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1. Introduction

Graphene, thanks to its extraordinary electronic and mechanical properties, is a potential
candidate for a number of applications. Being one-atom thick, it is extremely sensitive to the
presence of adsorbed atoms and molecules (either physisorbed or chemisorbed on the surface)
and, more generally, to defects such as vacancies, holes and/or substitutional dopants. This
property, apart from being directly usable in molecular sensor devices, can also be employed
to tune graphene electronic properties.
In this Chapter we review that basic features of atomic-scale defects that can be useful for
material design. After a brief introduction (Section 2) of the main properties determining
the peculiar electronic structure of graphene, and the experimental realisation of defective
substrates (Section 3), we focus in Section 4 on isolated “pz defects” such as atom vacancies
or adsorbed species which covalently bind carbon atoms. In particular, we discuss in
detail the formation of so-called midgap states and the microscopically ordered magnetic
structures which give rise to. In Section 5 we analyse the electronic structure of multiple
defective graphene substrates and show, in particular, how it is possible to use simple rules
to predict the presence of magnetic moments and midgap states by looking at the defect
locations on the lattice. Subsequently, we analyse the more complicated situation where the
electronic structure, as modified by the presence of some defects, affects chemical reactivity
of the substrate towards adsorption (chemisorption) of atomic/molecular species, leading
to a preferential sticking on specific lattice positions. In Section 6 we consider the reverse
problem, that is how to use defects (vacancies, adsorbed species, substitutional dopants,
etc..) to engineer graphene electronic properties. This is possible nowadays since recent
advances in lithographic and self-assembling techniques allow one to produce well-ordered
structures and thus ‘tune’ the electronic bands. In this context, we show for instance how it is
possible to open a band-gap in graphene and preserve at the same time the pseudo-relativistic
behaviour of its charge carriers. We further analyse the case of substitutional dopants
(group IIIA/VA elements) which, if periodically arranged, may show a gapped quasi-conical
structure corresponding to massive Dirac carriers. All these possible structures might find
important technological applications in the development of novel graphene-based logic
transistors.
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Fig. 1. Left panel: graphene unit cell (a1, a2), along with the vectors joining nearest- and
next-to nearest neighbours, δi and δ′i respectively. Also indicated the position vectors δA and
δB for A and B sites. The Wigner-Seitz cell is one the hexagons. Right: first Brillouin zone
with the highest symmetry point indicated. The arrows are the reciprocal lattice vectors.

2. The π-electron gas

Carbon atoms in graphene are arranged to form a honeycomb lattice tightly held by strong
σ bonds between sp2 orbitals which form occupied σ bands at energies well below the Fermi
level. The remaining valence electrons (one for each carbon atom) populate a π band which
localises above and below the lattice with a node on the surface plane. An ‘antibonding’ π∗

band is empty when the system is at T = 0 K and charge-neutral, but can easily be occupied,
e.g. by applying a gate potential in a typical field-effect transistor (FET) configuration. Such
π/π∗ band system governs the low-energy (say up to ∼ 2 eV) behaviour of charge carriers in
graphene and is responsible for most of the extraordinary properties of this material. This “π
cloud” is the focus of this section, where we introduce the main theoretical tools used in this
Chapter.

2.1 Tight-binding Hamiltonian

In building up a simple, one-electron model for these π electrons only one writes the wave
function as a linear combination of two Wannier basis functions built with pz orbitals, one for
each sublattice (Wallace, 1947),

ψk(r) = cAψA
k (r) + cBψB

k(r) (1)

ψA
k (r) =

1√
N

∑
j∈S

e−ikr pz(r − RA
j ) ψB

k(r) =
1√
N

∑
j∈S

e−ikr pz(r − RB
j ) (2)

where the sums run over lattice vectors Rj within a large supercell S including N graphene
unit cells, RA

j = Rj + δA is the position of A site in the j-th cell, and analogously for RB
j .

Equivalently, in second-quantized form

ĤTB = −t1 ∑
<i,j>

∑
σ

(

â†
i,σ b̂j,σ + h.c.

)

− t2 ∑
<<i,j>>

∑
σ

â†
i,σ âj,σ − t2 ∑

<<i,j>>

∑
σ

b̂†
i,σ b̂j,σ + etc. (3)

where â†
i,σ (b̂†

i,σ) creates an electron with spin σ =↑, ↓ on the i-th lattice site of the A(B)
sublattice, the first two sums run over nearest neighbouring sites (t1 is the hopping energy)
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and the second ones over sites which are nearest neighbours in each sublattice (t2 is the
corresponding hopping) 1. In absence of magnetic fields the hoppings can be chosen real,
and the accepted value for t1 is ∼ 2.7 eV while |t2| << t1 depends on the parametrization
used. Neglecting overlap between orbitals on different C atoms, the usual anticommutation
rules [ĉ†

i,σ, ĉ′ j,σ′ ]+ = δc,c′δi,jδσ,σ′ (c = a, b) hold; hence, introducing the Fourier transformed
operators âk,σ according to

âi,σ =
1√
N

∑
k∈BZ

e−ikRi âk,σ (4)

where the sum runs over k points in the first Brillouin zone (BZ) (analogously for b̂k,σ) the
above Hamiltonian can be rewritten as

ĤTB = −t1 ∑
k,σ

f (k)â†
k,σ b̂k,σ + h.c. − t2 ∑

k,σ
g(k)â†

k,σ âk,σ − t2 ∑
k,σ

g(k)b̂†
k,σ b̂k,σ (5)

or, in matrix notation,

ĤTB = −∑
k,σ

[

â†
k,σ, b̂†

k,σ

]

[

t2g(k) t1 f (k)
t1 f ∗(k) t2g(k)

] [

âk,σ
b̂k,σ

]

Here f (k) and g(k) are ‘structure factors’ for the nearest- and next-nearest neighbours,

f (k) = ∑
i=1,3

e−ikδi

g(k) = ∑
i=1,6

e−ikδ
′
i

Diagonalization is trivial and gives the energy bands,

ǫ(k)± = −t2g(k) ± t1| f (k)| = −t2g(k) ± t1

√

3 + g(k) (6)

where | f (k)|2 = 3 + g(k) has been used and the minus (plus) sign solution correspond to the
π (π∗) band (see e.g. Bena & Montambaux (2009); Castro Neto et al. (2009); Wallace (1947)).
Close to the K(K′) point | f (K + q)|2 ∼ v2

Fq2 and the dispersion is conical, giving rise to the

so-called Dirac cones. Here vF =
√

3
2 a = 3

2 d, where d is the carbon-carbon distance, ∼ 1.42
Å, and a the lattice constant. Consequently, the density-of-states (DOS) is linearly vanishing
at zero energy, ρ(ǫ) ∼ 2|ǫ|/π

√
3t2, one of the fingerprints of massless Dirac electrons. Its

vanishing value challenges one’s intuition since experiments find a finite, non-zero minimum
conductivity at this energy (Peres, 2010).
Albeit simple, this tight-binding model is accurate enough to correctly represent graphene π
bands, at least close to the high symmetry points K and K′. The latter control the low-energy
physics of charge carriers, and are the source of the exceptional interest in graphene. If only
nearest-neighbours interaction is allowed the two sublattices form two disjoint sets where
A-type sites connect to B-type sites only and vice versa. The Hamiltonians is said bipartitic
and displays an interesting symmetry: for each non-zero energy level ǫ and eigenfunction

