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1. Introduction 

Lately we have witnessed a resurgence of interest in some exotic but hitherto unobserved 

predictions of relativistic quantum mechanics, particularly in the phenomena of 

zitterbewegung (Schliemann et al., 2006) and the Klein paradox (Katsnelson et al., 2006).  In 

the former case this interest has been fueled by the realization that bound electrons in 

suitable semiconductor nanostructures are expected to display zitterbewegung at much 

lower frequencies and with much larger amplitudes than free electrons.  In the latter case, 

the recently established conducting properties of graphene, an atomic layer of graphite, 

point to charge carriers moving at speeds close to the Fermi speed ( 6 110 ms− ) which plays 

the role of light speed for this system (Kane, 2005).  In pursuit of these tantalizing 

developments one might also consider the possibility of harnessing the novel features of 

graphene for device applications.  In this article, we will introduce two concepts which are 

unique to graphene systems which we believe could be potentially useful for nanodevices.   
a. Topological Zero Modes 
b. Pseudospin Orbital Coupling 

1.1 Topological zero modes  

We conjecture that with present day technologies, one might be able to observe the 
interactions between particle and antiparticle in the low-energy context of bilayer graphene. 
To introduce the phenomenon we wish to describe let us think for a moment of the game of 

bowling.  One can enjoy it in two ways: a normal person can hurl the ball and be thrilled by 

strikes and spares, while a child can gently slide the ball on the sidetrack and watch it roll 

back from the return rack.  But another possibility occurs if the ball neither goes for the pins 

nor comes back but stays put somewhere.  Paradoxically this scenario can be more 

intriguing as one tries to analyze the resting position of the ball.  An analogous situation 

occurs in quantum mechanical tunneling, where electrons are either transmitted or reflected 

if their kinetic energies are greater or less than the strength of the step-potential barrier they 

www.intechopen.com



 Physics and Applications of Graphene - Theory 

 

176 

are incident upon [Landau & Lifshitz, 1968].  However in relativistic quantum mechanics, a 

third scenario can theoretically arise, namely, spatially-bound particles due to the 

interaction between particle and antiparticle. Such interplay is unknown in semi-classical or 

non-relativistic quantum mechanics, and is rarely observed even in relativistic quantum 

mechanics since the requisite electric fields far exceed available technologies. In this article   

we will show in Section 3 that this effect can be reproduced in bilayer graphene in the 

presence of an antisymmetric potential kink.   

1.2 Pseusospin orbital coupling 

It is well known that electron spin is coupled to its momentum due to the spin orbit 
coupling effect which can be understood via classical electrodynamics or relativistic 
quantum mechanics.  Dirac’s equation predicts that in the presence of electromagnetic 
fields, a single spin particle experiences the Zeeman and the spin orbit coupling effects.  In 
the latter, one can visualize that an electron traveling with a non-vanishing speed in the 
electric field, will in its rest frame “see” an effective magnetic field.  The magnetic field 
strength depends on the angle between the momentum and the electric field in the plane 
which contains both and the field direction is perpendicular to this plane.  It is only natural 
to envisage that the electron spin will precess about this effective magnetic field and that the 
spin precession would be tightly coupled to electron scattering, due to the dependence of 
the field strength on the electron motion.  What follows is the realization that this 
phenomenon has useful device properties; indeed, in the last twenty years, numerous 
transistor designs based upon the Rashba and Dresselhaus spin orbit coupling in 
semiconductors (Supriyo Datta & B. Das, 1988) have emerged.  Bilayer graphene has a 
Hamiltonian that resembles the massive Dirac system.  This led to the idea that an analogy 
of the above might lead to the design of devices similar to spintronics but in the context of 
graphene. However, in graphene our focus lies in the pseudospin rather than the real 
electron spin. A scientific imperative here is to theoretically ascertain the possible existence 
of such pseudospin orbit coupling and details of this would be presented in Section 4 of this 
article.  

2. Brief introduction to bilayer dynamics 

Much has been said about the novelty of graphene which promises new electronics with 
applications wild and aplenty.  The reduced Hamiltonian of bilayer graphene has been the 
center stage for trapping the “bowling ball” and generating a slew of topological dynamics, as 
described in Section 1.  We will begin with a brief introduction to the full bilayer graphene 
Hamiltonian leading to its reduced form.  As is well known, the bilayer graphene comprises 
two monolayer graphene stacked vertically and has a more complicated energy structure.  The 
bilayer graphene Hamiltonian (McCann & Fal’ko, 2006) has been expressed as: 
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where x yǑ p ip= + and Ǆǆt = . In graphene it is known that interlayer coupling between A1 

and B2 is strong. Subscripts A, B refer to the sublattice index, while 1, 2 refer to the layer 
index.   Alternatively there are different versions of the Hamiltonian found in the literature. 
The differences arise mainly from symmetry as well as variations due to approximations. 
 

