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1. Introduction  

In „Threshold and beyond: modeling the intensity dependence of auditory responses“ 

(JARO 9, 2008, pp. 102-121), Dr. Bernd Lütkenhöner introduces us to a puzzle, namely, that 

responses to stimuli of low intensity appear to climb as the logarithm of the intensity, 

contrary to the expectation that they be linear with intensity. Towards solving that puzzle, 

Dr. Lütkenhöner has produced the latest in a long line of attempts by various authors to 

model „the gross response of the population of auditory nerve fibers“ in response to a pure 

tone (Lütkenhöner, p. 102). From his model, Dr. Lütkenhöner predicts linearity with 

intensity at low intensities, changing to linearity with log-intensity at higher stimulus 

intensities. 

The present author is one of those who have contributed to this particular field of modeling 

(Nizami & Schneider, 1997; Nizami 2001, 2002, 2005a, 2005b), and was intrigued by what 

new insights Dr. Lütkenhöner might have to offer. However, substantial omissions and 

mistakes were found, which greatly reduce the value of Dr. Lütkenhöner’s contribution. In 

particular, Lütkenhöner omits to mention the many earlier contributions towards modelling 

the firing of the whole auditory nerve or some portion thereof, so that his model escapes 

comparison to those of others. His computations use data taken from a variety of species, 

whose firing-rate characteristics are known to differ, such that his computations may 

describe no real species at all. Further, Dr. Lütkenhöner’s equations do not account for the 

known variance of dynamic range across neurons, a crucial component of any model of 

mass neural firing. Indeed, he encourages the use of a discredited equation that cannot 

actually account for dynamic range variation, while ignoring a proven equation than can. 

Lütkenhöner also perpetuates the absurd notion of an infinitely low detection threshold for 

auditory stimuli. Finally, Lütkenhöner’s derivations provide an equation of a form known to 

arise from circular logic. All of these errors are incontrovertible and render Dr. Lütkenhöner’s 

work null and void. Altogether, Lütkenhöner’s errors serve as a warning to those who 

attempt to compute the average neuronal response available from a mass of responding 

neurons, but serve the larger purpose of illustrating the folly of accepting conventional 

wisdom and frequently-cited papers on face value without delving deeply enough into the 

literature to achieve a professional understanding of a problem. 
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2. The Lütkenhöner model and its predecessors 

2.1 Averaging of neuronal firing rates 

The average firing rate of a pool of related neurons has historically been taken as the 
„signal“ that represents the outside world. That notion has been reinforced, for example, by 
recent cortical recordings which imply the use of „a code that is robust to perturbations, 
such as a rate code in which it is the average firing rate over large populations of neurons 
that carries information“ (London et al., 2010). But on average, no two neurons produce the 
same plot of firing rate as a function of the intensity of a given type of stimulus. To find the 
average firing rate of a pool of neurons, then, it is first necessary to find a rate-level function 
containing parameters which can be varied in order to represent the rate-vs.-intensity plot 
for individual neurons. Once such an equation is found, the „average“ neuronal response 
available from a mass of responding neurons can be obtained either by averaging modeled 
firing rates across neurons, or by analytically solving for the average of the actual equations. 
Dr. Lütkenhöner uses both methods. However, he omits any mention of earlier efforts, as if 
none exist. 

2.2 The pioneering work of Schiaffino 

In fact, averaging of stimulus-evoked firing of primary afferent sensory neurons has a long 
and rich history. The literature on hearing, in particular, shows progressive refinement over 
the years (Schiaffino, 1957; Barducci, 1961; Siebert, 1965; McGill & Goldberg, 1968; 
Goldstein, 1974; Howes, 1974, 1979; Lachs et al., 1984; Delgutte, 1987; Viemeister, 1988; 
Winslow & Sachs, 1988; Nizami & Schneider, 1997; Nizami, 2005b). That literature is worthy 
of a brief recapitulation. Schiaffino’s model (1957) set the stage for all subsequent models. 
Ironically, Schiaffino did not rely upon properties of neuronal firing per se, which were not 
well-known at the time. Rather, he relied upon psychophysical results, as follows. He 
assumed that the absolute detection threshold for an auditory stimulus corresponded to the 
excitation of a single primary afferent auditory neuron, and that each psychophysical just-
noticeable intensity increase corresponded to the firing of another neuron, such that the 
number of neurons activated by an increase of one unit of auditory intensity was the inverse 
of the size of the just-noticeable intensity increase. (Such cavalier assumptions would not, of 
course, be made today.) The just-noticeable intensity increase was known as a function of 
stimulus intensity for particular circumstances (and has since been found for stimuli of 
various durations and spectra), and so Schiaffino integrated its inverse with respect to 
intensity, obtaining the growth of the number of active fibers as a function of the stimulus 
intensity. He noted that squaring that quantity gave a curve congruent to psychophysical 
loudness curves established by psychologists. Note well Schiaffino’s assumption (now quite 
unorthodox) that each neuron’s contribution to loudness was the same. That assumption 
would not be made by subsequent others, once experimentalists had established that the 
firing rates of auditory primary afferents were themselves a monotonically increasing 
function of stimulus intensity. Nonethless, by using mathematical integration to infer the 
growth of loudness from neuronal activity, Schiaffino laid the groundwork for all 
subsequent models of the dependence of loudness upon primary afferent firing. The above 
describes only the basics of Schaiffino’s work. Barducci (1961) extended it to other 
frequencies by adding an arbitrary parameter to the number of active neurons. 
Since Schiaffino’s time it has become well-established that single primary afferent auditory 