1 Notice that the on-site energies (the energy of carbon pz orbitals) have been set equal to zero, but
additional terms of the form ∑i ǫi ĉ

†
i ĉi would appear if graphene were subjected to an inhomogeneous

external potential.
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Fig. 2. Left panel: Point symmetry elements in graphene lattice. Reflection planes orthogonal
to the page, σv and σd, are replicated by the six-fold rotation axis C6, along with the two-fold
rotation axis on the page plane, C2. I is the inversion center, at the center of the Wigner-Seitz
cell (solid line). The page plane is, of course, a reflection plane (σh). Right panel: symmetry
elements of the k-group at the K point (D3h). Black dots mark the K point and its images.

|ψ+〉 = cA |A〉 + cB |B〉 (where |A〉/|B〉 is non-zero on A/B lattice sites only), there exists a
‘conjugate’ level with energy −ǫ and wavefunction |ψ−〉 = cA |A〉 − cB |B〉. This is called
electron-hole (e − h) symmetry since at half-filling (as it is case of graphene with one electron
per site), the Fermi level lies at zero energy, and the above symmetry relates electron and
holes. For a proof, just apply a phase-change to one of the two sets of sublattices states 2, e.g.
b̂i,σ → −b̂i,σ, as this converts H into −H.
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Fig. 3. Left panel: point-symmetry classification of Bloch states in graphene. k-groups are
color coded as indicated. Right panel: symmetry labels for graphene electronic states on the
highest-symmetry lines of the BZ.

Electron-hole symmetry, as we shall see in the following, plays an important role in
graphene, even if it holds only approximately (i.e. with nearest-neighbour interaction only
and neglecting orbital overlap). Here we just notice that, because of such symmetry, the

2 Interestingly, this operation corresponds to an operator π̂, π̂ĉi,σ = (−)τ ĉi,σπ̂ (τ = 1, 2 for c = a, b),
which reduces to the z component of the pseudospin in spinor notation.
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band-structure is expected to have a gap at the Fermi level unless there are specific reasons
for having energy levels exactly at zero. As we now show, the specific reason is provided by
the spatial symmetry of the substrate.
Graphene lattice is highly symmetric. Its Wigner-Seitz unit cell has the same point symmetry
of benzene, namely it belongs to the D6h point group, see fig.2, which is the point group for
symmetry operations in real-space. For Bloch electronic states with k-vector k, symmetry
is reduced to that subgroup of D6h which either leaves k invariant or transform it into
one its images, i.e. k → k + G with G a reciprocal lattice vector (Mirman, 1999). Such
subgroup is known as k-group at k, G(k), and determines the possible symmetry of the
electronic states. For instance, at the K point the k-group is D3h since only three-fold
rotation axes and σd planes transform the K images into themselves 3. A full analysis of
the symmetry properties of Bloch electrons is given in fig.3, left panel, where the k-groups
are color-coded, grey for Cs, black for C2v, green for D2h, blue for D3h and red for D6h. The
main point here is that graphene is sufficiently symmetric that allows for k-groups supporting
two-dimensional irreducible representations (E irreps), namely D6h at Γ and D3h at K, K′. As
spatial symmetry is (almost) compatible with e − h symmetry, a zero energy state results
whenever the electronic wavefunctions span a two-dimensional irreducible representation
(odd in number, in general), i.e. they give rise to a doubly-degenerate level. This is exactly
the case of the K (K′) point, where Wannier functions built with pz orbitals of the A and
B sublattice span the E′′ irrep of the above D3h k-group. Notice also that this symmetry
argument is enough to explain the conical dispersion of the energy at the K (K′) point which
makes graphene so attractive: without an inversion center, degeneracy is lifted already at first
order in k · p perturbation theory when moving away from the BZ corners.
While spatial symmetry is exact, e − h symmetry holds in the nearest-neighbour
approximation only. Nevertheless, since inclusion of higher order hopping terms does not
modify the level ordering (i.e. the minimum of the π∗ band lies always above the top of the
π band) the Fermi level at charge neutrality matches exactly the energy where the E irrep is
found (called Dirac point as it is the cone apex).

2.2 Hubbard Hamiltonian

The tight-binding (TB) Hamiltonian is a model in which each electron moves independently
from the others. Despite it represents a good approximation for graphene energy spectrum,
such a simple picture will necessarily fail in computing spin properties in all but the simplest
situations. A simple way to include electron-electron interactions is given by the Hubbard
model

Ĥ = ĤTB + U ∑
i

n̂i,↑n̂i,↓ (7)

where ĤTB is the tight-binding Hamiltonian of eq.3, the sum runs over all carbon sites and
n̂i,σ = ĉ†

i,σ ĉi,σ are the corresponding number operators. This Hamiltonian combines the
tendency of electrons to delocalize onto the lattice due to their kinetic (hopping) energy
together with an “on-site” Coulomb repulsion that tends (for U > 0) to localize them to
minimize double orbital occupation.
The Hubbard model is a very useful tool for the study of magnetism in complex materials.

3 The remaining symmetry elements determine the so-called star of the given k point, which is the set of
points generated by these elements once applied to k. Such set of physically distinct points in k space
are degenerate in energy; this is the case of K′ and K, for instance, since they belong to the star of each
other.
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It has long been used in the chemical community4 -and proved to be rather accurate for
such systems- to investigate excitation spectra in polycyclic aromatic hydrocarbons (today,
graphene dots). Though simple, the model requires quite a large effort for its solution.
Therefore, one often resorts to its mean-field approximation,

Ĥm f = ĤTB + U ∑
i

n̂i,↑ < n̂i,↓ > +U ∑
i

< n̂i,↑ > n̂i,↓ − U ∑
i

< n̂i,↑ >< n̂i,↓ > (8)

where the average occupation number of one spin-species at given site tunes an effective
on-site energy for the other spin-species, e.g. ǫ

e f f
i,↑ = +U < n̂i,↓ >. This is essentially

equivalent to an (unrestricted) Hartree-Fock approach to the π electrons and is useful, as
compared with density functional theory (DFT) methods applied to the exact Hamiltonian, to
study very large systems, of dimension comparable to those experimentally realized. Though
we will not solve the Hubbard model in the following, there are some exact, analytic results
that can be obtained from it and that turn out to be an important tool in discussing defects in
graphene.

