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1. Introduction

A lot of experimental and theoretical studies in recent years are focusing on the unusual

relativistically, kinematic properties of the electronic states in graphene predicted theoretically
decades ago (Haldane, 1988; Semenoff, 1984). Later, it was confirmed that the graphitic
monolayer have anomalous relativistically properties (Novoselov et al., 2005; 2004). Because
electrons and holes in a graphene behave like massless Dirac particles, there is a number
of unusual properties, such as high charge carrier mobility (Novoselov et al., 2005), the
graphene’s conductivity never falls below a minimum value (Nomura & MacDonald, 2007;
Ziegler, 2006), and an anomalous quantum Hall effect.(Zhang et al., 2005)
Bilayer graphene systems, where carriers in one layer are electrons and carriers in the other
are holes, have been considered as ideal candidates for observing superfluid properties at
room temperatures (Lozovik & Sokolik, 2008; Min et al., 2008; Zhang & Jorlecar, 2008). It is
expected that the excitons will behave as neutral bosons at low densities, and therefore, they
can undergo Bose-Einstein condensation (BEC) when the interlayer distance is comparable to
the distance between the particles within each layer. However, when we separate electrons
and holes by introducing a dielectric between them we reduce the exciton binding energy, and
so the critical temperature for condensation decreases. A possible way to increase the binding
energy is to apply magnetic field perpendicular to the layers. As we shall see, the calculations

predict the existence of a condensate of magnetoexcitons with superfluid properties under the
Kosterlitz-Thouless critical temperature TKT which in graphene bilayers decreases in the limit
of large interlayer separation as TKT ∼ B−2 (as TKT ∼ B−1/2 in the limit of small interlayer
separation).
Magnetoexcitons are bound states between two charged fermions (an electron from the
conductive band and a hole from the valence band) in the presence of a magnetic field.
The calculations are much more complicated compare to the corresponding calculations in
the absence of a magnetic field because even a small transverse exciton velocity (or small
transverse wave vector Q) will induce an electric field in the rest frame of the exciton. This
electric field will push the electron and the hole apart, so the magnetoexciton binding energy
must decrease as the transverse velocity increases. In other words, the magnetic field induces
a coupling between the center-of-mass and the relative internal motions, and therefore, the
correct description of excitons in a strong magnetic field should take into account this coupling
effect.
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Turning our attention to magnetoexciton dispersion in non-relativistic systems, such as
coupled quantum wells (CQW’s) with parabolic dispersions (Ec,v = h̄2k2/2mc,v) we find that
the following Hamiltonian (Shevchenko, 1997)

Ĥ = − h̄2

2µ
∇2

r +
ıeγh̄

2µc
(B × r).∇r +

e2B2

8µc2
r2 − V(r + R0)

is used to obtain the magnetoexciton dispersion. Here µ is the exciton reduced mass, γ =
(mv − mc)/(mc + mv), R0 = R2Q0, where Q0 = (−Qy, Qx, 0), and R = (h̄c/eB)1/2 is the

magnetic length. V(r) = e2/(ε0

√
|r|2 + d2) represents the electron-hole Coulomb attraction

screened by the dielectric constant ǫ0. Since the Coulomb term in the Hamiltonian is the
only term which depends on the exciton momentum Q = (Qx, Qy, 0), the magnetoexciton
dispersion does not depend on the electron and hole masses and the magnetoexciton mass
is determined only by Coulomb interaction. In strong magnetic fields one can apply the
lowest Landau level (LLL) approximation. In the LLL approximation the magnetoexciton
mass MCQW and the binding energy ECQW are as follows:

MCQW

M2D
=

[
(1 +

d2

R2
)e

(
d2

2R2

)

Er f c

(
d√
2R

)
−

√
2

π

d

R

]−1

ECQW = Eb exp

(
d2

2R2

)
Er f c

(
d√
2R

)
.

Here Er f c(x) is the complementary error function, M2D = 23/2ε0 h̄2/(
√

πe2R) and
Eb =

√
πe2/(

√
2ε0R) are the magnetoexciton mass and the two-dimensional (d = 2)

magnetoexciton binding energy, respectively.
Strictly speaking, the excitons are bound states between two charged fermions, and therefore,
the appropriate framework for the description of the bound states is the Bethe-Salpeter (BS)
formalism (Salpeter & Bethe, 1951). In the case of parabolic band quantum-well structures we
find that beyond the LLL approximation, the BS equation contains an extra term (BS term)
(Koinov, 2008). This term takes into account the transitions to the Landau levels with indexes
n ≥ 1. The contributions to the magnetoexciton binding energy and mass can be obtained by