 

Table 1. Hamiltonian of the bilayer graphene resembles the massive Dirac Hamiltonian 

The spinor wavefunction of (1) in Table I above is different from those in (2) and (3). A 
transformation can be performed as follows  

                +====→=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

UU,UǙǙ'

Ǚ
Ǚ
Ǚ
Ǚ

Ǚ

B

A

B

A

B

A

B

A

0010

0100

1000

0001

where

2

2

1

1

1

2

2

1

ϕ
ϕ
ϕ
ϕ

 (2) 

 

It is not hard to see that U defined above has the property of:  Hermicity, i.e. +=UU  and 
Unitarity, i.e. 1=+UU .  The Hamiltonian can then be transformed using +=UHUH t .  In 
summary we have 
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The Hamiltonian tH
1

is identical to
3

H and is very close to that of
2

H (see Table 1) except 

that Ǒv
3

and +Ǒv
3

have been dropped in
2

H .  It will be interesting to inspect if the above 

Hamiltonian fit the Dirac’s equation exactly, which in its standard form is given by 

www.intechopen.com



 Physics and Applications of Graphene - Theory 

 

178 

             
E mc

Ǚ 0
E mc

− − ⋅⎛ ⎞
=⎜ ⎟⋅ − +⎝ ⎠

σ p

σ p
 (4) 

To achieve greater transparency, we manipulate the Dirac’s equation slightly by simply 

multiplying both sides of the Hamiltonian mcpǄ
c

i
+⋅=

∂
0

0

=
α with ,0γ  which then leads to 

mcǄǄmcǄpǄǄ
c

i

0500
0 +∂⋅=+⋅=

∂ GG
=

GG=
σ . Recalling that 

⎟
⎠
⎞

⎜
⎝
⎛

−
==

I

I
Ǆ

0

0

00
α , ;1

00
=γγ ⎟

⎠
⎞

⎜
⎝
⎛

=
01

10

5
γi , one could obtain straightforwardly that 

⎟
⎠

⎞
⎜
⎝

⎛
⋅

⋅
=+⋅

mc-

mc
mcǄiǄ

pσ
pσ

05
pσ .  The energy equation can thus be written as follows 

 0
-

-
=

+⋅
⋅

⎟
⎠

⎞
⎜
⎝

⎛ Ǚ
mcE

mc-E

pσ
pσ

 (5) 

which seems to be a closer fit with
1

H . The above shows that bilayer graphene Hamiltonian 
mimics that of the massive Dirac systems to some extent.  Future nanofabrication 
technologies, which afford us greater control over the various interlayer and sublattice 
coupling strengths, might allow us to produce a graphene-like system with closer 
correspondence to the massive Dirac system. 

Reduction of the Bilayer Graphene Hamiltonian 

In bilayer graphene, the 4x4 Hamiltonian is cumbersome, and one often uses a 2x2 
simplified form.  We will in this section simplify the larger bilayer graphene Hamiltonian. 
We will use

3
H as an example 
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where u is the applied electrical voltage between the two layers;  t is the interlayer coupling. 
One assumes here that in the limit of strong interlayer coupling, i.e. t >> u,   occupancy at 
sites A2 and B1 become zero.  It thus follows from Eq. (6) that   
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resulting in the following set of equations: 1 1 22
u

A B AcǑ t 0ϕ ϕ ϕ− + = and 

1 2 22
u

B A Bt cǑ 0ϕ ϕ ϕ++ + = .  Solving these in the limit of  t >> u, one obtains: 
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which leads to the simplified Hamiltonian for 33ǙH of 
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from which one could write in 2x2 form   
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The energy equation of the reduced bilayer graphene can now be written as  
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The approximation which has been adopted above is related to present-day fabrication 
technologies.  Future advances in technologies might allow us to engineer the various 
coupling parameters in graphene.  It is conceivable that we may be able to pre-design a 
useful Hamiltonian and employ the nanofabrication technologies to realize that desired 
form of Hamiltonian.  The Hamiltonian above has been used to understand the presence of 
topological objects like monopoles in graphene and their associated Berry’s phase which 
may have great implications to electron, or perhaps we may just call them (Dirac) particle 
dynamics or conductance (Novoselov, et al.,2006; Tan, et al, 2010). 

www.intechopen.com



 Physics and Applications of Graphene - Theory 

 

180 

3. Topological zero mode device 

The phenomenon we briefly described in Section 1 requires a particle-antiparticle pair to be 

held apart by an external electrostatic field and yet be strongly correlated.  For Dirac 

electrons the typical energy is )( 2mcO and the corresponding correlation length is the 

Compton wavelength /mc= (Itzykson & Zuber, 1980), implying a restraining electric field of 

the order of 1710 V 1m − , a field far beyond present-day capabilities.  But we may use bilayer 

graphene whose top speed is 300 times smaller than c and the excitation mass one-twentieth 

of the electron’s (Castro Neto et al. 2009).  (As we will explain below, here chiral pairs 

replace particle-antiparticle pairs.)  Then the electric field needed is 10 orders of magnitude 

smaller, or 710 V 1m − , which is accessible with present technology.  Monolayer graphene 

under these circumstances would generate a different mechanism, more akin to the Zener 