2.3 Valence bond picture

An alternative, easy-to-use way of looking at graphene electronic structure is provided by the
‘chemical picture’. With this we mean the traditional picture of chemical bonds as given by
the Lewis structures and modified to account for the ‘chemical resonance’. In this picture,
electrons are mostly localized on atomic orbitals (usually hybridzed) of the atoms forming
the molecule, and couple in singlet pairs to form bonds and lone-pairs. For carbon atoms
in graphene the three sp2 orbitals (with one electron each) are singlet-coupled with electrons
in sp2 orbitals of neighbouring sites. The remaining electron (the one described by the TB
Hamiltonian above) can couple with its counterpart of one of the three neighbours. The state
of the system is a superposition of these different ways of binding, and the system gains
energy from such a resonance phenomenon.
This naïve picture finds its root in the Valence Bond (VB) theory of chemical bond, which
developed from the Heitler-London study of the H2 molecule, soon after the foundation of
quantum mechanics. The theory, as intensively pushed forward by Slater and Pauling, is
a practical way of looking at the chemical bond and at the bond-breaking, bond-forming
processes which are essential for chemical reactivity. It can also be turned into a variational
method for the many-electron problem which uses a correlated wavefunction ansatz and
captures the important part of the electron correlation 5(Cooper, 2002; Cooper et al., 1987;
Raimondi et al., 1985; Shaik & Hiberty, 2007). In many respects, it has to be considered
complementary to the Molecular Orbital (MO) approach, though the latter proved to be more
efficient.
Valence Bond theory focuses on spin and builds the singlet wavefunction of an
even-numbered ground-state molecule as a ‘product’ of singlet pairs, one for each bond
(pairs of orbitals), thereby identifying a chemical formula. For less standard species such
as graphene, different products are equally likely and the correct wavefunction is the linear
combinations of all the possible structures. For instance, let us look at the benzene molecule

4 In the chemical community is dubbed Parisier-Parr-Pople approximation, after Pariser-Parr and Pople
who first introduced it in the early fifties.

5 This is so because even the simplest VB wavefunctions can be re-written as linear combinations of Slater
determinants, and include the so-called ‘static’ correlation. The latter is essential for describing bond
formation and near-degeneracies; in extended systems is responsible for Mott transitions.
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Fig. 4. The five possible perfect pairing Rumer diagrams for the benzene molecule with their
correspondence with Kekulé (1-2) and Dewar (3-5) resonance structures.

as prototypical case of aromatic compounds. Considering only the six π electrons localized
in their respective pz orbitals, the possible linearly independent (“perfect pairing”) functions
can be schematically depicted as in figure 4; for six electron and an overall singlet state there
are five couplings6. In the graphical representation of Fig.4, known as Rumer diagrams, one
represents each atomic center with a dot and uses a line for singlet coupling between them.
The chemical picture (bottom row of the same figure) uses only the 2 Kekulé structures on
the left, since the 3 Dewar structures gives a negligible contribution to the energy, as can be
guessed from the bond pattern.
Notice that VB theory is closely related to the Hubbard model discussed in the previous
section: the atomic orbitals housing the electrons need not be those of the free atoms. If they
are ’polarized’ by the environment (e.g. they are linear combinations of free-atomic orbitals)
the VB ansatz accounts both for localization and band-like behaviour, as in the Hubbard
model. It is not hard to show, indeed, that the Hubbard model for the H2 molecule can
be obtained from a simple7 VB ansatz to the two-electron wavefunction. In the following
we will make a qualitative use of this chemical picture, as it provides insights into defect
formation and properties; see also Wassmann et al. (2010) for its role in interpreting details of
STM pictures.

3. Defect formation

In this Section we describe defect formation8. As we shall see in the following, even though
vacancies and adatoms turn out to have very similar effects on the π electron system, we
distinguish them here according to their preparation methods, i.e. high (e−, ions, etc.) vs. low
(neutrals) energy beams. The reason is that only in the first case defects can be considered
randomly arranged. Adatoms at all but very low concentration tend to cluster on the surface,
and understanding this phenomenon requires knowledge of how the electronic structure of
the substrate is modified upon formation of the very first defects.
Notice, however, that defects are also naturally present in graphene as in any common

6 The number of linearly independent spin-function for N electrons in the S spin state, usually denoted as
f N
S , can be easily obtained by angular momentum coupling rules. The properties of the corresponding

spin spaces stem from their deep connection to the group of permutations of N objects.
7 It is enough to consider the so-called Coulson-Fisher wavefunction.
8 With this we mean point defects, i.e. adatoms, substituted or displaced atoms. It should be noticed,

however, that other defects may also be important for the transport properties.
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material. Adatoms as hydrogen or hydrocarbons, for instance, can be introduced by
the preparation method, while other point defects affecting transport properties, e.g.
charge-impurities, local potentials, etc., may result from imperfections on the substrates where
graphene is accommodated.

3.1 Electron and ion bombardment

The irradiation by high energy particles is the main tool for creating defects in graphene
and in other carbon nanostructures. When the projectile particle impinges on the structure
it transfers energy to the lattice. In bulk materials (e.g. in graphite) energy dissipation is
rather effective, up to eventually stop the projectile, and it occurs through nuclear and electronic
stopping mechanisms. Nuclear stopping is due to the collisions between the projectile
and the carbon nuclei, an essentially classical process governed by momentum transfer and
Coulomb interaction. On the other hand, (inelastic) electronic stopping occurs by the many
possible electron transitions in the material, hence promotion into conduction band (hot
electrons), ionizations, but also through plasmon excitations, photoemissions, etc. The relative
importance of the two mechanisms depends on the beam energy, on the projectile mass
and on the electronic structure of the target material. Nevertheless a microscopic theory of
energy dissipation in nanostructures is still under study since the models developed for bulk
materials cannot be easily applied in a reduced dimensionality material such as graphene
(Krasheninnikov & Nordlund, 2010).
The mechanism for the defect formation has been studied intensively in the last decade.
In brief, when the energy transferred to an atom is larger than the so-called displacement
threshold (∼20 eV in case of graphite) this can leave its equilibrium position and move trough
the bulk to form, for instance, a Frenkel pair or, for single layer graphene, a vacancy. Large
ions can produce multiple vacancies up to small holes in the lattice depending on their size.
Electron beams produced in transmission electron microscopes (TEM) can instead be focused
down to scales comparable to the carbon-carbon distance, giving a precise control of the
induced damage up to form single vacancies. Moreover TEMs allow a real-time imaging of
the damage process and of the chemical reaction that follows the vacancies formation (Meyer
et al., 2008; 2010).
The formation a single vacancy in graphene leaves three σ dangling bonds and it removes a
π electron. The first span a low-energy, one-dimensional irreducible representation (A irrep
in the following) of the (local) D3h point group and an E irrep. Therefore, the ground-state
is degenerate and undergoes a Jahn-Teller distortion: the closure of two dangling bonds
to form a pentagon, with an energy gain of about 0.2 eV. The strain induced by the other
hexagons in the lattice prevents further distortions of the third unsaturated atom out of plane
(El-Barbary et al., 2003) and the final magnetic moment for such a structure has been reported
to be between 1.0 and 1.5 μB (Lehtinen et al., 2004; Yazyev & Helm, 2007), localized on the
unpaired site. When exposed to a hydrogen flux, the vacancy rapidly saturates its dangling
bonds, with H atoms pointing slightly out of the graphene plane (Lehtinen et al., 2004).
In the case of neutral-atom bombardment, the projectile can also react to form a covalent bond
with a carbon atom. This is what happens by irradiating samples with low energies hydrogen
atoms. It has been shown that at very low densities the chemisorbed H atom defect produces
STM images very similar to the single vacancy case. As already mentioned, at higher densities
H atoms tend instead to cluster in dimers or larger structures due to electronic effects that will
be discussed in the following. Nevertheless, when considering π electrons only, vacancy and
singly-bond chemisorbed species are equivalent, since a single electron is removed from the

52 Physics and Applications of Graphene - Theory

www.intechopen.com



Diabatic path

Adiabatic path

Fig. 5. Left Panel: chemisorption curves for a H atom on a graphene top site as obtained from
periodic DFT calculations using a 2x2 supercell. In the adiabatic path (black) the carbon atom
is allowed to relax at each C-H distance, while in the diabatic path (blue) the top site is kept
fixed in the puckered geometry. z is the adsorbate height on the surface. The inset on the
bottom shows the equilibrium geometry. Right panel: map of potential energy surface as a
function of the heights of H and C atoms above the surface, for a collinear geometry. Also
indicated the diabatic and adiabatic paths. Units are eV and Å.

aromatic network of graphene. As an example, chemisorption of a single H atom is detailed
in the following section.

