserted,
they do not make any change about the topology of the surface in the case that they cancel
out. On a flat graphene sheet we can put two pentagons and two heptagons on it without
changing the curvature of the molecule away from these deformations. This is consistent
with the effective gauge flux approaches where pentagons and heptagons give opposite flux
contributions. On the other hand, it is known that nontrivial topologies necessarily provide
an imbalance between pentagons and heptagons. The genus zero configurations result in an
excess of pentagons while high genus surface has an excess of heptagons. Genus one surfaces
do not have any pentagons or heptagons at all provided that they are equivalent to a flat sheet.
It is seen that Eq. (50) recaps the known result of a sphere with g = 0 which leads to χ = 2.
This corresponds to a fact about n5 = 12 and n7 = 0 for the C60 fullerene. For a torus with
g = 1, we can have χ = 0 related to n5 = n7 = 0 in the case of the nanotubes. Thus no
pentagons or heptagons may be required. If we account for the genus g = 2 surfaces, then we
can obtain χ = −2 where n5 = 0 and n7 = 12. In this situation equal numbers of pentagons
and heptagons can be inserted without making any change of topology on the surface.
Suppose that K is a Dirac Hamiltonian H. Then we compute the Index(H). The Euler
characteristic term allows us to compute the gauge field term in the Index(H). It can be
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given by including additionally the contributions from the surplus of pentagons or heptagons.
Hence the total flux of the effective gauge field can lead to

Index(H) =
1

2π

∫ ∫

Si

B · dS =
1

2π ∑
n5−n7

∮

γi

A · d�r

=
1

2π

π

2
(n5 − n7) = 3(1 − g)− 3

2
Nend. (51)

The total number of zero modes is equivalent to the sum contributed from each subsector of
a Dirac operator. As a consequence, by adding the two contributions, we arrive at the index
of the Dirac Hamiltonian that describes the graphene molecule. The Index(H) is expressed by
(8)

Index(H) = ν+ − ν− = 6(1 − g)− 3Nend (52)

which is consistent with the exact number of the zero modes if ν+ = 0 or ν− = 0. Therefore
we have obtained the theorem which relates the number of zero modes existed in a certain
graphene molecule to the topological characteristics of its surface.
This result provides the number of zero modes for the familiar cases of graphene molecules.
For example, since a fullerene takes g = 0 and Nend = 0, it is expected that it has six zero
modes which correspond to the two triplets of C60 and of similar large molecules. For the
case of nanotubes, we have g = 0 and Nend = 0. This results in ν+ − ν− = 0 which is in
agreement with previous theoretical and experimental results (20; 21). The index theorem
gives rise to a surprising relation between the topology and the presence of magnetic flux
which is effectively inserted in graphene molecules by geometrical deformations. The number
of these deformations can be associated with the general topological characteristics of the
lattice surface. They are related to the zero modes of a general graphene molecule with the
genus and the number of open faces of its surface.

5.3 G index theorem

To build up supersymmetry over the Dolbeault complex which are associated with
deformation on topology of the lattice (22), we need one of the supercharges, Q2 = ∂̄.
The index theorem leads to a topological invariant under deformations on Q2 and plays an
essential role in formulating the SUSY QM over the twisted Dolbeault complex caused by the
deformation in a graphene system.
Let us describe the general statement of the G-index theorem. Suppose that Q and Q† are
supercharges which have a map from a space of bosonic states to a space of fermionic states
and vice versa. Further let us take a Lie group G generated by Gi. Gi satisfies the commutation
relations with Q and Q† such that (17) where

[Gi, Gj] = i f k
ijGk, [Q, Gi] = 0, [Q†, Gi] = 0, (53)

where f k
ij are structure constants. Gi has also a commutation relation with the Hamiltonian of

Eq. (5)

[Gi, H] = 0. (54)