breakdown, and quite unrelated to our purpose (Martinez et al. 2010). 
We therefore study a gated bilayer graphene configuration with an impressed voltage kink 
V to provide a restraining potential for a particle and its chiral partner.  Such kinks can be 
produced for instance in a graphene p-n junction (Abanin & Levitov, 2007).   Recently it has 
been shown that such configurations can support zero modes and chiral states in the vicinity 
of the domain wall separating the insulating regions (Martin et al., 2008).  If the bias V(x) in 
the form of a kink is applied between the layers then the motion in the y-direction is that of a 
free particle and the dynamics in the x-direction will be the one of interest.  We will show 
that a charged particle with energy less than the bias will not undergo total reflection as 
expected quantum mechanically but will remain in the vicinity of the kink and can manifest 
itself as charge bound to the kink.  The system turns out to be able to support zero modes, 
occurring always at the same value of the particle’s y-momentum, and the Hall conductivity 
plateaus in its vicinity correspond to those of the graphene monolayer.  Moreover we find 
other bound states as well as scattering states as the energy of the particle is raised above the 
kink strength. All these imply that the kink introduces new and unexpected features into the 
bilayer dynamics which are externally adjustable.  Due to the relativistic and topological 
nature of our results, we expect them to be of general interest in other non-graphene areas of 
investigation, e.g., particle physics (Horava, 2005) and superconductivity (Lu & Yip, 2008).   
As we saw in Section 2 the low-energy Hamiltonian for the graphene bilayer is a 4 ×4 
matrix in the space spanned by the four-component wave function. It can be reduced further 
into a reasonably accurate effective 2 ×2 matrix if we are interested only in the lowest-
energy bands, i.e., when the interlayer hopping between nearest neighbors is much larger 
than the electron energy (measured from zero momentum).  If we model the kink potential 
as an anti-symmetric tanh profile imposed by the electrostatic bias and introduce 
appropriate scales, the effective 2 ×2 wave equation is (Martin et al., 2008; cf. Eq. (12))  
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where r ( 10 ≤≤ r ) denotes the bias and py the particle momentum in the y-direction, e a 

scaled energy (Fig. 1). In this section only e denotes energy. This effective Hamiltonian 

involves the atomic sites )B,(A 21 .  Thus the ‘spinor’ structure of Eq. (13) has nothing to do 

with spin; rather it refers to the electron occupancy at these atomic sites.  The qualification 
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‘chiral’ is thus applied to this case.  We will refer to the equations obtained from Eq. (13) as 

the first and second component equations, respectively.  Formally Eq. (13) can be reduced 

into a single equation because it is clear that one component converts to the other through 

the replacement xx −→ .  Thus, a possible set of solutions to Eq. (13) can be obtained, in 

which their two components are related by x)v(u(x) −±= . Equation (13) has been treated as 

two separate problems, one for Tx))u((u(x),ƹ −= and another for Tx))u((u(x),Φ −−= .  

However, we will not adopt this approach here, since the resulting solutions would appear 

to imply a nonlocal relation between u(x) and u(-x) for the entire range of x: in other words, 

we would obtain differential equations involving u(x) and u(-x) (and similarly for v(x)) 

simultaneously and for every x.  In this system, as defined by Eq. (13), there is no underlying 

symmetry to support such a relation. In the absence of bias (r = 0), the above system can 

easily be solved using local relations. In the presence of bias, which is local as well, there is 

no reason to introduce a nonlocality whereby the dynamics at +x (for given x) is directly 

related to that at –x, and for all x. Thus, we follow an alternative method below, in which 

local relations (i.e. occurring at the same spatial point) between u(x) and v(x) will suffice to 

obtain an exact solution: hence all dynamical relations will connect phenomena at the same 

spatial point.  This point will be reinforced at several places in this section. Hence, our result 

differs from those of Martin et al. (2006). 
 

 
 

Fig. 1. Views of the bilayer system top (left) and side (right) with kink potential V(x) = r tanh x. 

To solve Eq. (13) exactly we introduce the ansatz for 0≥x : 

 ⎟⎟
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⎞
⎜⎜
⎝
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V(x)

U(x)
e

v

u xξ , (14) 

where ξ is a complex number and we replace x with the auxiliary variable xez 2−−= . Our 

focus is principally, though not exclusively, on the intragap solutions, re ≤ , and we give 

explicit expressions for r = 1.  We obtain for the first component of Eq. (13): 

            02
1111 =−+−−+− UV'ξ)p(z)('V'zz)( y , (15) 

where ‘ denotes d/dz. In arriving at Eq. (15) we had imposed the eigenvalue 

relation 0=+−− U)(eVξ)y(p 12 , whose consistency will be verified later. Plugging this 
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relation for U into Eq. (15) we obtain a hypergeometric equation for V(x) alone with the 

solution (Abramowitz & Stegun, 1964) 

              )(12 zc,b,a,FV(x) = , (16) 
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1 , and z)c,b,(a,F12 is the 

Gauss hypergeometric series and the parameters a, b, c depend only on the energy and yp . 