3.2 Sticking of atomic and molecular species

A hydrogen atom impinging on graphene with a low collision energy can either physisorb
or chemisorb. The physisorption regime has long been probed with the help of
selective-adsorption resonances in H atom scattering off graphite (Ghio et al., 1980). The
extrapolated value for the physisorption binding energy (∼40 meV) to a single layer is in very
good agreement with recent theoretical studies (Bonfanti et al., 2007). Physisorbed species
are highly mobile and easily desorb from the surface since they couple only weakly with the
substrate. For this reason, chemisorption turns to be more interesting for graphene electronic
structure engineering.

Chemisorption of single H atoms on graphite has been studied since the first theoretical
works of Jeloaica & Sidis (1999) and Sha & Jackson (2002), who first showed that it indeed
occurs if the substrate is allowed to relax. Among the four possible adsorption sites the
hollow and bridge were found not binding while the two kinds of atop sites (with or without an
carbon atom on the layer underneath for graphite) give essentially the same behaviour, since
graphene layers in graphite lay ∼ 3.4 Å apart. This implies that the (surface) chemistry of
graphene is very similar to that of graphite.
Adsorption on the top site induces a surface reconstruction (‘puckering’). Such a
reconstruction consists in the outward motion of the carbon atom beneath the adsorbed
hydrogen, and occurs as a consequence of sp2 − sp3 re-hybridization of the carbon valence
orbitals needed to form the CH bond. The re-hybridization induces a change in geometry
of the substrate site, from a planar (sp2) to a tetrahedral (sp3) form, thereby leading to the
surface puckering. The energy required for such a process, defined as the energy difference
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between the relaxed and the puckered configuration, is substantial (∼ 0.8 eV) and this explains
why binding energies to graphene are typically smaller than for other carbon species. If the
graphene layer is kept flat the carbon - hydrogen bond is metastable only (Casolo et al., 2010;
Sha & Jackson, 2002), while allowing surface relaxation chemisorption becomes an activated
process with stable products (∼ 0.80 eV).
When the hydrogen atom collides on a carbon site already puckered, i.e. already in the
sp3 form, chemisorption is a barrierless process. Otherwise, following an adiabatic path
(hence allowing the carbon atom relaxation to its equilibrium position at every point along
the reaction coordinate) an energy barrier ∼0.2 eV high is found, as a consequence of the
re-hybridization. These adsorption curves are shown in fig.5. The barrier (which is also
present when the substrate is kept planar) has an important, purely electronic origin. Indeed,
it has been shown (Bonfanti et al., 2008) that it results from an avoided crossing between
a repulsive interaction with the Kekulé-like ground-state and an attractive interaction with
the low-lying, Dewar-like excited state (see Fig.4 in Casolo et al. (2009a)). This can be nicely
understood in terms of the chemical picture above since the Kekulé-like structures do not have
unpaired electrons which can readily couple with that of the incoming H atom.
The overall binding picture of H atoms has found substantial experimental proof for graphite
surfaces. Hot hydrogen atoms produced by dissociating H2 molecules at ∼ 2000 K are
required to overcome the barrier and observe sticking. Thus, chemisorption is under kinetic
control9, in marked contrast with vacancy formation through e−/ion bombardment discussed
above. Indeed, as we show below, H atoms do not adsorb completely random on the surface.
A number of TPD, AES, EELS and HREELS spectroscopy data (Andree et al., 2006; Güttler
et al., 2004a;b; Zecho et al., 2004; 2002) is available, along with detailed kinetic Monte Carlo
simulations (Cuppen & Hornekær, 2008; Gavardi et al., 2009) of TP desorption curves and
accurate studies of vibrational relaxation dynamics (Sakong & Kratzer, 2010) and reaction
dynamics to form H2 (Casolo et al., 2009b; Jackson & Lemoine, 2001; Martinazzo & Tantardini,
2005; 2006a;b; Morisset et al., 2004; 2005). Notice that even though we focused here on
adsorption of H atoms the same holds for other simple, monovalent chemical species.

4. Low density: π-defect structure

4.1 The appearance of midgap state

The effect of atomic scale defects in graphite, and later on in graphene, has been
experimentally studied since the late eighties, when scanning tunneling microscopy (STM)
allowed to capture images on solid surfaces at atomic scale resolution. It appeared
immediately that when a vacancy was created by irradiating the sample, a bright

√
3x
√

3R30◦

charge density reconstruction appears (Mizes & Foster, 1989; Ruffieux et al., 2000; Ugeda et al.,
2010).
A carbon vacancy or a defect in the π-network due to a monovalent chemisorbed species
creates in graphene an imbalance between the number of sites in each sublattices. This
lowers the overall lattice symmetry, up to eventually remove the Dirac cones and open a
band gap. Looking at the tight-binding Hamiltoninan in equation 3 the introduction of a
π-defect in the graphene lattice reads as the removal of the basis function corresponding
to the defect site, and the system eigenstates become necessarily odd-numbered. Therefore,
in the nearest-neighbour approximation, because of the electron-hole symmetry, one of the
eigenvalues in the energy spectrum necessarily lies at the Fermi level. This zero-energy state

9 H diffusion is largely impeded by electronic/geometrical effects, see below.
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is a singly occupied molecular orbital called midgap state, even when a gap is not really
present. When relaxing the nearest-neighbour approximation such states move from the
Fermi level, but remain close to it. Their presence is important for the transport properties
being responsible for resonant scattering mechanisms.
The appearance of midgap states in bipartitic systems has been intensively studied in solid
state physics because of the implications they have for the appearance of magnetism. Inui et
al. (Inui et al., 1994) formulated a useful theorem for bipartitic tight-binding models with a
sublattice imbalance. According to their result, in any bipartite lattice in which the numbers of
sublattices sites NA and NB are not equal, there are at least η = |nA − nB| linearly independent
eigenfunctions of the Hamiltonian at zero energy, all with null amplitudes on the minority
sublattice sites. The proof is simple: for let NA > NB and |ψ〉 = ∑i αi |ai〉 be a trial solution
at zero energy. The coefficients αi need to satisfy ∑i 〈bj|H|ai〉 αi = 0 for j = 1, ..NB which is a
set of NB equations for the NA > NB coefficients, with η linearly independent solutions. This
also shows that ψ’s localize on the A lattice sites.
Analogous results have been already known in hydrocarbon chemistry for some time. The
tight-binding approach described above has been used for decades in quantum chemistry
to study aromatic hydrocarbons, under the name of Hückel method. The mathematical
properties of the Hückel Hamiltonian have been formalized in a series of theorems and
corollaries in a famous book of Dewar (Dewar, 1969). Bipartite lattices were listed there as
“alternant” hydrocarbons, and the emergence of midgap states formally predicted in case of
odd-numbered alternant hydrocarbons.
Calculations, both at tight-binding and at higher levels of theory (DFT), confirm these
expectations: in graphene the zero-energy states originated in this way correspond to
semilocalized modes around the defect which decay slowly with the distance, i.e. with a
r−1 power law (Pereira et al., 2006; 2008), a result which has been recently confirmed by
experiments (Ugeda et al., 2010). Pereira et al. (2008) performed a comprehensive analysis
of the effect low-density defects have on the graphene DOS, by using numerical tight-binding
calculations for ∼ 4x106 lattice sites and analytic results. Analogous results have been found
in DFT studies10 of isolated vacancies (Yazyev & Helm, 2007) and adatoms (Boukhvalov et al.,
2008; Casolo et al., 2009a).