A supercharacter can be expressed as a supertrace of the group elements

Ξ(eiθi Gi) = Tr
(
(−1)Feiθi Gie−tH

)
. (55)
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The ordinary trace requires us to take a limit of t → 0. But Eq. (55) does not have any
dependence on t because the non-zero energy levels can not make contributions due to
canceling in pairs between the bosonic and fermionic sectors. But the zero-energy levels can
only give contributions. And these are not dependent on t.
The character is topologically invariant under deformations of the operators Q and Q†. On
deformation let us consider the supersymmetry generator Q of the ordinary N = 1 SUSY QM
on a manifold. In locally geodesic coordinates Q is expressed by

Q = d = ψμ†∂μ. (56)

When deforming Q, it is changed into the new operator

Qs = d + sιK = ψμ†∂μ + sKμψμ, (57)

where K denotes a Killing vector field. And then the deformed Hamiltonian is given by

Hs ≡ 2(Qs + Q†
s )

2,

= −∂2 + s2|K|2 − 1

2
s[ψ†

μ, ψ†
ν ]∂μKν −

1

2
s[ψμ, ψν]∂νKμ. (58)

Now suppose that we decompose the deformed N = 1 SUSY operator into holomorphic and
antiholomorphic sectors because of d = ∂ + ∂̄. Then the G-index theorem can be associated
with a high degree of symmetry on a graphene molecule. Let us take a Lie group G generated
by Gi which satisfies the commutation relations with Q2 and Q†

2 such that

[Gi, Gj] = i f k
ijGk, [Q2, Gi] = 0, [Q†

2, Gi] = 0 (59)

where f k
ij mean structure constants. On graphene, there exists the Hamiltonian H such that

H ≡ −2h̄2v2
F(Q2 + Q†

2)
2, [Gi, H] = 0. (60)

On deforming Q2, this can be changed into a new operator

Q2s = ψ†z̄∂z̄ + sKz̄ψz̄, (61)

where s is a real parameter. K denotes a Killing vector field associated with the deformation.
In the complex coordinates z and z̄, the Killing vector field is given by K = −y∂x + x∂y =
i(z∂z − z̄∂z̄).
Under the deformation let us consider a graphene system corresponding to the K+. Then we
can obtain a deformed Hamiltonian H+,s on the Dolbeault complex. For convenience, after
replacing s by is, the deformed Hamiltonian is given by (9; 17)

H+,is = −2h̄2v2
F(Q+,2is + Q†

+,2is)
2

= −2h̄2v2
F

(
−2∂2

z̄z + |s|2|z|2
)
− 2h̄2v2

F

(
s[ψ†z̄, ψz̄] + s(z̄∂z̄ − z∂z)

)
. (62)

This operator gives rise to eigenvalues (9; 17)

E+,nml = −2h̄2v2
F

[
|s|

(
(n +

1

2
) + (m +

1

2

)
+ sl + s(±1)

]
. (63)
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Depending on the choice of s > 0 or s < 0, we can consider two cases for zero eigenvalues
satisfying the topological invariance imposed by the index theorem. First if s > 0, we should
take −1 for the [ψ†z̄, ψz̄]. Now we get in the bosonic sector. We can have zero eigenvalues in
the case of l = 0,−1,−2, · · · . Second if s < 0, we have to choose +1 for [ψ†z̄, ψz̄]. And then we
can get zero eigenvalues for l = 0, 1, 2, · · · .

According to the choice of s, let us take two Hamiltonians H↑
+,is = Q̂†

+,2isQ̂+,2is and H↓
+,is =

Q̂+,2isQ̂†
+,2is as two superpartners which imply the Z2 grading over the Hilbert space. Here we

have expressed Q̂+,2is = −i
√

2h̄vF(Q+,2is +Q†
+,2is). Then we want to calculate the eigenvalues

for the up-spin and down-spin components

H↑↓
+,is|ψ

↑↓
+,nml >= E↑↓

+,nml |ψ
↑↓
+,nml >, (64)

where E↑↓
+,n+1ml > E↑↓

+,nml ≥ E↑↓
+,000. Suppose that E↑

+,000 is zero. Then making use of the

relations

Q̂+,i2sH↑
+,is = Q̂+,2isQ̂†

+,2isQ̂+,2is = H↓
+,isQ̂+,2is, (65)

we can have

H↓
+,isQ̂+,2is|ψ↑

+,nml > = Q̂+,2isH↑
+,is|ψ

↑
+,nml >

= E↑
+,nml Q̂+,2is|ψ↑

+,nml > . (66)