(Useful properties of the hypergeometric equation are listed in the Appendix.)  The second 

equation can be solved similarly: 

       z)C,B,(A,F
e

ξ)(p
V(x)

2
y

12
1−

+
= , (17) 

 ξpC
e
eξ)(pB

e
eξ)(pA yyy ++=−

+
−−+=−

+
+−+= 1),

1
1

1(),
1
1

1(
2
1

2
1 , with corresponding   

eigenvalue relation 01 =−−+ V)(eUξ)y(p 2 . (A technical point is in order: when solving 

the second equation one finds the roles of U and V reversed.  This is a veiled signal that 

locality is crucial because any assumed nonlocal relation, except possibly for overall sign, 

invoked for the first equation would not generally be consistent for the second.) Together 

the two relations yield a consistency condition implying an independent equation 

relating ξ , e and yp : writing ǃiǂξ += , we solve this equation to obtain ǂ(ǃ)  =  

1/221/224 ])()1[(
2

1
yy pep −+−+ .  This ensures the consistency of the ansatz (14) and the 

eigenvalue relations: any dependence on x, U, or V has now been eliminated in favor of an 

algebraic one involving e and yp alone.  Implicit in the above development is the locality of 

all the intervening relations, that is, all dynamical relations between u and v occur at the 

same spatial point x.  The complex conjugates of (16) and (17) are easily seen to be solutions 

of Eq. (15) also so we can form a linear combination of these to arrive at the complete 

( 0≥x ) solution.  Next the above procedure can be repeated for x < 0.  Replacing ξ  with - ξ  

in the ansatz (14) and employing a new auxiliary variable,
x

ey
2−= , we discover that the 

solutions are exactly the same ones (15) and (17) above but with the order reversed and z 

replaced by y.  The numbers ǂ and ǃ are given by the same relation above. (Thus there are 

four solutions of which, for 0≥x  ( 0≤x ), we choose ǂ positive (negative).  There is no such 

restriction on ǃ ).  We summarize these results: corresponding to Eq. (16) 

      0),(12 <= x,c',b',a'FV(x) y  (16a) 
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(ξpb'
e
e

(ξpa' yyy ++=−
+

−+=−
+

++= 1),
1
1

1)(),
1
1

1)(
2
1

2
1 , and to Eq. (17),  
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                    0
1

<
+

−
= xy),,C',B',(A'F

e

ξ)(p
V(x)

y
12

2

, (17a) 

ξpC'
e
eξ)(pB'

e
eξ)(pA' yyy +−=+

−
−−−=+

−
+−−= 1),

1
1

1(),
1
1

1(
2
1

2
1 . Once again the 

eigenvalue relations enforce a local connection between V(x) and U(x).  With these, we have 
evaluated the complete intragap solutions for e < 1.   
A glance at Eq. (17) suggests that it may not be valid for e = 1.  However, on writing the 

eigenvalue relation in the form ξ)/(peξp yy −−=+ 12 , we note that as −→ 1e , both sides 

approach zero.  Employing this result to carry out a limiting procedure on Eq. (17), we 

obtain the e = 1 solution: z),p,pFe yy
xp

p

y

y

1,1/2(1/212
2

1
2 − .  For this solution to remain 

bound for 0≥x we must have 0<yp , which can be verified later once the dispersion 

graphs have been obtained (see Fig. 1). 

There remains the problem of enforcing continuity between the 0≥x and 0≤x solutions. 

Restricting to the first equation, we form the linear combination (x)g>  

)ece(cz)c,b,(a,Fe xiǃxiǃxǂ −− += 2112 , for 0≥x and c1 and c2 complex constants; a similar 

expression, (x)g< , holds for 0≤x with the signs of x reversed, ǂ replaced by ǂ- ,  and with 

coefficients c3 and c4 instead.  As intragap solutions, these functions are normalizable, and 

the coefficients ci are determined by demanding that (x)g> , (x)g< and their first three 

derivatives be continuous at x = 0.  These yield four homogeneous simultaneous equations 
and we use the requirement that the determinant of the system must vanish to derive the 

dispersion relation, )(pee y= . Clearly, the only independent dynamical parameter is the 

energy, e.  The same procedure is repeated for the second equation (parameters a, b, c are 
exchanged with A, B, C and vice versa), in which case we use the label h(x) instead of g(x), 
and we obtain a pair of complete solutions for the two components of Eq. (13), respectively 

which we write in schematic form (for 0≥x ) 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +−
>=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

1

1)/(eξ)(p
(x)g

v(x)

u(x) 2

, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+> )/(eξ)(p

(x)h
1

1
2 . (18) 

The procedure outlined above produced two pairs (18) but there is really only one pair of 

solutions.  Examining these solutions, we notice that one set can be obtained from the other 

by the formal substitution yy pp −→ and ee −→ and multiplying the spinors by yiσ− .   (We 

had also made use of the symmetry of the hypergeometric solutions given in the Appendix.)  