4.2 Chemical resonance formula

In the case of a single π-defect, or a random distribution of them, the appearance of midgap
states may be easily understood by applying the resonance-based VB picture described in
Section 2. Considering benzene as the simplest building block of graphene, it is easy to realize
how adsorption of a H atom breaks the aromatic network and leaves one unpaired electron
free to move on the lattice by bond switching: spin-recoupling with a neighbouring double
bond creates an unpaired electron in one every two lattice sites. Ab-initio VB calculations
(Bonfanti et al., 2008) show that this indeed the case: the 5 π electrons have 5 different ways of
couplings (Fig.6) but only those with the unpaired electron in the so-called ortho and para
positions are relevant; an electron in meta position would involve a Dewar-like structure,
which has a high energy bond-pattern (see Fig.6). The bond switching mechanism is very
useful and well known in basic organic chemistry, where it easily allows predictions for
orientation effects, e.g. in electrophilic aromatic substitutions. In contrast to the full analysis

10 The approach used is intrinsically periodic. Therefore, the results are best viewed as referring to defects
which are periodically arranged on superlattices with large unit cells.
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Fig. 6. Valence Bond model for the binding of a radical species (a H atom) on benzene. The
numbers give the weights of the corresponding VB structures (Bonfanti et al., 2008). The
resulting unpaired electron localizes mostly in ortho (two leftmost structures on the top row)
and para (mid panel) position, as emphasized by the bond-switching mechanism reported in
the chemical formula of the bottom row.

of possible spin-couplings, exporting this model to graphene is rather straightforward11. A
picture of the mechanism is shown in fig.7 for a coronene model, that is meant to represent
the whole graphene lattice. The itinerant electron hops between sites of one type only,
thereby occupying a delocalized state which is the midgap state described previously in the
tight-binding (MO) picture.
Whatever picture we use the result is a spin density (magnetization) localized close to
the defect, on the sites of the hexagonal sublattice not housing it 12. At low density,
where hybridization does not occur, such spin-density thus determines the appearance of
(microscopic) magnetically ordered domains. It further influences reactivity of the substrate
with foreign species, which can readily ‘saturate’ (singlet-couple) this electron if they land on
the correct sites, as will be shown in the next section.
Before concluding this Section, we can now understand why simple adatoms do not move on
the surface. Indeed, for the H atom to hop on the neighbouring site the unpaired spin has
to move from one sublattice to the other and this requires breaking completely the existing
CH bond and forming a new one: the barrier to diffusion, then, matches the desorption

Fig. 7. Itinerant electron model for the pz-vacancy-induced midgap state

11 This amounts to consider Kekulé structures only, which are much fewer than the whole set of f N
S

couplings for all but small N values.
12 It can also be turned into a charge-density by addition/removal of one electron.
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Fig. 8. Molecules with no sublattice imbalance. The first two molecules on the left are
di-radical species, i.e. they have two midgap states. The Schlenk-Brauns hydrocarbon shown
in the middle panel differs from the Chichibabin hydrocarbon shown in the right panel by
the connectivity only. Nevertheless, the latter does not present unpaired electrons. In the first
two molecules, the largest set of non-adjacent sites is marked by red dots.

energy. This explains the experimental observation that H atoms are immobile on the surface
(Hornekær et al., 2006b). For more complex species, e.g. O atoms, spin-recoupling on the
adatom may help the diffusion (isomerization) process via formation of a ‘bridge‘ between the
two sites. This would explains why DFT computed barriers for diffusion of OH species are
definitely smaller than the desorption energy (Ghaderi, 2010).

5. High density: spin-ordering, clustering and related issues

5.1 Predicting midgap states and magnetism

The very simple counting rule for midgap states introduced above usually works fine for
graphene, but fails to be predictive for some class of finite size graphenes or analogous
(complementary) holes on the graphene sheet. For instance, the first two molecules in Fig.8
have no sublattice imbalance (being symmetric) but are radical species, i.e. they necessarily
have midgap states (Pogodin & Agranat, 2003). To a closer inspection, sublattice imbalance is
indeed only a sufficient condition for midgap states to appear.
To rationalize the situation, it is necessary to introduce the concept of non-adjacent sites in
a N-site bipartitic system. We say that two sites are non-adjacent if they are not bound
(connected) to each other; for instance, two sites on the same sublattice are non-adjacent.
Clearly, there exists a maximal set of non-adjacent sites and we call α the sites in this set,
and β the remaining ones (Nα, Nβ = N − Nα in number, respectively). Each site α binds at
least to one site β, otherwise it would represent a completely isolated site. Arranging one
electron per site α, however, we can form at most Nβ bonds at a time, and therefore we are left
with η = Nα − Nβ = 2Nα − N unpaired electrons, i.e. midgap states. The case of a sublattice
imbalance discussed above is a special result of this rule: when NA > NB, since the A lattice
sites are always non-adjacent and Nα ≥ NA, we have η ≥ NA − NB. Fig.8 shows molecules
having η > 0 and no sublattice imbalance, with the indicated α sets. As it is evident from
its derivation, this result can be equivalently re-phrased by defining η to be the number of
unpaired electrons in the Lewis structure(s) with the maximum number of π (i.e. double)
bonds.
Notice that, since the spectrum of the Hamiltonian is determined by the system topology
the whole set of counting rules for midgap states can be derived entirely from graph theory.
In particular, midgap states appears as zeros of the characteristic polynomial of the adjacency
matrix A, that defines the connectivity of the graph (Bonchev & Rouvray, 1991; Randić, 2003)).
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In this context, the above result is known as graph nullity theorem.
Having derived the exact conditions determining the appearance of midgap states, the
question arises of how spins couple when a number η of unpaired electrons are present.
The determination of the spin state cannot come, of course, from the simple tight-binding
Hamiltonian, since in these open-shell configurations energy ordering is mainly determined
by electron correlation. At first glance, it can be guessed that electrons occupying
quasi-degenerate midgap states tend to keep their spins parallel, in a sort of molecular
Hund’s rule, as this reduces Coulomb repulsion, i.e. system’s total spin should always be η/2
(Longuet-Higgins, 1950). This is actually the case only when midgap states originate from
a sublattice imbalance, since in such instance they are forced to stay on the same sublattice.
When midgap states (unpaired electrons) lie on different sublattice they best couple at low
spin. This result can be shown to be exact for the realistic model provided by the (repulsive)
Hubbard Hamiltonian: Lieb (1989) showed that for any bipartitic system at half-filling the
ground-state spin S is given by the sublattice imbalance S = 1

2 |NA − NB|. This is a subtle effect
of electron correlation, which would lead to an energetically unfavourable spin polarization
of the remaining occupied orbitals if the above Hund rule were followed in absence of
sublattice imbalance 13. From a different perspective, it has been associated with the most
“spin-alternant” structure (Ovchinnikov’s rule, Ovchinnikov (1978)).
According to the rules above it is now possible to predict the number of midgap states and the
spin state of a number of complex graphene structures without relevant exceptions. We only
note that the theorems stated above for bipartite lattices do not apply for topological defects
that destroy bipartitism. Nevertheless, it has been noticed that the Ovchinnikov’s rule can be
usually extended to non-bipartite systems (Shaik & Hiberty, 2007), although some care has to
be paid (López-Sancho et al., 2009). For instance, the ground-state multiplicity of Stone-Wales
defects is correctly predicted to be zero by this rule.