applying a variational procedure. In the non-relativistic case the results are as follows: in a
strong magnetic field, the ground-state energy is very close to that obtained by means of the
Schrödinger equation, but the magnetoexciton dispersion is determined by the BS term rather
than the electron-hole Coulomb term in the Schrödinger equation.
Since the unique electronic behaviors of graphene is a result of the unusual
quantum-relativistic characteristics of the so-called Dirac fermions, we shall study
magnetoexciton binding energy in graphene bilayers embedded in a dielectric by applying
the relativistic BS equation in the LLL approximation (Koinov, 2009). Several non-trivial
effects produced by magnetic fields have been recently predicted in quantum field theories.
For example, in the massless QED, the analysis based on the BS equation has predicted
that the external constant magnetic field generates an energy gap (dynamical mass) in the
spectrum of massless fermions for any arbitrary weak attractive interaction between fermions
(Gusynin et al., 1994; 1995). It is expected that the effect is model independent (universal),
because the physical reason of this effect lies in the dimensional reduction in the dynamics of
fermion pairing in the presence of a the constant magnetic field.
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In what follows we examine how both the magnetoexciton binding energy and
magnetoexciton mass in graphene bilayer systems vary with the magnetic field and the
separation d between the layers in the LLL approximation. The solution of this problem is
related to the continued activities to observe superfluid properties of excitons in a bilayer
graphene. It is expected that the excitons will behave as neutral bosons at low densities,
and therefore, they can undergo Bose-Einstein condensation when the interlayer distance
is comparable to the distance between the particles within each layer. The condensate of
neutral bosons (excitons) should have superfluid properties under the Kosterlitz-Thouless
critical temperature TKT. It is worth mentioning that the calculations done by treating the
Coulomb interaction as a perturbation (Berman et al., 2008) provide in the LLL approximation
a number of extra terms which do not exist in the case of CQW’s. From a general point of view,
we have to expect that the binding energy is exactly four times higher than ECQW, while
the magnetoexciton mass is exactly four times lower than MCQW. The physical reason for
the above statement lies in the fact that in the LLL approximation we have a dimensional
reduction in the dynamics of the electron-hole pairing from two space variables plus a time

variable to zero space variable and a time variable. Because of this 2 + 1 → 0 + 1 reduction
the results should be insensitive to the type of the band dispersion. The factor four is due to
the four-component-spinor description used in the relativistic case.

2. Bethe-Salpeter equation

The system under consideration is made from two graphene sheets embedded in a dielectric
and separated by distance d. Each of the two graphene layers has two Dirac-like linear

dispersion h̄vFk bands centered at two non-equivalent points K and K′, where vF is the Fermi
velocity of electrons in graphene. Since the layers are embedded in a dielectric, there is
no hopping of π-electrons between the layers. There is a potential difference ±Vg/2 (gate
voltage) applied to each of the two layers which allows us to adjust the charge density in the
layers. We assume that the potential difference is chosen in a manner that the electrons are in
the top layer (pseudospin index τ = 1) and the same number of holes in the bottom layer (
τ = 2).
The unit cell of graphene has two atoms, A and B, each belonging to the different sublattice.

The operator ψ
(τ)†
σ,A,α(r) (ψ

(τ)†
σ,B,α(r)) creates an electron of spin σ =↑, ↓ on the atom A (atom B) of

the unit cell in layer τ defined by the position vector r. We introduce four component spinors:

Ψ
(τ)
σ (r) =

⎛
⎜⎜⎜⎜⎜⎝

ψ
(τ)
σ,A,K(r)

ψ
(τ)
σ,B,K(r)

ψ
(τ)
σ,B,K′ (r)

ψ
(τ)
σ,A,K′ (r)

⎞
⎟⎟⎟⎟⎟⎠

, (1)

Ψ
(τ)
σ (r) = Ψ

(τ)†
σ (r)γ0,

where the following representation of the Dirac matrices is chosen:
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γ0 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0

0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , γ1 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

γ2 =

⎛
⎜⎜⎝

0 −ı 0 0
−ı 0 0 0
0 0 0 ı
0 0 ı 0

⎞
⎟⎟⎠ .

(2)

In continuum approximation the non-interacting quasiparticles in the layers are described by
the Hamiltonian:

H0 = ∑
σ,τ

∫
d2rΨ

(τ)
σ (r)Ĥ(τ)Ψ

(τ)
σ (r), (3)

where

Ĥ(τ) = vF

(
γ1 p̂x + γ2 p̂y

)
,

p̂x = −ıh̄
∂

∂x
,

p̂y = −ıh̄
∂

∂y
.