Hence the solutions (18) are really chiral conjugates of the each other.  This can be shown 

formally by transforming Eq. (13) into its chiral conjugate form, wherein the sign of the 

energy and yp are reversed.  First we write Eq. (13) as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−
−

+

v(x)

u(x)
e

v(x)

u(x)

(x)Ǒ
Ǒ(x)

ϕ
ϕ

2

2

 (19) 
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where (x)ϕ denotes the kink potential and ypd/dxǑ ±=± .  Now we multiply both sides by 

yσ  and cast the result in the form 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛−
+

−

v(x)

u(x)
e)

v(x)

u(x)
σ

(x)Ǒ
Ǒ(x)

y
(

ϕ
ϕ

2

2

 (20) 

This tells that T
vu ),(  is conjugate to yσ

T
vu ),( , in the sense that one is obtained from the 

other by the substitution yy pp −→ and ee −→ , consistent with the results above.  By virtue 

of the electron-hole symmetry of the graphene Hamiltonian, this results in the chiral 
symmetry between the solutions.   
Recall that the original graphene Hamiltonian was derived within the tight-binding model 
(Gonzalez et al., 1993).  One can view our system in terms of a set of coupled oscillators, so 

the states T
)1,1( and TT

)1,1()1,1( −− =yiσ represent the two distinct and independent normal 

modes, one being symmetric, the other antisymmetric.  These symmetries are global and 
affect the entire system.  The procedure outlined above to solve Eq. (13) assumes no global 
symmetry.  The conclusion from this comparison is not a relation between u(x) and u(-x) 
(implying nonlocality) but the chiral nature of these solutions (which is local).  This harks 
back at the local ‘spinor’ structure of Eq. (13). 

3.1 Discussion 

We have plotted the dispersion relations )e(pe y= in Fig. 2. Notice the 

yy ppe,e −→−→ symmetry of the curves.  In Fig. 2 (a) the two initial (r = 0) parabolic bands 

of the bilayer have the form 2
ype ±=  and these are separated as the biasing potential grows 

(Fig. 2 (b) and (c)) thus creating a gap between the bands.  The parabolic bands then take the 

form 24 rpe y +±= .  As we will see below these separated bands correspond to over-barrier 

scattering states which do not decay on account of the potential.   For the intragap states, 
two zero modes appear symmetrically about the origin.  A more detailed examination of the 
zero modes in Fig. 2(b) and (c) suggests that they occur at the same py value for any non-zero 

bias 0)≠(r .  This is indeed correct and can be shown explicitly by making use of the method 

presented in Section 3.  We can give for instance the zero-mode wave functions V obtained 
from the first equation for any value of r 
 

cczξ,p,e
ξp

,e
ξp

Fec(x)V y
/iyiǑyxξ0e ++−= −−−−=

> )1( 43

2

/43

2121
π  

                   cczξ,p,e
ξp

,e
ξp

Fec(x)V y
/iyiǑyxξ0e +++= −++−=

< )1/1( 2

2

/2

2123
π

             (21) 

 

where 0.1255±=yp ,  cc denotes the complex conjugate of the function to the left of it and 

ξ is defined in Section 2.  Although there is no r dependence in Eq. (21), we find that the 

expressions for U, namely, )()21 xVξp(x) )(y)( (
r

U <><> ±= ∓ , contain an r-dependence.   
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Fig. 2. Dispersion relations for (a) r = 0, (b) r = ½ and (c) r = 1.  Zero modes occur at e = 0, 

0.1255yp = ± . Note that the e = 1 solution has yp < 0. The brown curves correspond to over-

barrier scattering states.   

The zero modes of our system are not Dirac fermions but chiral modes specific to the 

bilayer.  The fact that these modes occur provided a bias of any strength is present is an 

indication of the topological character of the kink.  That a kink is dynamically necessary is 

clear because the decay of the wave functions as ±∞→x  requires the chiral pair to be close 

to each other near the origin. Each particle of the pair in turn is held in place by this 

electrostatic bias (with opposite signs on both sides of x = 0) along with the interaction with 

its conjugate.  We can check the consistency of the above from a computation of the 

topological charge of the Fermi point.  Writing the Hamiltonian (13) (without e) as σx),p(
GGG

⋅ϕ , 

this topological charge is given by (Volovik, 2003) 
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     ∫ ∂∂= Σ
c

p
b

p
ak

ijk
abc ǗǗǗdSǆǆ

Ǒ
N

ji
ˆˆˆ

8

1
3  (22) 

where Σ is a surface enclosing the origin of the p-plane and may be taken to be two infinite 
planes parallel to the yx pp −  plane, one to the right and the other to the left of the origin 
(the separation between the planes being infinitesimal).  See Fig. 3.  This charge gives the 
difference between the number of right-moving and left-moving zero modes.  Then, N3 = 2, 
since we must sum the contributions from the right side and left sides of Σ .  This is clearly 
consistent with our results.  The existence of the zero modes can be exploited in some 
applications, as we will point out below. 
 

 

pz 

n̂
n̂

px 

py 
px 

py 

Σ

Σ

 

Fig. 3. Two views of the surface Σ with outward normals n̂ shown.  Note that the zp -

separation between planes is non-zero provided 0≠r . The contribution to the integrand 

(22) vanishes as ±∞→yx p,p . 

We can show that the Hamiltonian (13) reduces to the monolayer case in the vicinity of the 

zero mode, i.e., 1<<e .  Take for definiteness U = V and assume U = f g,   f  being the zero-

mode solution.  g is a slowly varying function of e which has the value of 1 at e = 0, and varies 
over a length scale which is much larger than the kink width.  If we substitute U into the Eq. 