This means that if E↑
+,nml �= 0, Q̂+,2is|ψ↑

+,nml > is an eigenstate of H↓
+,is. And similarly

H↑
+,isQ̂†

+,2is|ψ
↓
+,nml > = Q̂†

+,2isH↓
+,is|ψ

↓
+,nml >

= E↓
+,nml Q̂

†
+,2is|ψ

↓
+,nml > . (67)

If E↓
+,nml �= 0, Q̂†

+,2is|ψ
↓
+,nml > is an eigenstate of H↑

+,is. Therefore, for non-zero eigenvalues

there exist the up-spin and down-spin eigenstates in pair. They form a supermultiplet

connected by the supercharge Q̂+,2is. The up-spin (down-spin) sector may be described as
the bosonic (fermionic) sector at the K+ point.
In the case of the zero eigenvalues for the down-spin sector, we should investigate both

E↓
+,000 = 0 and E↓

+,000 �= 0 separately. Let us assume that E↓
+,000 �= 0. Then the lowest

eigenstate of H↓
+,is is expressed as |ψ↓

+,000 > ∝ Q̂+,2is|ψ↑
+,1ml > . Hence, there exists a

supermultiplet between the states |ψ↑
+,n+1ml > and |ψ↓

+,nml >, which have the same energy

E↑
+,n+1ml = E↓

+,nml , and we obtain energy eigenstates (9)

|ψ↓
+,nml > =

1√
|E↑

+,n+1ml |
Q̂+,2is|ψ↑

+,n+1ml >,

|ψ↑
+,n+1ml > =

1√
|E↓

+,nml |
Q̂†
+,2is|ψ

↓
+,nml > (68)
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for n ≥ 0. If E↓
+,000 = 0 and Q̂†

+,2is|ψ
↑
+,000 >= 0, the relationships are written by (9)

|ψ↓
+,nml > =

1√
|E↑

+,nml |
Q̂+,2is|ψ↑

+,nml >,

|ψ↑
+,nml > =

1√
|E↓

+,nml |
Q̂†
+,2is|ψ

↓
+,nml > (69)

for n ≥ 1. Similarly, one can repeat eigenvalue problem for H−,is, which corresponds to the K
′
−

point. As a relation between the up-spin and down-spin eigenstates, the bosonic (fermionic)

sector is regarded as the down-spin (up-spin) sector at the K
′
− point. And hence there exists

the 4-fold degenerate energy spectrum.

6. Deformed energy eigenvalues and unconventional quantum Hall effect

On a sheet of graphene, let us consider the problem of magnetic field concentrated on a thin

cylindrical shell of small, but finite radius lB =
√

ch̄
eB . The corresponding vector potential is

given by�a = (−y, x)/2l2
B on the two dimensional plane of graphene. The problem in question

is to compute the eigenvalues of the Dirac Hamiltonian in the field of a fractional magnetic
flux on the graphene sheet (23; 24). Now under the fractional magnetic flux, the eigenvalues
for n = 0, l = 0, m = 0 are given by

√
E↑
+,000 =

√
E↓
−,000 = 0, (70)

and
√

E↑
+,n+100 =

√
E↓
+,n00 =

√
E↓
−,n+100 =

√
E↑
−,n00 = ±h̄wlB

√
n + 1 (71)

for n ≥ 0, l = 0, m = 0. Here wlB
≡

√
2vF
lB

. Equation (70) tells us that there is one zero-energy

state only in the case of up-spin fermions but not in the case of down-spin fermions at the