neurons in all species studied can be characterized by four properties: their spontaneous 
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rate in the absence of any stimuli, their saturation (maximum) rate beyond which rate 

cannot increase regardless of stimulus intensity, their threshold intensity at which firing rate 

(on average) increases beyond spontaneous rate, and their dynamic range, defined as the 

intensity range between threshold intensity and saturation intensity. There is a different, 

psychophysical dynamic range for the whole animal. As noted by Lawrence (1965, p. 159), 

„The [psychophysical] dynamic range expreses the extent of rising intensities over which 

hearing takes place, but the upper limit is difficult to define“. Lawrence (1965) describes the 

upper limit as that intensity at which the sensation of loudness mingles with the sensation of 

feeling. That limit appears to be constant despite the fact that the threshold for detection of 

auditory stimuli (the absolute detection threshold) varies with the frequency of a pure tone 

(Licklider, 1951/1966). Lawrence (1965, p. 161) notes that Licklider’s paper implies human 

psychophysical dynamic ranges of 90 decibels for 100 Hz tones and for 10,000 Hz tones, and 

120 decibels for 1,000 Hz tones. 

2.3 The dynamic range problem 

These ranges are an object of puzzlement, for the following reasons. Humans are not used 

for studying the properties of the primary afferent auditory neurons. On the contrary, the 

mammal whose peripheral auditory neurons we know best is the cat. Individual primary 

afferent auditory neurons of the cat, which leave the periphery by way of the 8th (auditory) 

nerve, typically have a range from threshold to saturation of only 14-40 decibels (e.g. Kiang 

et al., 1965). Thus, theories of neuronal function that hope to capture the full behavioral 

range of hearing in the cat (and by extension, in man) have to stipulate how neurons of such 

limited dynamic range can encode intensity over the full behavioral range. One approach 

has been to assume that auditory stimulus intensity is proportional to activity in the whole 

auditory nerve (e.g., Schiaffino, 1957; Barducci, 1961; McGill & Goldberg, 1968; Goldstein, 

1974; Howes, 1974, 1979; Lachs et al., 1984). The general argument for this type of model is 

as follows for a pure tone. As the tone intensity increases from the absolute psychophysical 

(behavioral) detection threshold for the tone, neurons serving the region of the hearing 

organ (the organ of Corti) at and nearby the locus of its maximum physical displacement 

increase their rate of firing voltage spikes until they reach their saturation firing rate. 

However, as the tone’s intensity increases still further, there is a lateral spread of the tone-

evoked physical movement of the organ of Corti, such that neurons adjacent to the point of 

maximal physical displacement are recruited (e.g., Howes, 1974, based on Katsuki et al., 

1962; Pfeiffer & Kim, 1975). Thus, increasing the tone’s intensity means an increase in the 

firing rate of neurons that are already responding, and an increase in the number of 

responding neurons (see Whitfield, 1967). The total number of voltage spikes elicited by the 

stimulus will therefore continue to increase, in such „whole-nerve“ models, because the 

zone of significant physical displacement of the organ of Corti will continue to widen as the 

tone’s intensity rises. 

There is evidence, however, that a wide range of intensity can be encoded under conditions 

that prohibit the recruitment of unsaturated neurons. That is, Viemeister (1983) used a high-

intensity notched masking noise to potentially saturate the firing rates of neurons that were 

most responsive to tones below 6,000 Hz and above 14,000 Hz, thus eliminating the 

possibility that such neurons could contribute to encoding intensity changes for tones below 

6,000 Hz or above 14,000 Hz. Human subjects were required to discriminate intensity 
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changes in a noise whose spectrum of component frequencies spanned the range of 6,000-

14,000 Hz. The subjects were able to do so, suggesting that spread of excitation beyond the 

6,000-14,000 Hz band was unnecessary for the growth of loudness of the 6,000-14,000 band 

of noise.  One way in which this could happen is for neurons within any limited contiguous 

span of the organ of Corti to have different firing thresholds and/or different neuronal 

dynamic ranges. Such a simple system may be realized, for example, in some species of 

moths, for which there are only two primary auditory afferents, having different thresholds 

but similar dynamic ranges, which therefore partially overlap (e.g., Perez & Coro, 1985). 