(13) we obtain  fg)p(ip yx
2+  2)x yg(ip p f= + +  )gp)f(ipp(ip yxyx ++2  + g)ypxf(ip 2+ .  The 

first term, when combined with the kink potential gfV− , vanishes for the zero mode f. The 

second contains the factor =+ )fp(ip yx  .)( )ec,b,(a,Fe))fi(ǂ(p 2x
dx
dxi

y
−±−+±− 12

βαβ  We can 

neglect the derivative because it will yield an additional factor xe 2− (which is small over the 

length scale of g), while the eigenvalue condition allows us to replace ))i(ǂpy β±−  with 

unity for a zero mode.  Thus the Hamiltonian for g is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

+

0

0

ypxip

ypxip
 correct to )O(e2 , 

which is of the form ⊥⋅ pσ
GG

, where ⊥p
G

 is perpendicular to the zero-mode momentum.  Thus, at 

the vicinity of the zero mode (around e = 0), the Hamiltonian mimics that of monolayer 

graphene, with its energy spectrum having the characteristic N signature (Li & Andrei, 2007; 

Gusynin & Sharapov, 2005).  
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Fig. 4. Wave functions.  (a) Imaginary part of the intragap wave function (unnormalized) for 

r = 1: thick blue (e = 0, yp = 0.1255, i.e. the zero mode); dashed, blue (e = - 0.8, yp  = 1.03); red 

(e = 0.28, yp  = - 0.58).  The real parts are much smaller (about a tenth) than the imaginary 

parts.  (b) Real part of wave functions for the r = 1, e > 1, bound case: dashed blue (e = 1.1, yp  

=  -1.2); red (e = 2.1, yp  = - 1.69); thick blue (e = 2.2, yp  = 1.73). (c) Over-barrier scattering 

wave functions (unnormalized): black (e = 2.5, yp = 1.514); red (e = 2, yp  = 1.316), blue, 

dashed (e = 1.5, yp  = 1.057). The imaginary parts are very small. 

Graphs of the dominant (real or imaginary) part of the wave functions are shown in Fig. 4.  

These figures imply that both the real and imaginary parts of the wave function are 

important.  (By contrast, Martin et al. (2008) only find real wave functions.)  As displayed in 
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Fig. 4, the intragrap states appear to always penetrate into the potential so their maxima are 

found inside it.  Although all the intragap states are always bound, they are not the only 

bound states.  In general, whenever the kinematic inequality 124 −≠ ep  holds, we have 

bound states because in this case what we really have is 124 −> ep : this is always the case 

for the intragap states, but it is also true of the blue and red 1>e spiral arms in Figs. 2(b) 

and (c), a consequence of the fact that not enough of the total energy has been allotted to the 

motion in the x-direction.   For these bound 1>e states we see in Fig. 4 that their maxima 

lie to the left of the origin: these states do not penetrate into the kink as deeply as the 

intragap states do. 

When 1>e  and 124 −= ep , the particles have sufficient energy to overcome the barrier 

and we have the overbarrier scattering case (the particles go ±∞→x ).  The same procedure 

for intragap states can be applied, with the factor xξe− in Eq. (14) excluded since we are 

looking for undamped solutions.  Some wave functions of this type are given in Fig. 4(c). 

One can calculate the transmission and reflection amplitudes for them.  These suggest 

greater transmission than reflection. 

Because any negative energy eigenstate is related to a positive energy eigenstate by a 

unitary transformation, the local density of states )e'ǅ(e(r)Ǚ(r)Ǚǒ(r) e e'e −= ∑ +  is symmetric 

about e = 0 and the negative and positive energy eigenstates contribute equally.  Including 

the zero modes, the conservation of the total number of states implies that the difference in 

densities with and without the kink ǅǒ  is  

  ∫ ⎟
⎠
⎞⎜

⎝
⎛ ∫ +=

−
∞−

0 2
0

2 20 (r)Ǚe)deǅǒ(r,rd  (23) 

The two zero modes are normalized, so the integral of ǅǒ  over energy and space is – 1.   

Taking electron spin into account this means a charge of – 2e and total spin zero for the 

valence band.  If the zero modes are unoccupied, the charge and spin for the kink are, 

respectively, Q = -2e and S = 0; if the zero modes are singly (doubly) occupied, then Q = -e 

(0), S = ½ (0). These serve as the signature of the presence of charge and the confinement of 

the chiral pair in the vicinity of the kink.  Since the zero modes occur in pairs we do not see 

charge fractionalization here (Hou et al., 2007). Moreover, we need not be concerned here 

with a violation of Kramer’s theorem (Su et al., 1980). 

4. Pseudospin orbit coupling (pseudo-SOC) device 

By the Dirac equation, spin orbit coupling can be derived in the vacuum with applied 

electric fields; one thus visualizes that similar effects should arise for the pseudospin of 

graphene particles governed by the Dirac equations. Thus pseudo-spin orbit coupling (Tan 

et al, 2010) can be derived by applying external electric field to a system governed by the 

graphene Hamiltonian. We will start with H3 which is not a comparable form to standard 

Dirac Hamiltoninan.  But by transformation e. g. using a unitary matrix U, one can obtain a 

more compatible form (McCann, E et al, 2006) of H1 
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 (24) 