5.2 Preferential sticking

When adsorbing hydrogen atoms on graphite or graphene under kinetic control STM images
clearly show the formation of dimers and clusters (Hornekær et al., 2006b). Since H atoms are
immobile on the surface this must be due to a preferential sticking mechanism. This mechanism
was first suggested by (Hornekær et al., 2006b) who looked at the STM images formed
by exposing Highly Oriented Pyrrolitic Graphite (HOPG) samples to a H atom beam, and
observed formation of stable pairs, also confirmed by first-principles calculations (Hornekær
et al., 2006b; Rogeau et al., 2006). Later Casolo et al. (2009a) showed that the preference for
certain lattice sites comes from the spin density localized on one of the two sublattices (the
midgap state), as generated by the first adsorbate.
The overall picture (Casolo et al., 2009a) is consistent with the VB chemical model: when
a first H atom is on an A-type site, the unpaired electron localizes on the B sublattice
and bond formation easily occurs on its sites. An “AB dimer” (which has no sublattice
imbalance) is formed and a singlet ground-state is obtained where aromaticity is partially
restored. Conversely, if adsorbtion occurs on the same sublattice, i.e. to form “A2” dimers, the
incoming H atom does not make use of the available spin-density, and adsorption energies are
comparable to that of the first H atom. Furthermore, as another electron is set free on the same
B sublattice occupied by the unpaired electron, the ground state is a triplet (η = NB − NA = 2).

13 Notice that for two electrons in different zero energy state, first-order perturbation theory always gives
a triplet ground-state. The nature of the midgap states and the ensuing interactions with the doubly
occupied orbitals play a decisive role.

58 Physics and Applications of Graphene - Theory

www.intechopen.com



Fig. 9. Left panel: Binding energies for secondary H adsorption as a function of the
site-integrated magnetization (MSI), for AB ( circles) and A2 (squares) dimers. Both singlet
(red) and triplet (blue) solutions are shown in red and blue respectively. Also shown the data
point for single H adsorption (black diamond) and a linear fit to the data set (solid line).
Right panel: corresponding barrier energies for secondary atom adsorption (ground-state
only). Data point at MSI=0 is for single H adsorption.

The results of DFT calculations (Casolo et al., 2009a) on a number of dimers are shown in Fig.9
as function of the site-integrated magnetization, i.e. the average number of unpaired electrons
in each site as results from the first adsorption event. It should be noted that substrate
relaxation effects, though substantial (∼ 0.8 eV), are site-independent for all but the ortho
dimer14; thus the curves in the graphs of Fig. 9 reflects purely electronic effects. Binding and
barrier energies both depend linearly on the local magnetization, thereby implying a linear
relationship between them; this is a common tendency in activated chemical reactions known
as Brønsted-Evans-Polayni rule. An exception is provided by the ortho dimer (rightmost
data point in the graphs of Fig. 9), whose formation requires further rearrangement in the
first C-H neighbourhood. This is shown in figure 10 where the equilibrium geometry of the
dimer is reported in the left panel. It is clear from the figure that the two H atoms point in
opposite directions (as in a H-C-C-H eclipsed conformation of an alkane), which suggests that,
despite their proximity, they would not easily desorb to form H2 upon heating the substrate.
This is indeed what has been found by a combined theoretical and experimental study by
Hornekær et al. (2006a): upon heating, the ortho dimer prefers to isomerize to the para dimer,
which dehydrogenates easier (i.e. at a lower temperature). The highest temperature peak
in the TPD spectra corresponds then to this isomerization process. The para dimer itself,
whose equilibrium geometry is shown in the right panel of Fig.10, forms abundantly when
exposing graphene to a H atom beam, since its formation is barrierless (see fig.9). This forms
the basis for the preferential sticking mechanism first suggested by Hornekær et al. (2006b),
which is here summarized with the results of fig.9, namely formation of AB dimers is both
thermodynamically and kinetically favoured over formation of A2 dimers and single atom
adsorption.

14 Surface puckering upon adsorption, to a good approximation, involves nearest neighbouring C atoms
only.
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Fig. 10. Equilibrium geometry for ortho (left) and para (right) dimer structures.

Unfortunately15, the preferential sticking mechanism above works only for dimers. Once
an AB dimer is formed (A2 is unfavoured) there are no further unpaired electrons available,
and no bias on the adsorption of additional H atoms. This is confirmed by DFT calculations
(Casolo et al., 2009a) on a number of larger A2B2, A2B, A3B1 and A3 clusters. As expected from
the VB model above, adsorption of a third hydrogen atom to a stable AB dimer parallels that of
the first H, with essentially no preference towards any specific sublattice position, and always
produce doublet structures (M = 1 μB) (see fig.11). Similar conclusions hold when adding a
third H atom to the (magnetic) meta dimer A2: adsorption on B lattice sites is strongly favoured
(Ebind = 1.2− 1.9 eV) and produces doublet structures (M = 1 μB), whereas H atoms bind to A
lattice sites with an energy ∼ 0.7− 0.8 eV and produce highly magnetic structures (M = 3 μB)
(see fig.11). Energy barriers to adsorption follow the same trend: calculations show that, with
few exceptions, barriers to sticking a third H atom compare rather well with that for single H
atom adsorption for the processes AB→A2B and A2 →A3, and may be considerably smaller
for A2 →A2B ones. These three-atom clusters, similarly to the single H atom, necessarily bias
the adsorption of a fourth atom. The computed binding and barrier energies for this process
have been found to compare rather well with the dimer values, actually they nicely fit to the
same linear trends shown in Fig.9. Finally, all the considered A2B2, A2B, A3B1 and A3 clusters
have been found to have 0, 1, 2 and 3 unpaired electrons in their ground-state, respectively, in
agreement with expectations (i.e. either the VB model or the Lieb theorem).
Few exceptions to this picture are for compact clusters where substrate relaxation does play
some role, see e.g. the structures on the right of fig. 11. Compared to other trimers, these
structures are favoured because of the substrate softening occurring after formation of the para
dimer, which is in a typical boat configuration (fig.10). Such softening is expected to reduce the
relaxation energy needed for the binding of the additional atom, with a gain of some tenths of
eV on the overall energetic balance16. This would explain why experiments at intense H atom
flux do not find a random distribution of dimers, as would be expected on basis of electronic
effects only, rather clusters made up of a number of atoms (Ferro et al., 2009; Hornekær et al.,
2007). Though a detailed analysis would require the knowledge of the adsorption barrier for
a rather large number of clusters, the linear relationship shown above may help in making
educated guesses on the basis of the binding energies only.