There is other psychoacoustic evidence which suggests that a small region surrounding the 

point of maximal stimulus-driven physical displacement on the organ of Corti can encode a 

large dynamic range. For example, Hellman (1974) found that using a masking noise to 

presumably remove the neural firing contributions of neurons of greatest sensitivity above 

250 Hz does not prevent the normal growth of the loudness of a 250 Hz tone. Thus, any 

model of pooled neuronal firing must be resticted to a limited portion of the organ of Corti. 

2.4 What species for Lütkenhöner? 

The most sophisticated model of pooled neuronal firing is that of Nizami and Schneider 

(1997). It was concerned with the firing of the neurons serving a limited region of the organ 

of Corti centered on the point of maximal displacement for an 8,000 Hz tone in the cat. The 

Nizami and Schneider model will be described below in the course of examining 

Lütkenhöner’s model. However, there is already one glaring difference between Dr. 

Lütkenhöner’s model and the others cited here, a difference which arises early in 

Lütkenhöner’s paper. That is, that all of the other models are specific to particular species 

(usually the cat; but see for example Howes, 1974, for the macaque), whereas Lütkenhöner 

fails to state what species his computations apply to, as if they apply to all. In practice, he 

bases his computations upon a hodgepodge of data taken from cats, guinea pigs, and alligator 

lizards, species whose firing-rate characteristics are well known to substantially differ. 
 

3. Problems with the Lütkenhöner model: dynamic ranges of afferents 

Dr. Lütkenhöner focuses his derivations on the average neuronal firing behavior near 

threshold. However, his various mathematical summations fail to account for the known 

difference in the distributions of thresholds and of dynamic ranges of the individual 

afferents. Those variabilities significantly affect average rate-level behavior (see Nizami & 

Schneider, 1997, and its predecessors listed above). In turn, rate-level behavior affects 

discriminability, as quantified in Signal Detection Theory models (e.g. Nizami & Schneider, 

1997; Nizami 2003, 2005a, 2005b). Hence, threshold and dynamic range affect discriminability, 

making them of paramount importance. Regarding thresholds, Lütkenhöner states that 

“there is insufficient information about the true sensitivity distribution of the auditory 

neurons” (Lütkenhöner, p. 116). However, the distribution of thresholds across primary 

auditory afferents is well-characterized for the cat (reviewed in Nizami & Schneider, 1997), 

guinea pig, macaque (e.g., Katsuki et al., 1962), and several other mammals. The distribution 

of dynamic ranges across neurons is also well-characterized for primary auditory afferents 

(see the review in Nizami & Schneider, 1997, for the cat). Thus Lütkenhöner has failed to 

incorporate important data that is readily available. 
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4. Problems with the Lütkenhöner model: an equation having a fixed dynamic 
range 

Let us examine if and how dynamic range actually appears in Lütkenhöner’s formulation. 
We might expect dynamic range to be defined in terms of the discriminability afforded by a 
neuron’s rate-level relation. In fact, that has been done just once (Nizami, 2005a). In the 
remainder of the literature, dynamic range was quantified as the difference between a 
threshold intensity for evoked firing, and an intensity at which firing rate saturates. Those 
dynamic-range endpoints have in turn been defined in terms of the neuron’s minimum (i.e. 
actual spontaneous) firing rate Rmin spikes/s and its maximum (i.e. actual „saturation“) 
firing rate Rmax spikes/s, according to variations on any of four different schemes (reviewed 
in Nizami, 2002).1 Indeed, such measurement schemes led originally to the conclusion that 
dynamic ranges vary significantly from neuron to neuron (e.g., Evans & Palmer, 1980). 
Ironically, those same schemes prevent Dr. Lütkenhöner’s model from ever accounting for 
differences in dynamic range, and that is important, because a model that cannot account for 
differences in dynamic range cannot ultimately provide a good fit to rate-intensity data from 
the neuron, in which case any forthcoming „average neural response“ will be inaccurate. 
Consider the following. Lütkenhöner’s chosen rate-level function was a personal 
customization of the rate-level function chosen by Sachs and Abbas (1974) to describe the 
response of single primary auditory afferents in cats exposed to pure tones. The latter 
equation belongs to a class of equations called saturating power functions. With R being 
spike firing rate, P being RMS (root-mean-square) sound-pressure-level, and k and α being 
positive parameters that can be obtained by regression on actual rate-level data, the 
saturating power functions take the form 