The transformation which has been performed by U determines the type of pseudo-spin to be 
investigated, e.g. by the above method which results in 1 2 )T(A Bχ =  pseudo-spin is defined by 
the linear superposition of wavefunction amplitude between site A1 and B2. In application to 
particles which mimic Dirac fermions due to material bandstructure, it would be instructive to 
replace the coupling mass term of mc2 for particles in vacuum with a coupling term Δ which 
arises due to material bandstructure but plays the same role as the mass term, as far as the 
Dirac matrix is concerned.  The coupling term Δ gives rise to the energy dispersion where the 
effective mass of particles in the materials can be derived; in other words, particle effective 
mass is a function of Δ but not vice versa.  For monolayer graphene, Δ  vanishes and it can be 
derived from the energy dispersion relation that particles behave like massless Dirac fermions. 
In graphene-like materials, χ can be described as a pseudo-spin which consists of a linear 
combination of waves due to different sub-lattice sites. The above is, however, merely one 
example of graphene-like materials which can also be written as 

 0=⋅
Δ−⋅
⋅Δ

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
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c
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-E

pσ-
pσ-

 (25) 

where in this specific case, 
3

3

0

0

v

a v

π

π +

⎛ ⎞
⎜ ⎟Δ =
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⎝ ⎠

 and  
0

0

t
b t

⎛ ⎞
Δ = ⎜ ⎟

⎝ ⎠
  Multiplying by 0γ to the left, 

one obtains the graphene Hamiltonian comparable in form to the general Dirac equation  

 0
(E - eV ) - c

a
c -(E - eV )

b

χ
θ

Δ ⋅⎛ ⎞ ⎛ ⎞⎜ ⎟ ⋅ =⎜ ⎟⎜ ⎟⋅ + Δ ⎝ ⎠⎝ ⎠

-σ p

σ p
 (26) 

where V is the external potential. 
The above can be written in terms of Dirac matrices as follows 

 0μ
μǄ D R− =  (27) 

where 0 1 0

0 1
γ

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 
0

0

j
j

j

σ
Ǆ

σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

, 
0

0
a

b

R
Ʀ

Δ⎛ ⎞
= ⎜ ⎟−⎝ ⎠
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μ μ μD A= ∂ − = . Multiplying   the 

above to the left with μ
μǄ D R+   yields  
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where j
j A/c 0−∂=E is the electric field.  We provide the above to merely illustrate the close 

connection between the bilayer graphene and the vacuum Dirac Hamiltonian, such that 
useful analogies of pseudo-spin orbit coupling to the vacuum spin orbit coupling can be 
drawn. Thus, to simplify matter, we temporarily disregard the fact that 

3
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0
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a v

π
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⎛ ⎞
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⎜ ⎟
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and
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. Rather we replace  

2
32

2
3

( ) 0

0 ( )
a

v p

v p

⎛ ⎞
⎜ ⎟Δ = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

with ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Δ

2

2
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so that one can write 2
aƦ ƦI=  where 2Ʀ mc= . We make an even more 

drastic assumption that one can write
2

2

0

0
b

mc
ƦI
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⎛ ⎞
⎜ ⎟Δ = =
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⎝ ⎠

.   With this, Eq.(26) can be 

reduced to 

 ǘ
Ʀ-eE

cθ
b ][V−

⋅
=

pσ
 (29) 

where ƦƦƦ ab == ][][ 2 . The relativistic energy equation which could be used to describe 

the analogous effect of pseudo spin orbit coupling, i.e. the coupling of pseudo spin to 

particle momentum in the presence of electric fields, for Dirac fermions in graphene-like 

material systems is thus 

         0)(
][][

)  (
b

2

b

2
2222 =

⎥
⎥
⎦

⎤

⎢
⎢
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⎡
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−−
−⋅

−−
−−− ǘ

ƦeE
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ƦeE

cie
cpƦe-E a pσp EE

VV
V

==
 (30) 

To avoid excessive details into the material science and band structure of graphene, we will 

take the liberty of assuming that the relation II ƦƦƦƦ ba == ;
22 is satisfied in bilayer 

graphene or, at least, can be realized by material engineering.   
We will now investigate the effects of pseudo SO coupling on the pseudo spin χ . As is well-

known, a particle in a SO coupling system experiences an effective magnetic field 

E×= pBƧ which couples directly to its momentum vector, thus preserving time-reversal 

symmetry. In the technology-relevant field of spintronics, such ƧB  can be used to control 

the precession of spin when coupled with appropriate momentum constraints (e.g. single 
mode one-dimensional ballistic transport), similar to gate bias-controlled spin precession via 
Rashba or Dresselhaus SO coupling in the so-called Datta-Das spin transistor (Supriyo, 
Datta et al, 1989).  On the other hand, spin relaxation is related to electron precession about 