The action that describes the non-interacting quasiparticles in a layer τ is:

S
(τ)
0 =

∫
d2rdtΨ

(τ)
σ (r, t)

[
γ0ıh̄

∂

∂t
− vF

(
γ1 p̂x + γ2 p̂y

)]
Ψ

(τ)
σ (r, t) (4)

In the presence of a perpendicular magnetic field B = (0, 0, B) and a potential difference
±Vg/2 (gate voltage) applied to each of the two layers, the action (4) assumes the form:

S
(τ)
0 =

∫
d2rdtΨ

(τ)
σ (r, t)

[
γ0

(
ıh̄

∂

∂t
− V

(τ)
g

)
− vF

(
γ1π̂x + γ2π̂y

)]
Ψ

(τ)
σ (r, t), (5)

where π̂x(y) = p̂x(y) ∓ (e/c)Ax(y)(r), and A(r) = (1/2)B × r is the vector potential in a
symmetric gauge.
In what follows we assume that the interaction between an electron with a position vector r1

from the top layer (τ = 1) and a hole with a position vector r2 from the bottom layer (τ = 2)
is described by the Coulomb potential V(r1 − r2) = e2/ε0

√
|r1 − r2|2 + d2.

Instead of two position vectors r1 and r2, we introduce the center-of-mass R = α(r1 + r2) and
the relative r = r1 − r2 coordinates (α = 1/2).
The basic assumption in our BS formalism is that the electron-hole bound states are described
by the BS wave function (BS amplitude). This function determines the probability amplitude
to find the electron at the point r1 at the moment t1 and the hole at the point r2 at the moment
t2. The BS amplitude depends on the relative internal time t − t′ and on the "center-of-mass"
time:

ΦQ(r, R; t, t′) = exp

(
− ıE(Q)α

h̄
(t + t′)

)
φQ(r, R; t − t′), (6)
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where E(Q) is the exciton dispersion. The BS equation for the equal-time BS amplitude in the
center-of-mass and reduced coordinates is (Kouzakov & Studenikin, 2005):

ΦQ(r, R; t, t) =
∫

d2r′d2R′dt′G(1)(R + αr, R′ + αr′; t − t′)γ0×

G(2)(R′ − αr′, R − αr; t′ − t)γ0V(r′)ΦQ(r′, R′; t′, t′).

(7)

The Fourier transforms of the electron and hole propagators G(τ)(r, r′; t) are define in terms of
the Dirac four component spinors ψκ(r) and the corresponding eigenvalues En = h̄vF

√
2n/R

(Kouzakov & Studenikin, 2005):

G(τ)(r, r′; ω) = ∑
κ

ψκ(r)ψ
κ
(r′)

h̄ω − En ± ı0+ (8)

Here we keep only the positive energy pole contributions, n = 0, 1, 2, ..., and κ = (n, jz, σ),
where jz is the z component of the total angular momentum.
When the translation symmetry is broken by the magnetic field, the Green’s functions can be
written as a product of phase factors and translation invariant parts. The phase factor depends
on the gauge. In the symmetric gauge the Green’s functions are:

G(τ)(r, r′; ω) = exp
[
ı

e

h̄c
r.A(r′)

]
G̃(τ)(r − r′; ω). (9)

The broken translation symmetry requires a phase factor for the BS amplitude:

φQ(r, R; Ω) = exp
[
ı

e

h̄c
r.A(R)

]
χQ(r, R; Ω). (10)

The BS equation (7) admits translation invariant solution of the form:

χQ(r, R; ω) = exp [−ı (Q.R)] χ̃Q(r; ω). (11)

The Fourier transform of the function χ̃Q(r; ω) satisfies the following BS equation:

χ̃Q(k; ω) =
∫

d2q

(2π)2

d2p

(2π)2
d2R

∫ ∞

−∞

dΩ

2π
e−ı(q+Q).R

G̃(1)
(

1

2
q + k − e

h̄c
A(R); h̄ω + α(E − Vg)

)
γ0×

G̃(2)
(
− 1

2
q + k − e

h̄c
A(R); h̄ω − α(E − Vg)

)
γ0V

(
p −

[
k − 2e

h̄c
A(R)

])
χ̃Q(p; Ω),

(12)

where G̃(τ) (k; h̄ω) are the Fourier transforms of G̃(τ) (r; h̄ω).
In the effective-mass approximation the exact fermion Green’s functions G(τ) are replaced by
the corresponding propagator of the free fermions. The translation invariant parts of the free
fermion propagators can be decomposed over the Landau level poles (Gorbar et al., 2002):
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G̃(τ)(k; h̄ω) = 2ı
∞

∑
n=0

(−1)ne−R2k2 h̄ωγ0 f1(k) + f2(k)

h̄2ω2 − 2nh̄v2
FeB/c

,

f1(k) =
1

2
(1 − ıγ1γ2)Ln(2R2k2) − 1

2
(1 + ıγ1γ2)Ln−1(2R2k2),

f2(k) = 2vF h̄(kxγ1 + kyγ2)L1
n−1(2R2k2).