K+ point. At K
′
− point we can have one zero-mode state for down-spin fermions but not for

up-spin fermions. The magnetic field direction at K+ is opposite to that at K
′
−. The zero-energy

state may have the four-fold degeneracy emerging from electrons and holes (8). Since the LL
of the zero-energy states becomes half-filled, no one would observe plateau at ν = 0. But by
index theorem, the flux quanta produce 4r (r = 0, 1, 2, · · · ) zero-energy states. The 2r states
of these are occupied. The flux quanta lift the 2r states to the Fermi energy. And then they
can be removed by doping. The degeneracy between electrons and holes would be removed.
We could observe the Hall plateau at ν = 0 because holes are occupied before electrons. And
hence we can describe an experimental observation of the Hall plateau emerging at ν = 0. (10)
On the basis of the index theorem, we compute the energy spectrum of the deformed

Hamiltonian, H+,is = −2h̄2v2
F(Q+,2is + Q†

+,2is)
2 at the K+ point. The up-spin states of zero

energy are |0 >, |1 >, |2 >, · · · , |j↑ − 1 >. They are degenerate in |ψ↑
+,0ml >. On the other

hand, for down-spin states, we have to describe two cases. As the first case, assume that j↓ = 0.
Then, there do not exist any zero-energy states. So we may construct the supermultiplet given

by Eq. (68). In the other case, if j↓ �= 0, the zero-energy states are given by |0 >, |1 >, |2 >

, · · · , |j↓ − 1 > as degenerate states of |ψ↓
+,0ml > . Therefore, these result in the (j↑ + j↓)−fold
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degeneracy in the zero-energy state for fermions at the K+ point. This degeneracy implies the

exact correspondence between j↑ fermions and j↓ fermions under deformation. Similarly, we

can investigate the energy spectrum of the zero-energy states at the K
′
− point.

In order to generate the up-spin and down-spin states of zero energy the deformed
superoperators are written, in terms of the original supercharges, by

Q̂+,2is = Q̂
†j↓

+,2isQ̂
j↑

+,2is, Q̂†
+,2is = Q̂

†j↑

+,2isQ̂
j↓

+,2is, (72)

where j↑ and j↓ are integers such as j↑ > j↓. In terms of the Q̂†
+,2is the state |n > is given by

|n >=
1√
n!
(Q̂†

+,2is)
n|0 > . (73)

Now, let us calculate the deformed eigenvalues by using Eq. (73) and solving the eigenvalue
problems of Eq. (64) for the up-spin and down-spin components. In the bosonic sector, the
deformed energy eigenvalues are expressed by

√
E↑
+,000 =

√
E↓
−,000 = 0, (74)

for n = 0, l = 0, m = 0. And we can have

√
E↑
+,nml =

√
E↓
−,nml = ±h̄wlB

√
(n + j↑ − 1)!(n + j↓ − 1)!

[(n − 1)!]2
(75)

for n ≥ 1, l = −(j↑ − 1), m = 2(j↑ − 1). In the case of the fermionic sector, if j↓ = 0, the
deformed eigenvalues are

√
E↓
+,nml =

√
E↑
−,nml = ±h̄wlB

√
(n + j↓)!(n + j↑)!

[(n)!]2
(76)

for n ≥ 0, l = j↓, m = 2j↓. If j↓ �= 0, the eigenvalues are given by

√
E↓
+,000 =

√
E↑
−,000 = 0, (77)

for n = 0, l = 0, m = 0. And we obtain

√
E↑
+,n+1ml =

√
E↑
−,n+1ml = ±h̄wlB

√
(n + j↓ − 1)!(n + j↑ − 1)!

[(n − 1)!]2
(78)

for n ≥ 1, l = j↓ − 1, m = 2(j↓ − 1). We can check up that there exists 4(j↑ + j↓)-fold
degeneracy in the zero-energy states and 4-fold one in all other states.