 ( )
( )

( )
0     .max

 0

P P
R P R

P P k

α

α=
+

 (1) 

Because intensity I is proportional to P2, intensity can be used in place of P without loss of 
generality. Now, the above equation can be inverted, producing sound-pressure-level P as a 
function of firing rate. From there, it is easily proven that for a fixed α, the equation R(P) 
represents a fixed dynamic range (Nizami, 2002). That fixed range can be expressed by formulae, 
according to whichever of the four popular dynamic-range schemes was used (ibid.). 
One solution to this problem of an inadvertantly constant dynamic range in rate-intensity 
equations is to allow dynamic range to vary, by building it into a rate-intensity equation as a 
parameter. Such a parameter is not present in earlier equations for auditory single-unit 

                                                 

1 Those schemes depend upon arbitrarily-chosen parameters a and b, where 0 < a,b < 50, as follows. In 

Scheme 1, threshold firing rate is ( ) max min100

a
R R−  and saturation firing rate is 

( )1  max min100

b
R R

⎛ ⎞− −⎜ ⎟
⎝ ⎠

. In contrast, Scheme 2 uses ( )max min min100

a
R R R− +   and 

( )1  max min min100

b
R R R

⎛ ⎞− − +⎜ ⎟
⎝ ⎠

 respectively; Scheme 3 uses 1min 100

a
R

⎛ ⎞+⎜ ⎟
⎝ ⎠

 and 1max
100

b
R

⎛ ⎞−⎜ ⎟
⎝ ⎠

; and 

finally, Scheme 4 uses 
max

100

a
R  and 1max

100

b
R

⎛ ⎞−⎜ ⎟
⎝ ⎠

. Schemes 1 and 4 have obvious problems; Scheme 2 

is the most popular one (see Nizami, 2002). 

www.intechopen.com



 Advances in Computer Science and Engineering 

 

396 

firing rate (e.g., Schiaffino, 1957; Barducci, 1961; McGill & Goldberg, 1968; Goldstein, 1974; 
Howes, 1974; Sachs & Abbas, 1974; Lachs et al., 1984; Sachs et al., 1989; Yates et al., 1990). 
However, Nizami and Schneider (1997) presented such an equation: 

 ( )
( )    

1 2

r rmax s
;  , , r ,  r  .max s

100    
1

x ε
λ

r x ε λ
c

c

⎡ ⎤
⎢ ⎥⎣ ⎦

−−

−
=

−⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 (2) 

where      x intensity  in  decibels  SPL,

                ε threshold  for  stimulus-evoked  firing,  in  decibels  SPL,

                dynamic  range  in  decibels,

                r saturation  max

λ

=
=
=

= firing  rate  in  spikes/s,

                r spontaneous  firing  rate  in  spikes/s.s =

 

The actual derivation of Eq. 2 appeared later (Nizami, 2001, 2002). Equation 2 describes a 

symmetric, sigmoidal (S-shaped) plot. Equation 2 incorporates two assumptions: first, that 

the neuron’s firing rate „at threshold“ is characterized by 

 ( ) ( )        ,max s s
100

c
r x ε r r r= = − +  (3) 

and second, that the neuron’s saturation firing rate obeys 

 ( ) ( )100    
             max s s

100

c
r x ε λ r r r

−
= + = − +  (4) 

(Footnote 1, Scheme 2, with a = b = „c“), all for c = 2. Equation 2 fits typical rate-intensity 

plots quite well (see Nizami, 2002, 2005a) using c = 2, with the parameter values obtained 

through least-squares fitting of equation to data being very close to those estimated 

[through observation] by the persons who obtained the rate-intensity data in the first place. 

Indeed, fitted and estimated values mutually diverge more when using other possible 

values of c, namely c = 1, c = 5, or c = 10 (Nizami, 2002). 