15 There is a long open search for efficient pathways leading to H2 formation on graphitic surfaces, because
of its importance in explaining the observed abundance of molecular hydrogen in the interstellar
medium.

16 Remember that the relaxation energy for the single H atom (∼ 0.8 eV) has the same magnitude as the
overall binding energy, i.e. about half of the bond formation energy is spent for relaxing the substrate.
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Fig. 11. Some of the possible hydrogen trimers structures obtainable from the AB para dimer
(left diagram) and from the A2 meta dimer (right). Binding energies are also shown.

5.3 A route to graphane?

Graphane is a novel two-dimensional material, namely the fully hydrogenated graphene sheet.
The structure is still bipartitic and each sublattice bears all hydrogens on the same side of the
lattice plane (in meta to each other), in such a way to have a chair-like configuration as in
cyclohexane. It is an insulating material with no π electrons (Lebègue et al., 2009; Sofo et al.,
2007), that might have been recently obtained by simply exposing graphene to cold hydrogen
plasma (Elias et al., 2009). This result is very interesting in light of what has been shown in the
previous sections. In order to produce graphane by simple hydrogen exposure it is necessary
that either H atoms adsorb selectively on one sublattice only for a given graphene face or
hydrogen diffuses (isomerize) to occupy the sites on the right face.
According to the discussion of previous section, formation of meta dimers is unlikely, ortho,
para positions being highly favoured for adsorption. According to DFT calculations on
free-standing graphene (Casolo, 2009), this is true both for the syn- (on the same face) and
the anti- (on opposite faces) dimers. However, even if hydrogen atoms were likely to form
anti-para dimers also in supported graphene (and they are required for graphane production)
an efficient syn- to anti- conversion mechanism would be needed to convert those dimers
already formed on the same graphene face. Unfortunately, as we have seen in the previous
section, even in this case, no true preferential sticking can occur after dimer formation and
it will be very unlikely that all the other hydrogens will chemisorbed in the correct sites
and face. Indeed, recent molecular dynamics simulations showed that disordered, frustrated
hydrogenated domains would rather form (Flores et al., 2009).
If graphane has been really formed by hydrogen exposure some other effect has to play a
role. Curved graphene areas might help this process. Graphene is a very elastic membrane
that naturally exhibit ripples that tend to lay down along steps and kinks of the supporting
substrate on which it was grown. Indeed recent experimental findings suggested that
hydrogen chemisorbs more efficiently on the ridges of the silicon carbide substrate surface
onto which graphene usually lays (Balog et al., 2009). Moreover, it has been also shown
that hydrogenation of single-layer graphene is easier than for many-layer graphene, likely
as a consequence of the higher corrugation displayed by the graphene surface (Jung et al.,
2009; Luo et al., 2009). This is reasonable, as for nanotubes the curvature reduces the pz-pz
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overlap, i.e. aromaticity, thereby lowering the barrier energies for H chemisorption (Ruffieux
et al., 2002a;b). Still, there is no clear evidence that local curvature plays a role in graphane
formation, and more investigations in this direction are needed.

6. Defect-based material design

When it comes to device fabrication only few of the many extraordinary properties of
graphene are relevant, at least for the chip-makers (Schwierz, 2010). Among them, its
thickness allows the thinnest possible gate-controlled regions in transistors and, according
to scaling theories, should reduce electrostatic problems if short channels have to be built.
Mobility is an important factor as it allows for instance high-performance interconnects
and fast response to external (gate) potentials. It becomes of secondary importance in
short channels, where high fields builds up and carrier velocity saturates, but also in this
respect graphene proved to have superior properties than conventional materials. Indeed,
high-performance transistors for frequency applications have been realized (Lin et al., 2010),
and record cut-off frequencies are being continuously scored. However, for its usage in logic
applications the absence of a band-gap is a major problem (Avouris et al., 2007; Schwierz,
2010): even when the Fermi level crosses the charge neutrality point a non-zero residual
conductivity avoids the complete current pinch-off 17. The absence of a band-gap, indeed,
prevents the achievement of the high current on-off ratios required for logic operations.
Graphene can be turned into a true semiconductor by properly engineering it. Electron
confinement, though in general not trivial for massless, pseudorelativistic carriers, can be
obtained by cutting large-area graphene to form narrow nanoribbons. Apart from related
fabrication issues, one main drawback of such an approach is the removal of the Dirac
cones and the resulting band-bending. This is expected to increase the effective mass of the
carriers, thereby reducing their mobility. Indeed, it has been generally found that mobility
is a decreasing function of the gap (Schwierz, 2010), and this is an undesirable by-side effect
worth considering with such a traditional approach. Alternatively, symmetry breaking is known
to turn the massless Dirac carriers into massive (yet pseudorelativistic) carriers. This can be
realized by depositing or growing graphene on a substrate that renders inequivalent the two
sublattice positions. For instance, boron nitride has the same honeycomb lattice as graphene
and a similar cell parameter, but presents two inequivalent sublattices. When graphene is
in contact with such a surface B and N interact differently with the carbon atoms of the
graphene sheet, breaking its sublattice equivalence and lifting the degeneracy of the two
bands. A similar situation is achieved for graphene grown on silicon carbide surfaces, where a
gap has been observed by angle-resolved photoemission spectroscopy though subtle electron
correlation effects may play a role in such case (Bostwick et al., 2007; Zhou et al., 2007).
In the following sections we describe alternative possibilities for opening a gap in graphene
band structure, namely those offered by superlattices of defects and dopants. One interesting
finding in this context is the proof that a band-gap can be opened in graphene without breaking
its symmetry, with the advantage the new Dirac cones (massless carriers) appear right close
to the gapped region (Martinazzo et al., 2010). For this reason we start introducing some
symmetry considerations, extending the arguments given in section 2.

17 The defects discussed in this chapter, along with charged scatterer, are ascending as the most likely
origin of the conductivity minimum (Peres, 2010). The counter-intuitive role of defects in increasing the
conductivity finds its origin in the modification of the graphene DOS close to the Dirac point.
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Fig. 12. Left: counting the number of irreps generated by the atomic basis in a 4x4 supercell:
indicated are the irreps generated by the atoms at the center of the half-cells (red balls) and by
green triangles. Right: a simple “supergraphene”, the simplest defective 14x14 honeycomb.

6.1 Symmetry considerations

As we have seen in section 2 graphene’s unconventional electronic properties are strictly
related to its D6h point symmetry. The k-group at the K-K’ high-symmetry points (D3h) allows
for doubly degenerate irreducible representations, and Bloch functions built with pz orbitals
of A and B sublattices span just one of its two-dimensional irreps. As e − h symmetry does
not mix one- (A) and two- (E) dimensional representation this level has to lie at zero energy,
where the Fermi level (ǫF) is located.
Were not there such degenerate level, graphene would be, as any other bipartitic system at
half-filling, semiconducting. Graphene can be forced to be so by either lowering the symmetry
(i.e. changing the k group at K(K’) to a simpler one), or changing the number of E irreps at the
special points while keeping the overall symmetry. In the latter, more intriguing case, since
the overall point symmetry is preserved, degeneracies may still occur at energies different
from ǫF, and new Dirac cones are to be expected. The “recipe” for doing that is very simple
(Martinazzo et al., 2010): nxn graphene superlattices have the same symmetry properties and
2n2 atoms per cell; by symmetrical removing a number of C atoms 18 is possible to change
the number of irreps and turn, in particular, the E ones to be even at every, highly symmetric
special point (Γ, K, K′). With few exceptions of residual accidental degeneracies, this opens a
gap in the band structure.
The approach is made effective by counting the number of irreps generated by 2n2 atoms in
a nxn unit supercell. The results of this calculation (Martinazzo et al., 2010) can be grouped
into three different sequences, n = 3m, 3m + 1, 3m + 2 (m integer), according to the BZ folding
properties. In two thirds of the cases, i.e. when n = 3m + 1, 3m + 2 , removal of the atoms at
the center of the two-half cells (red balls in the left panel of fig.12) is sufficient for opening a
gap. Figure 12 (right panel) shows one of the simplest resulting semiconducting superlattice,
namely with simple, atomic-scale defects arranged in a honeycomb lattice. Because of their
nature, they are best considered as supergraphenes.