Among the energy spectrum given above, let us account for the special cases of j↑ = 1, and

j↓ = 0 and j↑ = 2, and j↓ = 0. In the case of j↑ = 1, and j↓ = 0 it is not hard to check up
that the energy eigenvalues are given by Eqs. (77) and (78). These results correspond to the

spectrum of the monolayer graphene. For the case of j↑ = 2, and j↓ = 0, the energy spectra
are expressed in terms of

√
E↑
+,000 =

√
E↓
−,000 = 0, (79)
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for n = 0, l = 0, m = 0. And we can obtain (18)

√
E↑
+,nml =

√
E↓
−,nml = ±h̄wlB

√
n(n + 1) (80)

for n ≥ 1, l = −1, m = 2, while having

√
E↓
+,nml =

√
E↑
−,nml == ±h̄wlB

√
(n + 1)(n + 2) (81)

for n ≥ 0, l = 0, m = 0. These energy spectra are eigenvalues of the bilayer graphene affected
by the deformation, and are in agreement with the results in the literature (10; 12; 14). On the

basis of the index theorem we have shown that there exist the j↑-fold and j↓-degeneracy in the

zero-energy state at the K+ point and similarly at the K
′
−. And hence we can obtain the QHE

characterized by (9)

σxy = ν
e2

h
, ν = ±4(|n|+ j↑+j↓

2 ). (82)

7. Summary and conclusion

We presented the electronic properties of massless Dirac fermions characterized by geometry
and topology on a graphene sheet in this chapter. Topological effects can be elegantly
described by the Atiyah-Singer index theorem. It provides a topological invariant under
deformations on the Dirac operator and plays an essential role in formulating supersymmetric
quantum mechanics over twisted Dolbeault complex associated with the deformation on the
topology of the lattice in a graphene system. Exploiting the G-index theorem and a high degree
of symmetry, we explained deformed energy eigenvalues in graphene. The Dirac fermions
result in SU(4) symmetry emerging out of both the pseudospin and spin as a high degree of
symmetry in the noninteracting Hamiltonian of monolayer graphene. Under the topological
deformation the zero-energy states emerge naturally without the Zeeman splitting at the
Fermi points in the graphene sheet. Thus we observed an emergence of a higher degree of
hidden symmetry under the topological deformation in graphene while the pseudospin is a

good symmetry at the K and K
′

points in graphene. In the particular SU(2) of the pseudospin,
the SU(2) is the exact spin symmetry of each Landau level. In the case of nonzero energy, the
up-spin and down-spin states have the exact high symmetries of spin, forming the pseudospin
singlet pairing. The pseudospin can play a key role on the physics of the n = 0 LL in the
graphene sheet. The valley pseudospin degeneracy can lift only at the zeroth LL. The 4-fold
degeneracy can be removed in the zero-energy states of monolayer graphene. If the mass
terms were taken into account, the four-fold degeneracy can be removed in the zero-energy
state of monolayer graphene. We can exploit this to understand the emergence of a Hall
plateau at n = 0 in the experimental observations. But the four-fold degeneracy is not
removed in the higher LLs. Including the Coulomb interaction, we can lift the degeneracy.
The pseudospin symmetry SU(2) is broken to U(1)× Z2. Therefore the total symmetry gives
rise to SU(2)spin × (U(1) × Z)psuedospin while the spin symmetry SU(2) remains to be exact.
Hence we understood the peculiar and unconventional quantum Hall effects of the n = 0
Landau level in monolayer graphene on the basis of the index theorem and the high degree of
symmetry under the topological deformation without the Zeeman splitting. It would be very
interesting and quite possible to apply the present approach to investigation of the composite
Dirac fermions and fractional quantum Hall effects in graphene.
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two-dimensional material graphene". The two volumes Physics and Applications of Graphene - Experiments

and Physics and Applications of Graphene - Theory contain a collection of research articles reporting on

different aspects of experimental and theoretical studies of this new material.
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