In a broad variety of species, including those that Dr. Lütkenhöner uses as sources of data, there 

are a greater or lesser percentage of the examined primary afferent auditory neurons whose 

rate-intensity plots do not follow a sigmoid. Instead, the plots show a fairly sharp mid-way 

bend to a shallower slope, presumably followed by eventual saturation beyond the highest 

stimulus intensities (90-95 decibels sound-pressure-level [SPL}) that were employed (e.g., 

Sachs & Abbas, 1974; Palmer & Evans, 1979; Sachs et al., 1980; Winter et al., 1990; Ohlemiller 

et al., 1991; Temchin & Moushegian, 1992; Richter et al., 1995; Koppl & Yates, 1999; Plontke 

et al., 1999; Yates et al., 2000; Imaizumi & Pollack, 2001). These neurons acquired the name 

„sloping-saturating“. Nizami and Schneider (1997) found that sloping-saturating rate-

intensity plots were fitted well by the equation 

 
( )

( ) ( )
1 2 1

2

( ;  , , ,r ,  r )     ;  , , r ,  rmax s max s

                                                            1- ;  , , r ,  rmax s

SSr x ε λ λ γ r x ε λ
γ r x ε λ

= ⋅

+ ⋅
 (5) 
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where γ is a fitted parameter. Equation 5 has six fitted parameters, but for the cat we can set 
the spontaneous rate to zero, reducing the number of fitted parameters to five. Yates 
produced an equation in six parameters which Yates and others fitted to sloping-saturating 
plots (e.g., Yates, 1990; Richter et al., 1995; Koppl & Yates, 1999; Yates et al., 2000), but Eq. 5 
fits more closely to the bend in the plot, as can be seen by comparing the work of Yates et al. 
to the fit of Eq. 5 (see for example Nizami & Schneider, 1997; Imaizumi & Pollack, 2001; 
Nizami, 2002, 2005a). The same goes for the Sachs et al. (1989) equation in five parameters. 
Equation 5 is not meant to represent any underlying mechanics, unlike the Sachs and Abbas 
(1974) equation used by Dr. Lütkenhöner, and its successors, the equations of Sachs et al. 
(1989) and of Yates et al. (1990). All of those equations in fact encapsulate an alleged relation 
of the shape of the sloping-saturating firing-rate plot to the plot of the intensity-dependence 
of the mechanical vibration of the organ of Corti, a relation proven illusory (e.g., Palmer & 
Evans, 1979; Palmer & Evans, 1980). Also, Equation 5 does show saturation (levelling off) at 
sound pressure levels that lie beyond the range of the data. Earlier models of collected 
neuronal firing rates (Schiaffino, 1957; Barducci, 1961; McGill & Goldberg, 1968; Goldstein, 
1974; Howes, 1974; Lachs et al., 1984; Delgutte, 1987; Viemeister, 1988; Winslow & Sachs, 
1988) did not account for neurons whose rate-intensity plots are sloping-saturating. 
Equations 2 and 5 can help us determine the rate-intensity relation for an „average“ neuron, 
as follows. Given a mass of primary afferent auditory neurons, the threshold, dynamic 
range, spontaneous firing rate, and saturation firing rate will vary from neuron to neuron. 
That variability can be quantified by measuring those characteristics over a large sample of 
neurons. The characteristics form probability density functions. If the neuronal 
characteristics appear to be mutually independent of each other – which can be ascertained 
by plotting one against another and looking for correlations – then the mean firing rate of an 
ensemble of neurons having sigmoidal rate-intensity plots is given by 

( )

( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )

max s

max s

max r max rmax max

min min min r min r

             [ ( ;  , , r ,  r )max s

                                                                      r r ]   dr  dr  d   dmax s s max

ε λ

ε λ

r x ε λ

p ε p λ p p λ ε⋅ ⋅ ⋅ ⋅

∫ ∫ ∫ ∫  (6) 

( )
( )
( )

where     p ε             threshold,

                p             dynamic  range,

                p r           max

probability density function for

λ probability density function for

probability density function for

=

=

=

( )
 saturation  firing  rate,

                p r             spontaneous  firing  rate.s probability density function for=

 

A similar expression applies for sloping-saturating neurons. Equation 6 might be solvable 
analytically, but if not, it can easily be integrated numerically (see Nizami & Schneider, 
1997). This method offers greater comprehensiveness than merely averaging firing rates 
over a few „representative“ neurons, as was done elsewhere (e.g., Siebert, 1965; Goldstein, 
1974; Howes, 1974; Viemeister, 1983; Winslow & Sachs, 1988).  
The point is that there were neuronal rate-intensity equations, and the methodology of how 
to use them to obtain „average“ rate-intensity functions for pools of neurons, that were 
available to Dr. Lütkenhöner and that could have been used to account for empirical 
variability in threshold and dynamic range. But these investigative tools were not used, or 
even mentioned, by Lütkenhöner. 
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5. Problems with the Lütkenhöner model: infinitely low threshold 