Here L1
n(x) are the generalized Laguerre polynomials, L1

−1(x) = L−1(x) = 0 and Ln(x) are the
Laguerre polynomials. In strong magnetic fields the probability for transitions to the excited
Landau levels due to the Coulomb interaction is small. Thus, the contributions to the Green’s
functions from the excited Landau levels is negligible, and therefore, one can apply the LLL

approximation, where we keep only n = 0 term:

G̃(1)(k; h̄ω) ≈ ı exp
(
−R2k2

) γ0(1 − ıγ1γ2)

h̄ω + ı0+ ,

G̃(2)(k; h̄ω) ≈ ı exp
(
−R2k2

) γ0(1 − ıγ1γ2)

h̄ω − ı0+ .

(13)

The infinitesimal imaginary parts in our case reflect the fact that there are holes in layer
number 2 (in electron-hole representation poles of the holes are above the real axis) and
electrons in layer number 1.
The solution of the BS equation (12) in the LLL approximation can be written in the following
form:

χ̃Q(k; ω) = exp
[
−R2k2 − ıR0.k

]
ΦE(ω). (14)

Here ΦE(ω) is a 4 × 4 matrix. Thus, the LLL approximation reduces the problem from
2 + 1-dimensions to 0 + 1-dimension problem. The matrix ΦE(ω) and the magnetoexciton
dispersion E(Q) are determined by the solutions of the following equation:

ΦE(ω) = −I(|Q|)
∫ ∞

−∞

dΩ

2π

γ0(1 − ıγ1γ2)γ0ΦE(Ω)γ0(1 − ıγ1γ2)γ0
(
h̄ω + α(E − Vg) + ı0+

) (
h̄ω − α(E − Vg)− ı0+

) . (15)

The solution of (15) is given by:

ΦE(ω) =

⎛
⎜⎜⎝

0 0 0 0

0 1 0 1
0 0 0 0
0 1 0 1

⎞
⎟⎟⎠

1(
h̄ω + α(E − Vg) + ı0+

) (
h̄ω − α(E − Vg) − ı0+

) ,

E(Q) = Vg − 4I(Q).

(16)

Thus, in the LLL approximation, the magnetoexciton dispersion is determined by
the Coulomb interaction term I(Q) =

∫
d2rϕ2

00(r)V(r + R0), where ϕ00(r) =

(
√

2πR)−1 exp
(
−r2/4R2

)
is the ground-state wave function of an electron in a magnetic field.

For small wave vectors we calculate:

E(Q) ≈ Vg − 4ECQW +
h̄2Q2

2M(B)
,

M(B)

MCQW
=

1

4
. (17)
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In graphene bilayer structures the magnetoexciton mass (binding energy) is four times lower
(higher) than the corresponding magnetoexciton mass (binding energy) in coupled quantum
wells with parabolic dispersion and the same d, ε0 and B. In the limit of very small interlayer
separation d << R the asymptotical values of the binding energy and the effective magnetic
mass of magnetoexciton in bilayer graphene are 4Eb and Msmall(B) = M2D/4 ∝ B1/2,
respectively. In the limit of large interlayer separation d >> R the asymptotical values of
the magnetic mass is Mlarge(B) = M2Dπ1/2d3/(27/2R3) ∝ B2. As we mentioned above,
under the certain critical temperature Tc a Bose-Einstein condensation might be expected
to occur. The condensate of magnetoexcitons should have superfluid properties under
the Kosterlitz-Thouless critical temperature TKT (Kosterlitz & Thouless, 1973). A possible
verification of our predictions could be based on the fact that at a fixed superfluid density
the phase stiffness and the KT critical temperature, both are inversely proportional to the
magnetoexciton mass, i.e. TKT ∝ M−1(B). Since the effective mass increases as a function
of the magnetic field, one should expect that at a fixed superfluid density the KT critical
temperature decreases in the limit of large interlayer separation as TKT ∝ B−2 (as TKT ∝ B−1/2

in the limit of small interlayer separation).

3. Conclusion

We have applied the relativistic BS formalism to the magnetoexcitons in a graphene structures.
In the regime of a strong magnetic field the electrons and holes are confined primarily to
the lowest Landau Level (LLL), and the Coulomb energy is much smaller than the exciton
cyclotron energy. The LLL approximation greatly simplify the calculations, but we may ask

whether the magnetoexciton dispersion will be significantly affected by the contributions from
the infinity number of Landau levels with indexes n ≥ 1 neglected in the LLL approximation.
Going beyond the LLL approximation is an ambitious task (see, e.g. (Shabad & Usov, 2006))
which will be left as a subject of our future research.
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