6.2 Superlattices of vacancies or holes

Tight-binding and DFT calculations on the simple structures identified in the previous section
show indeed a sizable band-gap. The gap size approximately scales as vF/ln where vF is

18 As shown in the previous sections one can equivalently introduce either a vacancy or an adatom.
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Fig. 13. Energy gaps in simple supergraphenes made with pz vacancies. Left: results of TB
calculations as functions of 1/n. The symbols are for different parameters of the TB
hamiltonian, and the solid line is the result of a perturbative calculation at the K point. See
Martinazzo et al. (2010) for details. Middle: tight-binding (red) vs. DFT (black) results. In the
latter case, defects have been modelled as H atoms. Stars represent the results for asymmetric
dimers placed in the same nxn supercells. Right: energy bands for the n = 13, 14
supergraphenes.

the Fermi velocity in pristine graphene and ln is the distance between defects (ln = na/
√

3),
as can be guessed from a dimensional analysis or obtained from a perturbative calculation
within the tight-binding approach (Martinazzo et al., 2010). Both the size and the scaling
compare favourably with the gap in armchair nanoribbons (Son et al., 2006). However, one
distinctive feature of such structures is the additional presence of new Dirac cones right close
to the gapped region (blue circle in fig.13). This might be important in charge transport, since
they can sustain massless carriers when the Fermi level, as tuned by a gate potential, is swept
across the gap.
In practice, it is still experimentally challenging to realize the atomic-scale patterned structures
introduced above. It is however sufficient to consider similar superlattices of holes analogously
to the graphene antidots superlattices investigated by Fürst et al. (2009); Liu et al. (2009);
Pedersen et al. (2008). The resulting structures are honeycombs antidots as the one shown in
fig.14 They are experimentally feasible, as Bai et al. (2010); Eroms & Weiss (2009); Fischbein
& Drndic (2008); Shen et al. (2008) have shown that is possible to create circular holes with
diameters as small as 2 − 3 nm and periodicity ∼ 5 nm. Analogous patterns of H adatoms
have also been realized thanks to the interaction between graphene and an underlying metal
surface that creates Moire patterns activating chemisorption in specific areas (Balog et al.,
2010).
Tight-binding calculations on the honeycomb antidots show that the band-gap is quite large
for reasonable values of the superlattice constant and of the hole diameter and, as before, new
Dirac cones appear at low energies, close to the gapped region (Martinazzo et al., 2010). The
gap size is even larger than for the simplest structures considered above, though the latter
remain optimal in this context: when the gap size is renormalized to the number of defects per
unit cell, honeycombs such as that reported in fig. 12 prove to be “magic”.
Notice that previously suggested antidot superlattices (Fürst et al., 2009; Pedersen et al., 2008)
show comparable gaps, and are therefore equally valid candidates for turning graphene into a
true semiconductor. The only difference is a subtle symmetry-related issue. These hexagonal
superlattices are all of

√
3nx

√
3n type, hence with the same D6h symmetry of the honeycomb

lattices considered here, and this would suggest that exactly the same results hold for them. A
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Fig. 14. A honeycomb antidot superlattice presenting a gap by the symmetry preserving
approach discussed in the text.

closer inspection, however, reveals that in the
√

3nx
√

3n case, the K, K’ points of pristine
graphene always fold to Γ. This is advantageous for the band-gap opening, since these
structures are generally semiconducting if sufficiently defective19. However, as in Γ the k
group has the inversion symmetry, residual degeneracies at ǫ �= ǫF, is not lifted at first order,
and therefore no linear dispersion is present.

6.3 Superlattices of substitutional atoms

Symmetry arguments similar to the one given above apply as well to the case where C atoms
are replaced (rather than removed) by other species, in such a way to form superlattices
substitutional of dopants. The only difference is that now foreign species are present and point
symmetry can be altered. Here we focus on group IIIA and VA elements, mainly because of
the fast progresses in methods for the controlled synthesis of N- and B- doped graphenes.
For instance, Panchakarla et al. (2009) have recently shown how it is possible to insert B or
N dopants in graphene by adding the correct precursors in the arc discharge chamber, while
Ci et al. (2010) have reported the synthesis of large islands of boron nitride embedded in
graphene by atomic layer deposition techniques. Methods to selectively replace C atoms from
graphene lattice have also been proposed by Pontes et al. (2009).
Substitutional defects behave similarly to pz vacancies (to which they reduce when the
hoppings become zero) but introduce impurity bands which partially hybridize with those
of the substrate. In addition, the diagonal disorder they introduce breaks e − h symmetry
giving rise to a Fermi level shift, i.e. to p− and n− doping for group IIIA and VA elements,
respectively. If superstructures are only weakly defective, however, the Fermi level shift scales
as 1/n, since the linear-energy dispersion implies EF = vF

√
πne (here ne is the electron (hole)

excess density, ne ∝ 1/n2). Thus, analogously to the superlattices of the previous section,
the defect-induced perturbation affects the electronic structure close to the Fermi level, and
symmetry arguments may be used to establish whether degeneracy occurs at the special
points in the important low-energy region.
It has been shown that, depending on the overall symmetry, superlattices of N and B defects
(and mixture thereof) can either preserve the Dirac cones (D6h superlattices) or open a band
gap (D3h) (Casolo et al., 2011). For instance, honeycomb superlattices of B (or N) dopants only
(D6h symmetry) are found to preserve the Dirac cones, and to be only p− (n−) doped (the
cone-apex shift being ∝ 1/n). Indeed, the low-energy band structure in these superlattice is

19 The number of E irreps is always even because of the ‘coalescence’ of the two valleys. Thus, one only
needs to remove the accidental degeneracy created by such folding.
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very similar to that of graphene, with a group velocity at the shifted Dirac cones depending
linearly on 1/n too. As the Fermi level can be tuned by a gate potential, these systems offer
the possibility of investigating the role that the effective speed of light (the above velocity
at the Dirac cones) has on the transport and optical properties of graphene. Conversely,
BN-honeycomb superlattices (D3h symmetry), thanks to the balanced doping, are found to
develop a gap right at the Fermi level. The resulting dispersion relation is found to be
quasi-conical, corresponding to massive Dirac fermions. The resulting gaps are found sizable
and, furthermore, the effective rest masses are rather small, m∗ ∼ 0.01me or smaller. This
suggests that these structures might have good field-switching and transport properties.
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