Dr. Lütkenhöner’s model encourages the continuing needless use of the inflexible 
saturating-power-function. But that is not all. Lütkenhöner’s model also perpetuates an 
outdated notion, as follows. Lütkenhöner cites Swets (1961) and states that „In accordance 
with signal detection theory, the model denies the existence of a threshold“ (Lütkenhöner, p. 
102). This act of denial was considered so important that it was mentioned in Lütkenhöner’s 
abstract. But the notion of no threshold is counterintuitive. Lütkenhöner’s use of it compels 
a reexamination of his source, the paper of Swets (1961). Swets’ paper was a review of Signal 
Detection Theory (here denoted SDT) as it was laid down at the time, including the key SDT 
concept of the „ideal observer“. Swets noted that in a typical psychophysical detection task, 
the listener decides whether a Signal is present, or only a background Noise, based upon the 
ratio of the likelihood of Signal+Noise to the likelihood of Noise alone. That likelihood ratio 
obeys two distributions – one for Signal+Noise and one for Noise – and the listener places 
their hypothetical decision-making criterion somewhere along that likelihood-ratio 
continuum. An infinitely low threshold is possible, but only because the theoretical 
distributions involved have infinitely long tails. 
Regarding threshold, Swets (1961) reviewed the successful application of SDT to data from 
Yes/No, second choice, and rating experiments, in the context of what that success meant 
for five threshold models „concerning the processes underlying these data“ (Swets, p. 175). 
Swets’ words were often unclear, and his analysis was long and complicated and defies brief 
synopsis. His conclusions were hardly firm; in fact, Swets was oddly equivocal. He first 
noted that one of the models that he examined fit none of the data, that two of the models fit 
some of the data, that another of the models could not be evaluated at all using the data, and 
finally that one of the models fit all of the data, but that SDT did too. In conclusion, Swets 
stated that „The outcome is that, as far as we know, there may be a sensory threshold“ (p. 
176). He then started his next paragraph with „On the other hand, the existence of a sensory 
threshold has not been demonstrated“ (ibid.). This turnabout seems especially odd in light of 
some shortcomings of SDT that were noted by Swets, in particular that „the human 
observer, of course, performs less well than does the ideal observer in the great majority of 
detection tasks, if not in all“ (p. 172). That finding has been replicated many times over; for 
intensity discriminability, for example, see deBoer (1966), Raab and Goldberg (1975), 
Schacknow and Raab (1976), Green and Swets (1988), Bernstein and Raab (1990), Buus 
(1990), Nizami and Schneider (1997), and Nizami (2005b), among others. In sum, Swets 
(1961) did not produce compelling evidence of an infinitely low threshold, thus leaving no 
reason to reject the notion, as expressed by Hellman and Zwislocki (1961, p. 687), that “The 
threshold of audibility is a natural boundary condition which cannot be eliminated”. 

6. Problems with the Lütkenhöner model: a function containing a circular 
argument 

Dr. Lütkenhöner’s derivations lead to one mathematical case, presented on p. 112 of his 
paper, which resembles an equation by Zwislocki (1965). Lütkenhöner’s version was 
obtained by „an appropriate normalization of both the intensity and the loudness scale“ 
(Lütkenhöner, p. 112). Lütkenhöner notes this equation’s similarity to several of his own 
equations for the normalized auditory firing rate. Unfortunately, as revealed in a recent 
proceeding (Nizami, 2009), Zwislocki’s original equation was based upon circular 
reasoning. Hence circular reasoning may also underlie Lütkenhöner’s equations as well. It 
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may be worthwhile, for the reader’s benefit, to briefly reiterate the problems with the 
Zwislocki derivation, as follows. 
Experiments led to the notion that the loudness of an auditory stimulus at its absolute 
detection threshold is not zero, contrary to traditional assumptions (e.g., Buus et al., 1998; 
Buus & Florentine, 2001). Nonzero threshold loudness was predicted from theory by 
Zwislocki (1965), and by Moore et al. (1997) in an update of Zwislocki’s paper. The Moore et 
al. loudness equation actually appears in a modern standard for loudness, ANSI Standard 
S3.4-2007.  

6.1 Zwislocki’s (1965) derivation 

Zwislocki (1965) used L to represent loudness and P to represent RMS pressure amplitude. 
Zwislocki proposed that for a physiologically normal listener attending to a single pure tone 
of intensity > 50 dB SPL, loudness obeys L = K P2θ where θ > 0. The parameter K is found by 
curvefitting of empirical loudnesses (obtained through magnitude estimation procedures) to 
the loudness equation. At “sufficiently high sound-pressure levels” P (Zwislocki, p. 84), but 
for stimuli whose spectra still lie within the critical band f to f+CB, Zwislocki proposed that 

 2   .
f CB

L K P

f

θ⎛ ⎞+
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠
∑  (7) 