ƧB (D’yakonov, M.I. et al, 1971), which suggests that pseudospin relaxation can be analyzed 

in analogy to spin relaxation under spin orbit coupling, but in the relativistic limit.  In 

typical graphene-like materials, ][][ 2
ba ƦƦƦ ==  is small (10-300 meV for massive 

fermion, 0 meV for massless fermion).  Since kinetic energy KE << Δ (5 order of magnitude 
smaller) for the non-relativistic approximation to apply, the corresponding number of non-
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relativistic particles is very small.  For particles confined to energy range 1-2 order of 

magnitude smaller than Ʀ , we consider these particles as relativistic; this prompts the need 
to analyze the pseudo SO effect in the relativistic limit. One could visualize the pseudo spin 
precessing about an effective magnetic field which could only be “seen” by the pseudo spin, 

at a precessional frequency which could be deduced from ])/(2
bƦEep [−= cE==ω .  With 

the average velocity given by
][ 2

a
22

2

Ʀcp

pc
μ ǘvǘ

+
= , the precession angle over the Bloch 

sphere of the pseudospin, for a unit of particle travel length in the relativistic regime is given 
by: 
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ƺ

b

a
22

μ ][

])[ 2

−

+
==
=
E

                                   (31)
  

A series of pseudospin relaxation has been predicted and analyzed for different energy 

regimes.  In summary, it has been studied that Dirac particles in the energy range 

of 1≈pc meV (which although is relatively small compared to the energy gap of ≈Ʀ  200 – 

300 meV, it is large enough to be within the relativistic regime), Eq. (31) reduces 

to
3
cp =
Ee

l

ƺ Δ
= .  Increasing particle’s momentum reduces the precessional angle for a fixed 

travel length.  By contrast, in the ultra-relativistic limit (i.e. massless Dirac particle), Eq.(31) 

reduces to c/e =E=Ω l/ , which predicts that massless Dirac particle has a constant l/Ω . 

This can be understood as typically, massless particle travels at the effective speed of light in 

the medium. In this limit, pseudo spin relaxation becomes independent of particle 

momentum. In the non-relativistic limit, where 

εχχ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×⋅++ )(

Ʀ
ec

Ve
2m

p
pσ E

2

22

4

=
, it is found that pǘHǘ nr

SC E2

2

4Δ
= ce= . The average 

particle velocity can be approximated as p/mǘvǘ μ = , and in a similar manner, the 

precession angleΩ  per unit travelling distance is given by Δ=Ω 4/eEl/ , which is 

independent of particle momentum. Therefore in both non-relativistic and ultra-relativistic 

limits, l/Ω is independent of the particle momentum. But in the former, l/Ω depends 

inversely onΔ ; such a dependence obviously cannot exist in the ultra-relativistic limit 

where the coupling mass term vanishes.   

Based on the above understanding, we briefly propose that a nanoscale device which 

consists of a graphene ring and a charged nano-sized dot at the centre would be a suitable 

platform to utilize the pseudospin orbit coupling of the graphene Dirac particles. The 

pseudospin orbit strength can be calculated in the relativistic and low energy limits in 

analogy to spin orbit coupling in semiconductors.  Pseudospin orbit coupling strength can 

be enhanced by accelerating the Dirac particles around the ring, due to the small energy gap 

in graphene and the large radial electric field due to the charged quantum dot. 
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5.   Conclusions 

The zero modes (21) may find possible application in two ways: (a) one can take advantage 

of the relation (18) applied to the zero modes as a switching indicator and (b) in so far as 

zero modes are of two types associated with the chiral functions T
)1,1( and T

)1,1(− , they 

might store information much as binary bits do.  The topological properties of the charge 

and spin of these zero modes confer a certain degree of robustness to these binary states. 

Even the presence of some disorder would not alter this conclusion provided the kink 

retains its topological character.  An indication of this is that the zero modes appear even for 

small r value.  Further application of the zero modes can be derived from utilizing the valley 

degree of freedom (or “valleytronics” (Rycerz et al., 2007), which can be modified along the 

kink direction.  Our results would also be of interest in brane theory (Horava, 2005) and 

superconductivity (Lu & Yip, 2008).  We also describe another relativistic effect in graphene, 

namely, pseudospin orbit coupling (pseudo-SOC) effect.  Potentially the pseudo-SOC effect 

can be used for pseudospin field effect transistor (FET) in much the same way that the 

physical spin orbit coupling is used for semiconductor spin-FET. The pseudospin orbit 

coupling strength has to be further enhanced for it to be comparable to the conventional 

semiconductor-based Rashba effect. Future work which focuses on modifying the graphene 

structure can potentially enhance this useful pseudo-SOC effect within experimentally 

accessible parameters.  

The support of NRF/NUS under Grants Nos. R-143-000-357-281 and R-263-000-482-112 are 

gratefully acknowledged. 

Appendix  

The hypergeometric differential equation is (in general z is complex) 

0]1[(1
2

2

=−++−+− wab
dz

dw
)zb(ac

dz

wd
z)z , 

whose solution is the Gauss series 

n!
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with circle of convergence on the unit circle 1=z .  The series is not defined when c = 0 or a 

negative integer.  We also have applied the useful differential relation 

)1111212 z,c,b,(aFz)c,b,(a,F
c

ab

dz

d
+++=  

When c – a – b is an integer (as in overbarrier scattering), extra care is required to solve the 
hypergeometric equation.  In this case the following is true: two linearly independent 
solutions of 

0(1(1(1
2

1
=−−+− − wqp)z)z)z

dz

dw

dz

wd

2

2

, 
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are the pair 

z)p,),2qp(p),2qp(p(F −−−−+− − 122
12 2

1
2
1 , 

z)p,),2qp(p),2qp(p(Fz p +−+−−− 1)( 22
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