For a pure tone S („S“ indicating „signal“) centered frequency-wise in a noise band N, L = K 
( PS 2 + PN 2 ) θ.  Here the P’s represent „effective“ tone or noise pressures, „effective“ because 
the vibrations of the organ of Corti which are tone-evoked or noise-evoked will physically 
interfere with each other. Zwislocki then made a bold move: noting that listeners can 
selectively ignore noise, Zwislocki imagined the loudness of the tone-in-noise as the total 
loudness minus the noise loudness. The noise loudness was described as LN = K PN 2 θ so that 
tone loudness was LS  = K [( PS 2 + PN 2 ) θ  - PN 2 θ]. Once again, Zwislocki imagined a total 
stimulus spectrum lying within one single critical band, so that other critical bands 
contribute nothing to the loudness. 
Zwislocki proceeded to assume that there was a „physiological noise“ which behaved like a 
physical masking noise, one that the listener could not ignore. Zwislocki attributed the 
existence of an absolute detection threshold to that physiological noise. Representing that 
internal noise using the subscript NI, Zwislocki then imagined the total Noise sound 
pressure, PN 2, to be the sum of the internal-noise sound pressure and the external-noise 
sound pressure, altogether PN 2 = ( PN I + PN E )2 =  PN I 2 +  PN E 2. Zwislocki failed to note that 
the term 2 PN I PN E is zero when, presumably, PNI and PNE are independently drawn from 
zero-mean Gaussian distributions (see for example Green, 1960, or deBoer, 1966). 
According to Zwislocki (1965), then, the total loudness of a pure tone embedded in noise is 

 ( ) ( ) .PPPPPKL 22222
NENINENIS ⎥⎦

⎤
⎢⎣
⎡ +−++=

θθ  (8) 

Without the external noise, tone loudness is 

 ( ) ( ) .PPPKL 222
NINIS ⎥⎦

⎤
⎢⎣
⎡ −+=

θθ  (9) 
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Zwislocki then calculated the power of the external noise that would be equivalent to that of 
the imagined internal physiological noise. Using T to denote tone threshold, PS = PT at the 
tone’s absolute detection threshold in quiet. Then Zwislocki declared that PN I 2 = 2.5 PT 2. No 
proof was provided for that equality. In the absence of external noise, then, LS  = K [( PS 2 + 
2.5 PT 2 ) θ  -  (2.5 PT 2 ) θ ], so that LS  = K [( 3.5 PT 2 ) θ  -  (2.5 PT 2 ) θ ] at the tone’s absolute 
detection threshold. Thus, according to Zwislocki, the tone has nonzero loudness at its 
absolute detection threshold in quiet. 
Zwislocki’s conclusion depended crucially upon including PNI2 in the subtracted term in Eq. 
(3). It allows zero tone loudness when there is no tone (PS2 =0). In so doing, Zwislocki 
violates his own assumption that the „physiological noise“ cannot be ignored by the 
listener. If that assumption is held to, then the internal noise cannot be included in the 
subtracted term. However, Zwislocki acted as if internal noise was a kind of external noise 
that appeared only when the tone appeared. Zwislocki’s approach is truly extraordinary. 
Effectively, Zwislocki’s pure tone carries a noise of fixed energy that masks the tone’s own 
energy, creating an absolute detection threshold. 
If this point is not yet clear, consider an expansion of LS  = K [( PS 2 + PN I 2 ) θ  - PN I 2 θ ] in a 
binomial series:  

( ) ( ) ( ) ( )

( )( ) ( ) ( )

2 1 1 2 2 2 22 2    
2!    

1 2 2 3 2 3 2         
3!

NI NI NI S

NINI S

P P P P P

L K

P P P

θ θ θ θθ θ

θ θ θ θ θ

⎛ ⎞⋅ − ⋅ − ⋅ − ⋅
+ +⎜ ⎟

⎜ ⎟=
⎜ ⎟− − ⋅ − ⋅
+ + −⎜ ⎟
⎝ ⎠

…
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( )( ) ( ) ( )

2 1 1 2 2 2 22    
2! .

1 2 2 3 2 3
     

3!

NI NI S

NI S

P P P P

K

P P

θ θ θ θ
θ

θ θ θ θ

⎛ ⎞⋅ − − ⋅ − ⋅
+⎜ ⎟

⎜ ⎟=
⎜ ⎟− − ⋅ − ⋅
+ +⎜ ⎟
⎝ ⎠

…

 (10) 

The tone and internal-noise pressure components are clearly inseparable. 
In sum, Zwislocki (1965) imposed an absolute detection threshold upon a pure tone (and 
hence incorporated a threshold tone loudness) by making an „internal“ noise inseparable 
from overall loudness. That is, in an act of patent circular logic, Zwislocki assumed a nonzero 
tone loudness at tone-detection threshold. 

6.2 The Moore et al. (1997) derivation 
In 1997, Moore et al. published an updated version of Zwislocki’s book chapter. Their model 
concerned the loudness of stimuli per equivalent rectangular bandwidth (ERB), their own 
version of Zwislocki’s critical band. Moore et al. called it the „specific“ loudness, denoted 
N′. The specific loudness was imagined as a function of a stimulus-evoked internal 
excitation E (in power units). As done by Zwislocki (1965), the tone was called „signal“, 
hence the tone-evoked excitation was ESIG. Similarly, the peak excitation from a pure tone 
„at absolute threshold“ was called ETHRQ. Omitting several steps, the specific loudness for a 
pure tone in the absence of an external masking noise was 

 ( )SIG

1.5
2

       .SIG
SIG THRQ

E
N C GE A A

E E

θ θ⎛ ⎞ ⎡ ⎤
′ ⎜ ⎟= + −⎢ ⎥⎜ ⎟+ ⎣ ⎦⎝ ⎠

 (11) 
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„At threshold” ESIG = ETHRQ and hence N′THRESHOLD = C [( GETHRQ + A ) α  - Aα ], which 
exceeds zero. Thus Moore et al., like Zwislocki, concluded that a pure tone in quiet has 
nonzero loudness at absolute detection threshold. 
Note the remarkable similarity of Eq. 11 to Eq. 9, Zwislocki’s (1965) equation for tone 
loudness in quiet. This similarity suggests that Moore et al. followed the same circular logic 
that was used by Zwislocki. After all, Moore et al.’s paper was patterned after Zwislocki’s. 
Their „loudness per ERB“ is equivalent to Zwislocki’s loudness for the spectrum falling 
within a critical band; that is, Moore et al. and Zwislocki sought to quantify the same thing. 
Both Moore et al. and Zwislocki assumed power laws for loudness. Moore et al. effectively 
adopted Zwislocki’s „internal noise“, a noise that is ignorable but somehow not ignorable, 
making tone loudness equal to zero when the tone is absent but inducing nonzero tone 
loudness „at threshold“ when the tone is present. Overall, then, Moore et al. assumed, 
rather than proved, nonzero tone loudness at the tone’s absolute detection threshold. 

6.3 The origin of the error 

What is the ultimate origin of the circular logic used by Zwislocki (1965) and Moore et al. 
(1997)? The answer is not obvious. In seeking an answer, we might note that Zwislocki 
(1965) and Moore et al. (1997) started with a particular assumption, that is, that there is such 
a thing as a constant „threshold loudness“. However, two phenomena suggest that such an 
approach is spurious. First, magnitude estimates of loudness are distributed rather than 
constant (e.g., Stevens, 1956; McGill, 1960; Hellman & Zwislocki, 1963; Luce & Mo, 1965; 
Poulton, 1984; Hellman & Meiselman, 1988). There is thus an „average loudness“, rather 
than a constant loudness, for a given intensity of any particular stimulus. Similarly, absolute 
detection threshold itself is operationally defined probabilistically, using psychometric 
functions which illustrate the percentage of the time that a stimulus is heard as a function of 
the stimulus intensity. Thus there is no fixed stimulus „at threshold“. 

7. Conclusions 

Dr. Lütkenhöner’s computations of the average neuronal response available from the mass 
of responding auditory primary afferents fails to account for two crucial factors, the across-
neuron variability of threshold and of dynamic range. Attempts to incorporate dynamic-
range variability would fail irregardless, because dynamic range cannot be incorporated as a 
variable in the saturating power function that Lütkenhöner uses; that equation has a fixed 
dynamic range. There is an equation in the auditory literature that incorporates dynamic 
range as a parameter, but Lütkenhöner ignores that equation. Further, Dr. Lütkenhöner 
perpetuates the outdated notion of an infinitely low detection threshold. Finally, he notes 
the similarity of his equations to an equation used by Zwislocki (1965), but the latter 
equation arose from circular logic, implying that Lütkenhöner’s equations also arise from 
circular logic. These errors are by no means trivial and do not appear to be correctable 
within Dr. Lütkenhöner’s computational framework. They cast serious doubt on the 
accuracy of his computations and stand as a warning to the computational neurobiologist 
who seeks to further understand the progression of massed neuronal firing rate with 
intensity. The errors comitted by Lütkenhöner also highlight the need for very careful 
choices of the equations used to describe single-neuron firing rates. More broadly,  
Lütkenhöner’s mistakes derived from using equations and concepts which are outdated but 
which remain prominent simply because they have been cited many times in the literature. 
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Unfortunately, as this critique of Dr. Lütkenhöner’s work illustrates, popularity is not a 
substitute for correctness. 
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